151
|
Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0146. [PMID: 25964458 DOI: 10.1098/rstb.2014.0146] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccination has been tremendously successful saving lives and preventing infections. However, the development of vaccines against global pandemics such as HIV, malaria and tuberculosis has been obstructed by several challenges. A major challenge is the lack of knowledge about the correlates and mechanisms of protective immunity. Recent advances in the application of systems biological approaches to analyse immune responses to vaccination in humans are beginning to yield new insights about mechanisms of vaccine immunity, and to define molecular signatures, induced rapidly after vaccination, that correlate with and predict vaccine induced immunity. Here, we review these advances and discuss the potential of this systems vaccinology approach in defining novel correlates of protection in clinical trials, and in infection-induced 'experimental challenge models' in humans.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
152
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
153
|
Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat Commun 2016; 7:10369. [PMID: 26742691 PMCID: PMC4729923 DOI: 10.1038/ncomms10369] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 01/10/2023] Open
Abstract
Aging is associated with hyporesponse to vaccination, whose mechanisms remain unclear. In this study hepatitis B virus (HBV)-naive older adults received three vaccines, including one against HBV. Here we show, using transcriptional and cytometric profiling of whole blood collected before vaccination, that heightened expression of genes that augment B-cell responses and higher memory B-cell frequencies correlate with stronger responses to HBV vaccine. In contrast, higher levels of inflammatory response transcripts and increased frequencies of pro-inflammatory innate cells correlate with weaker responses to this vaccine. Increased numbers of erythrocytes and the haem-induced response also correlate with poor response to the HBV vaccine. A transcriptomics-based pre-vaccination predictor of response to HBV vaccine is built and validated in distinct sets of older adults. This moderately accurate (area under the curve≈65%) but robust signature is supported by flow cytometry and cytokine profiling. This study is the first that identifies baseline predictors and mechanisms of response to the HBV vaccine. Ageing is associated with poor responses to vaccines but the underlying mechanism remains unclear. Here the authors use a systems-based approach to define molecular signatures present before vaccination that correlate with non-responsiveness to hepatitis B vaccination in healthy, elderly adults.
Collapse
|
154
|
Lelièvre JD, Lévy Y. HIV-1 prophylactic vaccines: state of the art. J Virus Erad 2016; 2:5-11. [PMID: 27482428 PMCID: PMC4946697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The quest for an effective HIV-1 vaccine began early in the course of the HIV pandemic. Over time, the paradigm has evolved from B cell- towards T cell-based vaccines. Results from initial Phase II/III trials have been disappointing; however, while modest, the unexpected results of the Phase II/III RV144 trial in Thailand have re-energised the field. Indeed a clear correlation was demonstrated in this trial between protection and immunological biomarkers, namely non-neutralising antibodies against the V1V2 region. Recent data obtained from cohorts of recently HIV-1-infected individuals have enabled exploration of the role of neutralising antibodies and their potential use in HIV-1 prevention. Results from non-human primate models using a cytomegalovirus vector have also shown the potential for a prophylactic HIV vaccine to induce effective T cell responses. Finally, the development of new vaccine vectors and trial strategies has also allowed progress in the field. Therefore, HIV-1 vaccine research remains a dynamic field that has also been stimulated by the recent positive results of pre-exposure prophylaxis strategies with antiretrovirals.
Collapse
Affiliation(s)
- Jean-Daniel Lelièvre
- AP-HP, Hôpital Henri Mondor – Albert Chenevier, Service d’Immunologie Clinique et Maladies Infectieuses, Créteil, 94000, France,Corresponding author: Jean-Daniel Lelièvre, Service d’Immunologie Clinique et Maladies Infectieuses, CHU Henri Mondor, 51 avenue Mal de Lattre de Tassigny, 94010, Créteil, France
| | - Yves Lévy
- AP-HP, Hôpital Henri Mondor – Albert Chenevier, Service d’Immunologie Clinique et Maladies Infectieuses, Créteil, 94000, France
| |
Collapse
|
155
|
Frasca D, Blomberg BB. B Cell-Specific Biomarkers for Optimal Antibody Responses to Influenza Vaccination and Molecular Pathways That Reduce B Cell Function with Aging. Crit Rev Immunol 2016; 36:523-537. [PMID: 28845758 DOI: 10.1615/critrevimmunol.2017020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review highlights recent findings on the effects of aging on influenza vaccine responses, with major emphasis on T and B cells, which are significantly impaired by aging. We discuss changes in T cell production and thymic output; T cell subsets; and TCR repertoire, function, and response to latent persistent infection. We also discuss changes in B cell subsets, repertoire, and function, and how function is impaired by increased intrinsic B cell inflammation and reduced signal transduction. This review presents age-related effects on antigen-presenting cells, summarizes recent studies, including our own, aimed at the identification of biomarkers of protective vaccine responses, and provides examples of recent technical advances and insights into human vaccine responses that are helping to define the features associated with successful vaccination and that may enable a more predictive vaccinology in the future.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
156
|
Eberhardt M, Lai X, Tomar N, Gupta S, Schmeck B, Steinkasserer A, Schuler G, Vera J. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive. Methods Mol Biol 2016; 1386:135-179. [PMID: 26677184 DOI: 10.1007/978-1-4939-3283-2_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.
Collapse
Affiliation(s)
- Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Namrata Tomar
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps University, Marburg, Germany
- Systems Biology Platform, Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps University Marburg, Marburg, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
157
|
|
158
|
Abstract
Dendritic cells (DCs) are immune sentinels of the body and play a key role in the orchestration of the communication between the innate and the adaptive immune systems. DCs can polarize innate and adaptive immunity toward a variety of functions, sometimes with opposite roles in the overall control of immune responses (e.g., tolerance or immunosuppression versus immunity) or in the balance between various defense mechanisms promoting the control of different types of pathogens (e.g., antiviral versus antibacterial versus anti-worm immunity). These multiple DC functions result both from the plasticity of individual DC to exert different activities and from the existence of various DC subsets specialized in distinct functions. Functional genomics represents a powerful, unbiased, approach to better characterize these two levels of DC plasticity and to decipher its molecular regulation. Indeed, more and more experimental immunologists are generating high-throughput data in order to better characterize different states of DC based, for example, on their belonging to a specific subpopulation and/or on their exposure to specific stimuli and/or on their ability to exert a specific function. However, the interpretation of this wealth of data is severely hampered by the bottleneck of their bioinformatics analysis. Indeed, most experimental immunologists lack advanced computational or bioinformatics expertise and do not know how to translate raw gene expression data into potential biological meaning. Moreover, subcontracting such analyses is generally disappointing or financially not sustainable, since companies generally propose canonical analysis pipelines that are often unadapted for the structure of the data to analyze or for the precise type of questions asked. Hence, there is an important need of democratization of the bioinformatics analyses of gene expression profiling studies, in order to accelerate interpretation of the results by the researchers at the origin of the research project, of the data and who know best the underlying biology. This chapter will focus on the analysis of DC subset transcriptomes as measured by microarrays. We will show that simple bioinformatics procedures, applied one after the other in the framework of a pipeline, can lead to the characterization of DC subsets. We will develop two tutorials based on the reanalysis of public gene expression data. The first tutorial aims at illustrating a strategy for establishing the identity of DC subsets studied in a novel context, here their in vitro generation in cultures of human CD34(+) hematopoietic progenitors. The second tutorial aims at illustrating how to perform a posteriori bioinformatics analyses in order to evaluate the risk of contamination or of improper identification of DC subsets during preparation of biological samples, such that this information is taken into account in the final interpretation of the data and can eventually help to redesign the sampling strategy.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, 163 Avenue de Luminy, 13288, Marseille, France.
- U1104, INSERM, Marseille, France.
- UMR7280, CNRS, Marseille, France.
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, 163 Avenue de Luminy, 13288, Marseille, France
- U1104, INSERM, Marseille, France
- UMR7280, CNRS, Marseille, France
| |
Collapse
|
159
|
Gannavaram S, Bhattacharya P, Dey R, Ismail N, Avishek K, Salotra P, Selvapandiyan A, Satoskar A, Nakhasi HL. Methods to Evaluate the Preclinical Safety and Immunogenicity of Genetically Modified Live-Attenuated Leishmania Parasite Vaccines. Methods Mol Biol 2016; 1403:623-638. [PMID: 27076157 DOI: 10.1007/978-1-4939-3387-7_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Live-attenuated parasite vaccines are being explored as potential vaccine candidates since other approaches of vaccination have not produced an effective vaccine so far. In order for live-attenuated parasite vaccines to be tested in preclinical studies and possibly in clinical studies, the safety and immunogenicity of these organisms must be rigorously evaluated. Here we describe methods to test persistence in the immunized host and immunogenicity, and to identify biomarkers of vaccine safety and efficacy with particular reference to genetically attenuated Leishmania parasites.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Kumar Avishek
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Poonam Salotra
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Angamuthu Selvapandiyan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate Phase 3, New Delhi, 110020, India
| | - Abhay Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
160
|
Zhang J, Shao J, Wu X, Mao Q, Wang Y, Gao F, Kong W, Liang Z. Type I interferon related genes are common genes on the early stage after vaccination by meta-analysis of microarray data. Hum Vaccin Immunother 2015; 11:739-45. [PMID: 25839220 DOI: 10.1080/21645515.2015.1008884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to find common immune mechanism across different kinds of vaccines. A meta-analysis of microarray datasets was performed using publicly available microarray Gene Expression Omnibus (GEO) and Array Express data sets of vaccination records. Seven studies (out of 35) were selected for this meta-analysis. A total of 447 chips (145 pre-vaccination and 302 post-vaccination) were included. Significance analysis of microarrays (SAM) program was used for screening differentially expressed genes (DEGs). Functional pathway enrichment for the DEGs was conducted in DAVID Gene Ontology (GO) database. Twenty DEGs were identified, of which 10 up-regulated genes involved immune response. Six of which were type I interferon (IFN) related genes, including LY6E, MX1, OAS3, IFI44L, IFI6 and IFITM3. Ten down-regulated genes mainly mediated negative regulation of cell proliferation and cell motion. Results of a subgroup analysis showed that although the kinds of genes varied widely between days 3 and 7 post vaccination, the pathways between them are basically the same, such as immune response and response to viruses, etc. For an independent verification of these 6 type I IFN related genes, peripheral blood mononuclear cells (PBMCs) were collected at baseline and day 3 after the vaccination from 8 Enterovirus 71(EV71) vaccinees and were assayed by RT-PCR. Results showed that the 6 DEGs were also upregulated in EV71 vaccinees. In summary, meta-analysis methods were used to explore the immune mechanism of vaccines and results indicated that the type I IFN related genes and corresponding pathways were common in early immune responses for different kinds of vaccines.
Collapse
Key Words
- CPE, cytopathogenic effect
- DCs, dendritic cells
- DEGs, differentially expressed genes
- EV71, enterovirus 71
- GEO, Gene Expression Omnibus
- GO, gene ontology
- IFN, interferon
- PBMCs, peripheral blood mononuclear cells
- PRRs, pattern recognition receptors
- SAM, significance analysis of microarrays
- TLRs, Toll-like receptors
- immune mechanism
- meta-analysis
- microarray
- type I interferon
- vaccine
Collapse
Affiliation(s)
- Junnan Zhang
- a National Institutes for Food and Drug Control ; Beijing , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 2015; 33:7100-11. [DOI: 10.1016/j.vaccine.2015.09.108] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023]
|
162
|
Galassie AC, Link AJ. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics Clin Appl 2015; 9:972-89. [PMID: 26172619 PMCID: PMC4713355 DOI: 10.1002/prca.201500054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 01/19/2023]
Abstract
Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses.
Collapse
Affiliation(s)
| | - Andrew J. Link
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
163
|
Abstract
A brief history of vaccination is presented since the Jenner's observation, through the first golden age of vaccinology (from Pasteur's era to 1938), the second golden age (from 1940 to 1970), until the current period. In the first golden age, live, such as Bacille Calmette Guérin (BCG), and yellow fever, inactivated, such as typhoid, cholera, plague, and influenza, and subunit vaccines, such as tetanus and diphtheria toxoids, have been developed. In the second golden age, the cell culture technology enabled polio, measles, mumps, and rubella vaccines be developed. In the era of modern vaccines, in addition to the conjugate polysaccharide, hepatitis A, oral typhoid, and varicella vaccines, the advent of molecular biology enabled to develop hepatitis B, acellular pertussis, papillomavirus, and rotavirus recombinant vaccines. Great successes have been achieved in the fight against infectious diseases, including the smallpox global eradication, the nearly disappearance of polio, the control of tetanus, diphtheria, measles, rubella, yellow fever, and rabies. However, much work should still be done for improving old vaccines, such as BCG, anthrax, smallpox, plague, or for developing effective vaccines against old or emerging infectious threats, such as human-immunodeficiency-virus, malaria, hepatitis C, dengue, respiratory-syncytial-virus, cytomegalovirus, multiresistant bacteria, Clostridium difficile, Ebola virus. In addition to search for innovative and effective vaccines and global infant coverage, even risk categories should adequately be protected. Despite patients under immunosuppressive therapy are globally increasing, their vaccine coverage is lower than recommended, even in developed and affluent countries.
Collapse
Affiliation(s)
| | - Simonetta Salemi
- c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| | - Raffaele D'Amelio
- b Sapienza University of Rome , Department of Clinical and Molecular Medicine , Via di Grottarossa Rome, Italy.,c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| |
Collapse
|
164
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends Mol Med 2015; 21:789-801. [PMID: 26602762 DOI: 10.1016/j.molmed.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Despite the existence of an effective measles vaccine, resurgence in measles cases in the USA and across Europe has occurred, including in individuals vaccinated with two doses of the vaccine. Host genetic factors result in inter-individual variation in measles vaccine-induced antibodies, and play a role in vaccine failure. Studies have identified HLA (human leukocyte antigen) and non-HLA genetic influences that individually or jointly contribute to the observed variability in the humoral response to vaccination among healthy individuals. In this exciting era, new high-dimensional approaches and techniques including vaccinomics, systems biology, GWAS, epitope prediction and sophisticated bioinformatics/statistical algorithms provide powerful tools to investigate immune response mechanisms to the measles vaccine. These might predict, on an individual basis, outcomes of acquired immunity post measles vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
165
|
Tscharke DC, Croft NP, Doherty PC, La Gruta NL. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 2015; 15:705-16. [DOI: 10.1038/nri3905] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
166
|
Twine SM, Fulton KM, Spika J, Ouellette M, Raven JF, Conlan JW, Krishnan L, Barreto L, Richards JC. Next Generation Vaccine Biomarkers workshop October 30-31, 2014--Ottawa, Canada. Hum Vaccin Immunother 2015; 11:2923-30. [PMID: 26383909 DOI: 10.1080/21645515.2015.1083663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Vaccine biomarkers are critical to many aspects of vaccine development and licensure, including bridging findings in pre-clinical studies to clinical studies, predicting potential adverse events, and predicting vaccine efficacy. Despite advances in our understanding of various biological pathways, and advances in systems analyses of the immune response, there remains much to learn about qualitative and quantitative aspects of the human host response to vaccination. To stimulate discussion and identify opportunities for collaborative ways to advance the field of vaccine biomarkers, A Next Generation Vaccine Biomarker workshop was held in Ottawa. The two day workshop, sponsored by the National Research Council Canada, Canadian Institutes of Health Research, Public Health Agency of Canada, Pfizer, and Medicago, brought together stakeholders from Canadian and international industry, government and academia. The workshop was grouped in themes, covering vaccine biomarker challenges in the pre-clinical and clinical spaces, veterinary vaccines, regulatory challenges, and development of biomarkers for adjuvants and cancer vaccines. The use of case studies allowed participants to identify the needs and gaps requiring innovation. The workshop concluded with a discussion on opportunities for vaccine biomarker discovery, the Canadian context, and approaches for moving forward. This article provides a synopsis of these discussions and identifies steps forward for advancing vaccine biomarker research in Canada.
Collapse
Affiliation(s)
- Susan M Twine
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| | - Kelly M Fulton
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| | - John Spika
- b Public Health Agency of Canada (PHAC) ; Ottawa , Ontario , Canada
| | - Marc Ouellette
- c Canadian Institutes of Health Research (CIHR) ; Ottawa , Ontario , Canada
| | - Jennifer F Raven
- c Canadian Institutes of Health Research (CIHR) ; Ottawa , Ontario , Canada
| | - J Wayne Conlan
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| | - Lakshmi Krishnan
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| | - Luis Barreto
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| | - James C Richards
- a National Research Council Canada-Human Health Therapeutics (NRC-HHT) ; Ottawa , Ontario , Canada
| |
Collapse
|
167
|
Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight against malaria. Mem Inst Oswaldo Cruz 2015; 109:589-97. [PMID: 25185001 PMCID: PMC4156452 DOI: 10.1590/0074-0276140043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host's metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.
Collapse
Affiliation(s)
- Jorge L Salinas
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
168
|
Faucette AN, Pawlitz MD, Pei B, Yao F, Chen K. Immunization of pregnant women: Future of early infant protection. Hum Vaccin Immunother 2015; 11:2549-55. [PMID: 26366844 PMCID: PMC4685701 DOI: 10.1080/21645515.2015.1070984] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 07/05/2015] [Indexed: 01/24/2023] Open
Abstract
Children in early infancy do not mount effective antibody responses to many vaccines against commons infectious pathogens, which results in a window of increased susceptibility or severity infections. In addition, vaccine-preventable infections are among the leading causes of morbidity in pregnant women. Immunization during pregnancy can generate maternal immune protection as well as elicit the production and transfer of antibodies cross the placenta and via breastfeeding to provide early infant protection. Several successful vaccines are now recommended to all pregnant women worldwide. However, significant gaps exist in our understanding of the efficacy and safety of other vaccines and in women with conditions associated with increased susceptible to high-risk pregnancies. Public acceptance of maternal immunization remained to be improved. Broader success of maternal immunization will rely on the integration of advances in basic science in vaccine design and evaluation and carefully planned clinical trials that are inclusive to pregnant women.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Michael D Pawlitz
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Bo Pei
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Fayi Yao
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Kang Chen
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
- Tumor Biology and Microenvironment Program; Barbara Ann Karmanos Cancer Institute; Detroit, MI USA
- Department of Immunology and Microbiology; Wayne State University; Detroit, MI USA
- Department of Oncology; Wayne State University; Detroit, MI USA
- Mucosal Immunology Studies Team; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
169
|
Schneider C, Smith DF, Cummings RD, Boligan KF, Hamilton RG, Bochner BS, Miescher S, Simon HU, Pashov A, Vassilev T, von Gunten S. The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Sci Transl Med 2015; 7:269ra1. [PMID: 25568069 DOI: 10.1126/scitranslmed.3010524] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite the paradigm that carbohydrates are T cell-independent antigens, isotype-switched glycan-specific immunoglobulin G (IgG) antibodies and polysaccharide-specific T cells are found in humans. We used a systems-level approach combined with glycan array technology to decipher the repertoire of carbohydrate-specific IgG antibodies in intravenous and subcutaneous immunoglobulin preparations. A strikingly universal architecture of this repertoire with modular organization among different donor populations revealed an association between immunogenicity or tolerance and particular structural features of glycans. Antibodies were identified with specificity not only for microbial antigens but also for a broad spectrum of host glycans that serve as attachment sites for viral and bacterial pathogens and/or exotoxins. Tumor-associated carbohydrate antigens were differentially detected by IgG antibodies, whereas non-IgG2 reactivity was predominantly absent. Our study highlights the power of systems biology approaches to analyze immune responses and reveals potential glycan antigen determinants that are relevant to vaccine design, diagnostic assays, and antibody-based therapies.
Collapse
Affiliation(s)
| | - David F Smith
- Protein-Carbohydrate Interaction Core H, Consortium for Functional Glycomics, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Protein-Carbohydrate Interaction Core H, Consortium for Functional Glycomics, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Bruce S Bochner
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Sylvia Miescher
- Research and Development, CSL Behring AG, CH-3014 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | - Anastas Pashov
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tchavdar Vassilev
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
170
|
González-Romo F, Picazo JJ. [Development of new vaccines]. Enferm Infecc Microbiol Clin 2015; 33:557-68. [PMID: 26341041 DOI: 10.1016/j.eimc.2015.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/01/2023]
Abstract
Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases.
Collapse
Affiliation(s)
- Fernando González-Romo
- Servicio de Microbiología Clínica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España.
| | - Juan J Picazo
- Servicio de Microbiología Clínica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
171
|
Boianelli A, Pettini E, Prota G, Medaglini D, Vicino A. A Stochastic Model for CD4+ T Cell Proliferation and Dissemination Network in Primary Immune Response. PLoS One 2015; 10:e0135787. [PMID: 26301680 PMCID: PMC4547705 DOI: 10.1371/journal.pone.0135787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 01/29/2023] Open
Abstract
The study of the initial phase of the adaptive immune response after first antigen encounter provides essential information on the magnitude and quality of the immune response. This phase is characterized by proliferation and dissemination of T cells in the lymphoid organs. Modeling and identifying the key features of this phenomenon may provide a useful tool for the analysis and prediction of the effects of immunization. This knowledge can be effectively exploited in vaccinology, where it is of interest to evaluate and compare the responses to different vaccine formulations. The objective of this paper is to construct a stochastic model based on branching process theory, for the dissemination network of antigen-specific CD4+ T cells. The devised model is validated on in vivo animal experimental data. The model presented has been applied to the vaccine immunization context making references to simple proliferation laws that take into account division, death and quiescence, but it can also be applied to any context where it is of interest to study the dynamic evolution of a population.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Systems Medicine of Infectious Diseases group and Braunschweig Integrated Centre of Systems Biology, Department of Systems Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- * E-mail:
| | - Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologie, Dipartimento di Biotecnologie Mediche, Università di Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Gennaro Prota
- Laboratorio di Microbiologia Molecolare e Biotecnologie, Dipartimento di Biotecnologie Mediche, Università di Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologie, Dipartimento di Biotecnologie Mediche, Università di Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Antonio Vicino
- Dipartimento di Ingegneria dell’Informazione e Science Matematiche, Università di Siena, Via Roma 56, 53100 Siena, Italy
| |
Collapse
|
172
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
173
|
Tsang JS. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol 2015; 36:479-93. [PMID: 26187853 PMCID: PMC4979540 DOI: 10.1016/j.it.2015.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022]
Abstract
The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis.
Collapse
Affiliation(s)
- John S Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA; Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
174
|
Zak DE, Aderem A. Systems integration of innate and adaptive immunity. Vaccine 2015; 33:5241-8. [PMID: 26102534 DOI: 10.1016/j.vaccine.2015.05.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
Abstract
The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.
Collapse
Affiliation(s)
- Daniel E Zak
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Alan Aderem
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA.
| |
Collapse
|
175
|
Guggino G, Orlando V, Cutrera S, La Manna MP, Di Liberto D, Vanini V, Petruccioli E, Dieli F, Goletti D, Caccamo N. Granzyme A as a potential biomarker of Mycobacterium tuberculosis infection and disease. Immunol Lett 2015; 166:87-91. [PMID: 26051682 DOI: 10.1016/j.imlet.2015.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 01/21/2023]
Abstract
Cytotoxic molecules such as granulysin, perforin and granzymes produced by cytolytic T cells directly contribute to immune defense against tuberculosis (TB). In search for novel TB biomarkers, we have evaluated the levels of granzyme A in plasma obtained from QuantiFERON-TB Gold In tube (QFT-IT) assays from patients with active TB disease and subjects with latent TB infection (LTBI). Granzyme A serum levels in TB patients were significantly lower than values found in LTBI subjects even after subtraction of the unstimulated levels from the antigen-stimulated responses. The receiver operator characteristics (ROC) curve analysis comparing TB patients and LTBI groups, showed that at a cut-off value of granzyme A of <3.425pg/ml, the sensitivity and the specificity of the assay were 29.41% and 94.74%, respectively. Our results suggest that granzyme A could be considered another biomarker of TB, that can be used, other than IFN-γ, to discriminate between patients with active TB and LTBI subjects in a well characterized cohort of confirmed Mycobacterium tuberculosis-infected individuals.
Collapse
Affiliation(s)
- Giuliana Guggino
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Stella Cutrera
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | | | | | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Delia Goletti
- Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy.
| |
Collapse
|
176
|
Orenstein WA, Seib K, Graham-Rowe D, Berkley S. Contemporary vaccine challenges: improving global health one shot at a time. Sci Transl Med 2015; 6:253ps11. [PMID: 25210061 DOI: 10.1126/scitranslmed.3009848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccines have proved to be one of the most powerful and effective ways of reducing disease. However, if we are to maximize their impact on global health, then we need to develop new vaccines for additional diseases as well as to improve their supply and delivery, particularly in developing countries.
Collapse
Affiliation(s)
- Walter A Orenstein
- Emory University, School of Medicine, Department of Infectious Diseases, Atlanta, GA, USA.
| | - Katherine Seib
- Emory University, School of Medicine, Department of Infectious Diseases, Atlanta, GA, USA
| | | | | |
Collapse
|
177
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
178
|
|
179
|
Nakaya HI, Bruna-Romero O. Is the gut microbiome key to modulating vaccine efficacy? Expert Rev Vaccines 2015; 14:777-9. [DOI: 10.1586/14760584.2015.1040395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
180
|
Hagan T, Nakaya HI, Subramaniam S, Pulendran B. Systems vaccinology: Enabling rational vaccine design with systems biological approaches. Vaccine 2015; 33:5294-301. [PMID: 25858860 DOI: 10.1016/j.vaccine.2015.03.072] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 01/25/2023]
Abstract
Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines.
Collapse
Affiliation(s)
- Thomas Hagan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bali Pulendran
- Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
181
|
Centlivre M, Combadière B. New challenges in modern vaccinology. BMC Immunol 2015; 16:18. [PMID: 25879661 PMCID: PMC4374378 DOI: 10.1186/s12865-015-0075-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.
Collapse
Affiliation(s)
- Mireille Centlivre
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Béhazine Combadière
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
182
|
A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination. PLoS One 2015; 10:e0118528. [PMID: 25706537 PMCID: PMC4338067 DOI: 10.1371/journal.pone.0118528] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Collapse
|
183
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
184
|
Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res 2015; 44:99-110. [DOI: 10.1016/j.preteyeres.2014.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
|
185
|
Campo JJ, Aponte JJ, Skinner J, Nakajima R, Molina DM, Liang L, Sacarlal J, Alonso PL, Crompton PD, Felgner PL, Dobaño C. RTS,S vaccination is associated with serologic evidence of decreased exposure to Plasmodium falciparum liver- and blood-stage parasites. Mol Cell Proteomics 2014; 14:519-31. [PMID: 25547414 DOI: 10.1074/mcp.m114.044677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leading malaria vaccine candidate, RTS,S, targets the sporozoite and liver stages of the Plasmodium falciparum life cycle, yet it provides partial protection against disease associated with the subsequent blood stage of infection. Antibodies against the vaccine target, the circumsporozoite protein, have not shown sufficient correlation with risk of clinical malaria to serve as a surrogate for protection. The mechanism by which a vaccine that targets the asymptomatic sporozoite and liver stages protects against disease caused by blood-stage parasites remains unclear. We hypothesized that vaccination with RTS,S protects from blood-stage disease by reducing the number of parasites emerging from the liver, leading to prolonged exposure to subclinical levels of blood-stage parasites that go undetected and untreated, which in turn boosts pre-existing antibody-mediated blood-stage immunity. To test this hypothesis, we compared antibody responses to 824 P. falciparum antigens by protein array in Mozambican children 6 months after receiving a full course of RTS,S (n = 291) versus comparator vaccine (n = 297) in a Phase IIb trial. Moreover, we used a nested case-control design to compare antibody responses of children who did or did not experience febrile malaria. Unexpectedly, we found that the breadth and magnitude of the antibody response to both liver and asexual blood-stage antigens was significantly lower in RTS,S vaccinees, with the exception of only four antigens, including the RTS,S circumsporozoite antigen. Contrary to our initial hypothesis, these findings suggest that RTS,S confers protection against clinical malaria by blocking sporozoite invasion of hepatocytes, thereby reducing exposure to the blood-stage parasites that cause disease. We also found that antibody profiles 6 months after vaccination did not distinguish protected and susceptible children during the subsequent 12-month follow-up period but were strongly associated with exposure. Together, these data provide insight into the mechanism by which RTS,S protects from malaria.
Collapse
Affiliation(s)
- Joe J Campo
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique;
| | - John J Aponte
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| | - Jeff Skinner
- ¶Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Rie Nakajima
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA
| | | | - Li Liang
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA
| | - Jahit Sacarlal
- §Manhiça Health Research Centre, Manhiça, Mozambique; **Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Pedro L Alonso
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| | - Peter D Crompton
- ¶Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Philip L Felgner
- ‡‡Department of Medicine, University of California Irvine, Irvine, CA; ‖Antigen Discovery Inc., Irvine, CA
| | - Carlota Dobaño
- ‡ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; §Manhiça Health Research Centre, Manhiça, Mozambique
| |
Collapse
|
186
|
Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol 2014; 67:426-49. [DOI: 10.1111/jphp.12352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/12/2014] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
To review the state of the art and assess future potential in the use of inorganic particulates as vaccine adjuvants.
Key findings
An adjuvant is an entity added to a vaccine formulation to ensure that robust immunity to the antigen is inculcated. The inclusion of an adjuvant is typically vital for the efficacy of vaccines using inactivated organisms, subunit and DNA antigens. With increasing research efforts being focused on subunit and DNA antigens because of their improved safety profiles, the development of appropriate adjuvants is becoming ever more crucial. Despite this, very few adjuvants are licensed for use in humans (four by the FDA, five by the European Medicines Agency). The most widely used adjuvant, alum, has been used for nearly 90 years, yet its mechanism of action remains poorly understood. In addition, while alum produces a powerful antibody Th2 response, it does not provoke the cellular immune response required for the elimination of intracellular infections or cancers. New adjuvants are therefore needed, and inorganic systems have attracted much attention in this regard.
Summary
In this review, the inorganic adjuvants currently in use are considered, and the efforts made to date to understand their mechanisms of action are summarised. We then move on to survey the literature on inorganic particulate adjuvants, focusing on the most interesting recent developments in this area and their future potential.
Collapse
|
187
|
Abstract
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.
Collapse
|
188
|
Banchereau R, Baldwin N, Cepika AM, Athale S, Xue Y, Yu CI, Metang P, Cheruku A, Berthier I, Gayet I, Wang Y, Ohouo M, Snipes L, Xu H, Obermoser G, Blankenship D, Oh S, Ramilo O, Chaussabel D, Banchereau J, Palucka K, Pascual V. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines. Nat Commun 2014; 5:5283. [PMID: 25335753 PMCID: PMC4206838 DOI: 10.1038/ncomms6283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 02/08/2023] Open
Abstract
The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.
Collapse
Affiliation(s)
- Romain Banchereau
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Nicole Baldwin
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Alma-Martina Cepika
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Shruti Athale
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Chun I Yu
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Patrick Metang
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Abhilasha Cheruku
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Isabelle Berthier
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Ingrid Gayet
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Yuanyuan Wang
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Marina Ohouo
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - LuAnn Snipes
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Hui Xu
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Gerlinde Obermoser
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Derek Blankenship
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Sangkon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Octavio Ramilo
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205, USA
| | - Damien Chaussabel
- 1] Benaroya Research Institute, 1201 9th Avenue, Seattle, Washington 98101, USA [2] Sidra Medical and Research Center, Doha, Qatar
| | - Jacques Banchereau
- 1] Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA [2] Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Karolina Palucka
- 1] Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA [2] Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| |
Collapse
|
189
|
Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 2014; 44:901-13. [PMID: 25196370 DOI: 10.1016/j.ijpara.2014.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/08/2023]
Abstract
Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years.
Collapse
Affiliation(s)
- Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| |
Collapse
|
190
|
Systems vaccinology: probing humanity's diverse immune systems with vaccines. Proc Natl Acad Sci U S A 2014; 111:12300-6. [PMID: 25136102 DOI: 10.1073/pnas.1400476111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.
Collapse
|
191
|
Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, Wang E, Olnes MJ, Narayanan M, Golding H, Moir S, Dickler HB, Perl S, Cheung F. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 2014; 157:499-513. [PMID: 24725414 DOI: 10.1016/j.cell.2014.03.031] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/06/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023]
Abstract
A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention.
Collapse
Affiliation(s)
- John S Tsang
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Pamela L Schwartzberg
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi Xie
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ena Wang
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Olnes
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manikandan Narayanan
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hana Golding
- Laboratory of Retrovirus Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Howard B Dickler
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shira Perl
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
192
|
La Gruta NL, Turner SJ. T cell mediated immunity to influenza: mechanisms of viral control. Trends Immunol 2014; 35:396-402. [PMID: 25043801 DOI: 10.1016/j.it.2014.06.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/31/2022]
Abstract
Infection with influenza A virus (IAV) is a major cause of worldwide morbidity and mortality. Recent findings indicate that T cell immunity is key to limiting severity of disease arising from IAV infection, particularly in instances where antibody immunity is ineffective. As such, there is a need to understand better the mechanisms that mediate effective IAV-specific cellular immunity, especially given that T cell immunity must form an integral part of any vaccine designed to elicit crossreactive immunity against existing and new strains of influenza virus. Here, we review the current understanding of cellular immunity to IAV, highlighting recent findings that demonstrate important roles for both CD4+ and CD8+ T cell immunity in protection from IAV-mediated disease.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
193
|
Goodswen SJ, Kennedy PJ, Ellis JT. Discovering a vaccine against neosporosis using computers: is it feasible? Trends Parasitol 2014; 30:401-11. [PMID: 25028089 DOI: 10.1016/j.pt.2014.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
A vaccine is urgently needed to prevent cattle neosporosis. This infectious disease is caused by the parasite Neospora caninum, a complex biological system with multifaceted life cycles. An in silico vaccine discovery approach attempts to transform digital abstractions of this system into adequate knowledge to predict candidates. Researchers need current information to implement such an approach, such as understanding evasion mechanisms of the immune system, type of immune response to elicit, availability of data and prediction programs, and statistical models to analyze predictions. Taken together, an in silico approach involves assembly of an intricate jigsaw of interdisciplinary and interdependent knowledge. In this review, we focus on the approach influencing vaccine development against Neospora caninum, which can be generalized to other pathogenic apicomplexans.
Collapse
Affiliation(s)
- Stephen J Goodswen
- School of Medical and Molecular Biosciences at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Paul J Kennedy
- School of Software, Faculty of Engineering and Information Technology and the Centre for Quantum Computation and Intelligent Systems at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - John T Ellis
- School of Medical and Molecular Biosciences at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia.
| |
Collapse
|
194
|
Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science forward. Hum Reprod Update 2014; 21:119-35. [PMID: 25015234 DOI: 10.1093/humupd/dmu041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and safety of maternal vaccine targeting.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Benjamin L Unger
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
195
|
Mizukami T, Momose H, Kuramitsu M, Takizawa K, Araki K, Furuhata K, Ishii KJ, Hamaguchi I, Yamaguchi K. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test. PLoS One 2014; 9:e101835. [PMID: 25010690 PMCID: PMC4092028 DOI: 10.1371/journal.pone.0101835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and vaccine safety as an alternative to animal testing.
Collapse
Affiliation(s)
- Takuo Mizukami
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Takizawa
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Araki
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken J. Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (WPI-IFREC), Osaka University, Osaka, Japan
| | - Isao Hamaguchi
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| | - Kazunari Yamaguchi
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
196
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
197
|
He Y. Ontology-supported research on vaccine efficacy, safety and integrative biological networks. Expert Rev Vaccines 2014; 13:825-41. [PMID: 24909153 DOI: 10.1586/14760584.2014.923762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
198
|
Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med 2014; 6:708-20. [PMID: 24803000 PMCID: PMC4203350 DOI: 10.1002/emmm.201403876] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2-3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines.
Collapse
|
199
|
Gannavaram S, Dey R, Avishek K, Selvapandiyan A, Salotra P, Nakhasi HL. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications. Front Immunol 2014; 5:241. [PMID: 24904589 PMCID: PMC4033241 DOI: 10.3389/fimmu.2014.00241] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022] Open
Abstract
Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals. In addition, comparative analysis of biomarkers in PBMCs from asymptomatic or healed visceral leishmaniasis individuals in response to vaccine candidates including live attenuated parasites may provide clues about determinants of protective immunity and be helpful in shaping the final Leishmania vaccine formulation in the clinical trials.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration , Bethesda, MD , USA
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration , Bethesda, MD , USA
| | - Kumar Avishek
- National Institute of Pathology, Indian Council of Medical Research , New Delhi , India
| | | | - Poonam Salotra
- National Institute of Pathology, Indian Council of Medical Research , New Delhi , India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration , Bethesda, MD , USA
| |
Collapse
|
200
|
Williams GR, Fierens K, Preston SG, Lunn D, Rysnik O, De Prijck S, Kool M, Buckley HC, Lambrecht BN, O'Hare D, Austyn JM. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry. ACTA ACUST UNITED AC 2014; 211:1019-25. [PMID: 24799501 PMCID: PMC4042647 DOI: 10.1084/jem.20131768] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen-specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Gareth R Williams
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UKChemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Kaat Fierens
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium
| | - Stephen G Preston
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Daniel Lunn
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Oliwia Rysnik
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium
| | - Mirjam Kool
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hannah C Buckley
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UKChemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital and Flanders Institute for Biotechnology (VIB) Inflammation Research Center, University of Ghent, 9000 Ghent, Belgium Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| | - Jonathan M Austyn
- Chemistry Research Laboratory, Department of Chemistry; Nuffield Department of Surgical Sciences, John Radcliffe Hospital; and Department of Statistics; University of Oxford, Oxford OX1 2JD, England, UK
| |
Collapse
|