151
|
Dunmore BJ, Jones RJ, Toshner MR, Upton PD, Morrell NW. Approaches to treat pulmonary arterial hypertension by targeting bmpr2 - from cell membrane to nucleus. Cardiovasc Res 2021; 117:2309-2325. [PMID: 33399862 DOI: 10.1093/cvr/cvaa350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is estimated to affect between 10-50 people per million worldwide. The lack of cure and devastating nature of the disease means that treatment is crucial to arrest rapid clinical worsening. Current therapies are limited by their focus on inhibiting residual vasoconstriction rather than targeting key regulators of the cellular pathology. Potential disease-modifying therapies may come from research directed towards causal pathways involved in the cellular and molecular mechanisms of disease. It is widely acknowledged, that targeting reduced expression of the critical bone morphogenetic protein type-2 receptor (BMPR2) and its associated signalling pathways is a compelling therapeutic avenue to explore. In this review we highlight the advances that have been made in understanding this pathway and the therapeutics that are being tested in clinical trials and the clinic to treat PAH.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Rowena J Jones
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Mark R Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| |
Collapse
|
152
|
Arvidsson M, Ahmed A, Bouzina H, Rådegran G. Plasma proteoglycan prolargin in diagnosis and differentiation of pulmonary arterial hypertension. ESC Heart Fail 2021; 8:1230-1243. [PMID: 33403810 PMCID: PMC8006732 DOI: 10.1002/ehf2.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Right ventricular dysfunction may arise because of pulmonary arterial hypertension (PAH). Development of new diagnostic methods able to identify PAH and allow for earlier treatment initiation, before the development of vascular remodelling and manifest right heart failure (HF), could potentially improve prognosis. Proteoglycans and inflammatory proteins are involved in vascular remodelling. We aimed to investigate their potential as biomarkers to differentiate PAH in a dyspnoeic population. Methods and results Plasma from 152 patients with PAH (n = 48), chronic thrombo‐embolic pulmonary hypertension (n = 20), pulmonary hypertension due to HF with reduced (n = 36) or preserved (n = 33) ejection fraction, and HF without pulmonary hypertension (n = 15) and 20 healthy controls were analysed with proximity extension assays. Haemodynamics were assessed in the patients with right heart catheterization. Plasma prolargin levels in PAH were lower compared with all the other studied disease groups (P < 0.001) but higher than the controls' levels (P = 0.003). Receiver operating characteristic curve of prolargin as a PAH‐differentiating marker in a pooled population, encompassing all the other studied disease groups, had a sensitivity of 74% and a specificity of 83.3% (area under the curve = 0.84, P < 0.001). Prolargin correlated with the mean right atrial pressure (rs = 0.65, P < 0.001), N‐terminal pro‐brain natriuretic peptide (rs = 0.64, P < 0.001), cardiac index (rs = −0.31, P = 0.029), stroke volume index (rs = −0.41, P = 0.004), right ventricular stroke work index (rs = −0.31, P = 0.032), six‐minute walking distance (rs = −0.41, P = 0.005), and mixed venous blood oxygen saturation (rs = −0.42, P = 0.003). Conclusions Plasma prolargin levels differentiate PAH patients from controls and the other investigated dyspnoea groups including HF. Its potential in PAH differentiation may be enhanced by inclusion in a multi‐marker panel. Larger studies are needed to evaluate its discriminative ability of PAH in relation to other dyspnoea aetiologies and its potential role in PAH risk stratification and pathobiology.
Collapse
Affiliation(s)
- Mattias Arvidsson
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Habib Bouzina
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
153
|
Barman SA, Bordan Z, Batori R, Haigh S, Fulton DJR. Galectin-3 Promotes ROS, Inflammation, and Vascular Fibrosis in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:13-32. [PMID: 33788185 DOI: 10.1007/978-3-030-63046-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive vascular disease arising from the narrowing of pulmonary arteries (PA) resulting in high pulmonary arterial blood pressure and ultimately right ventricular (RV) failure. A defining characteristic of PAH is the excessive remodeling of PA that includes increased proliferation, inflammation, and fibrosis. There is no cure for PAH nor interventions that effectively impede or reverse PA remodeling, and research over the past several decades has sought to identify novel molecular mechanisms of therapeutic benefit. Galectin-3 (Gal-3; Mac-2) is a carbohydrate-binding lectin that is remarkable for its chimeric structure, comprised of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Gal-3 is a regulator of changes in cell behavior that contribute to aberrant PA remodeling including cell proliferation, inflammation, and fibrosis, but its role in PAH is poorly understood. Herein, we summarize the recent literature on the role of Gal-3 in the development of PAH and provide experimental evidence supporting the ability of Gal-3 to influence reactive oxygen species (ROS) production, NOX enzyme expression, inflammation, and fibrosis, which contributes to PA remodeling. Finally, we address the clinical significance of Gal-3 as a target in the development of therapeutic agents as a treatment for PAH.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
154
|
MicroRNA-34a: the bad guy in age-related vascular diseases. Cell Mol Life Sci 2021; 78:7355-7378. [PMID: 34698884 PMCID: PMC8629897 DOI: 10.1007/s00018-021-03979-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The age-related vasculature alteration is the prominent risk factor for vascular diseases (VD), namely, atherosclerosis, abdominal aortic aneurysm, vascular calcification (VC) and pulmonary arterial hypertension (PAH). The chronic sterile low-grade inflammation state, alias inflammaging, characterizes elderly people and participates in VD development. MicroRNA34-a (miR-34a) is emerging as an important mediator of inflammaging and VD. miR-34a increases with aging in vessels and induces senescence and the acquisition of the senescence-associated secretory phenotype (SASP) in vascular smooth muscle (VSMCs) and endothelial (ECs) cells. Similarly, other VD risk factors, including dyslipidemia, hyperglycemia and hypertension, modify miR-34a expression to promote vascular senescence and inflammation. miR-34a upregulation causes endothelial dysfunction by affecting ECs nitric oxide bioavailability, adhesion molecules expression and inflammatory cells recruitment. miR-34a-induced senescence facilitates VSMCs osteoblastic switch and VC development in hyperphosphatemia conditions. Conversely, atherogenic and hypoxic stimuli downregulate miR-34a levels and promote VSMCs proliferation and migration during atherosclerosis and PAH. MiR34a genetic ablation or miR-34a inhibition by anti-miR-34a molecules in different experimental models of VD reduce vascular inflammation, senescence and apoptosis through sirtuin 1 Notch1, and B-cell lymphoma 2 modulation. Notably, pleiotropic drugs, like statins, liraglutide and metformin, affect miR-34a expression. Finally, human studies report that miR-34a levels associate to atherosclerosis and diabetes and correlate with inflammatory factors during aging. Herein, we comprehensively review the current knowledge about miR-34a-dependent molecular and cellular mechanisms activated by VD risk factors and highlight the diagnostic and therapeutic potential of modulating its expression in order to reduce inflammaging and VD burn and extend healthy lifespan.
Collapse
|
155
|
Condliffe R. Pulmonary arterial hypertension associated with congenital heart disease: classification and pathophysiology. JOURNAL OF CONGENITAL CARDIOLOGY 2020. [DOI: 10.1186/s40949-020-00040-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AbstractWhile the development of pulmonary arterial hypertension is not uncommon in adult congenital heart disease patients, other forms of pulmonary hypertension (PH) may also be present. A good understanding of PH classification is therefore vital for clinicians managing adult patients with congenital heart disease. This paper reviews both the general classification of PH and more detailed approaches to classifying pulmonary arterial hypertension in association with congenital heart disease.
Collapse
|
156
|
Nour S. Endothelial shear stress enhancements: a potential solution for critically ill Covid-19 patients. Biomed Eng Online 2020; 19:91. [PMID: 33272285 PMCID: PMC7711274 DOI: 10.1186/s12938-020-00835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022] Open
Abstract
Most critically ill Covid-19 patients succumb to multiple organ failure and/or sudden cardiac arrest (SCA) as a result of comorbid endothelial dysfunction disorders which had probably aggravated by conventional mechanical assist devices. Even worse, mechanical ventilators prevent the respiratory pump from performing its crucial function as a potential generator of endothelial shear stress (ESS) which controls microcirculation and hemodynamics since birth. The purpose of this work is to bring our experience with ESS enhancement and pulmonary vascular resistance (PVR) management as a potential therapeutic solution in acute respiratory distress syndrome (ARDS). We propose a non-invasive device composed of thoracic and infradiaphragmatic compartments that will be pulsated in an alternating frequency (20/40 bpm) with low-pressure pneumatic generator (0.1–0.5 bar). Oxygen supply, nasogastric with, or without endotracheal tubes are considered.
Collapse
Affiliation(s)
- Sayed Nour
- Le LAB'O, Orleans Technopole, 1 avenue du Champs de Mars, 45074, Orleans, France.
| |
Collapse
|
157
|
Ala M, Mohammad Jafari R, Dehpour AR. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: Thinking about new indications. Fundam Clin Pharmacol 2020; 35:235-259. [PMID: 33226665 DOI: 10.1111/fcp.12633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Sildenafil, approved two decades ago, is the inhibitor of phosphodiesterase 5 (PDE5). First of all, it was designated for angina pectoris, but soon it showed a wonderful efficacy in erectile dysfunction (ED) and then pulmonary arterial hypertension (PAH). Due to the distribution of phosphodiesterase (PDE) in almost all organs, maybe it effects other diseases. Hence, a great number of investigations began to understand the role of PDEi in different organs. Preliminary research on sildenafil in cell culture and animal models has yielded promising results. Soon, a greater number of animal researches and clinical trials joined them. The results disclosed sildenafil can have beneficial effects in each organ such as heart, liver, kidney, brain, and intestines. Furthermore, it has significantly improved the prognosis of organ ischemia in various animal models. Clinical trials in several diseases, such as recurrent spontaneous miscarriage, fatty liver disease, bronchopulmonary dysplasia (BPD), heart failure, and premature ejaculation (PE) brought promising results. Although some clinical trials are available on the effects of sildenafil on various diseases, further studies on humans are needed to consolidate the ultimate effects of sildenafil. The aim of this review was to describe the effects of sildenafil on each organ and explain its mechanisms of action. Further, other PDE inhibitors such as tadalafil and vardenafil have been briefly discussed in parts of this review.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| |
Collapse
|
158
|
Safety and effect of sildenafil on treating paediatric pulmonary arterial hypertension: a meta-analysis on the randomised controlled trials. Cardiol Young 2020; 30:1882-1889. [PMID: 33077013 DOI: 10.1017/s104795112000311x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Efficacy of sildenafil in treating paediatric pulmonary arterial hypertension is controversial. This systematic review aimed to explore the safety and effect of sildenafil on treating paediatric pulmonary arterial hypertension (PAH) through meta-analysis. METHODS AND RESULTS In this study, the electronic databases, including the Cochran Library database, EMBASE, and MEDLINE were systemically retrieved to identify the related randomised controlled trials (RCTs). Two reviewers had independently completed study selection, data collection, and assessment of the bias risk. Amongst 938 articles researched according to our retrieval strategy, 15 papers that involved 673 cases had been screened. Relative to control group, the sildenafil group had markedly reduced mortality (RR = 0.25, 95% CI: 0.12-0.51; p < 0.0001), but difference within the mortality was not statistically significant between high- and low-dose sildenafil groups (p = 0.152). Nonetheless, difference of the mean pulmonary arterial pressure between sildenafil as well as control group was of no statistical significance. Differences in the length of hospital stay and the incidences of pulmonary hypertensive crisis between children with PAH and controls were of no statistical significance. However, the summary estimate favoured that sildenafil reduced the duration of mechanical ventilation time, as well as the length of ICU stay and inotropic support. CONCLUSIONS Sildenafil therapy reduces the mortality of PAH patients, but its effects on the haemodynamic outcomes and other clinical outcomes are still unclear.
Collapse
|
159
|
Abstract
Purpose of Review This review focuses on the therapeutic management and individualized approach to Group 1 pulmonary arterial hypertension (PAH), utilizing Food and Drug Administration-approved PAH-specific therapies and various interventional and surgical options for PAH. Recent Findings The paradigm for the optimal management of PAH has shifted in recent years. Upfront combination therapy with an endothelin receptor antagonist and a phosphodiesterase 5 inhibitor is now widely accepted as standard of care. In addition, there is increasing emphasis on starting prostanoids early in order to delay time to clinical worsening. However, less is known regarding which prostanoid agent to initiate and the optimum time to do so. In order to facilitate shared decision-making, there is an increasing need for decision tools based on guidelines and collective clinical experiences to navigate between pharmacologic and interventional treatments, as well as explore innovative, therapeutic pathways for PAH. Summary The management of PAH has become increasingly complex. With a growing number of PAH-specific therapies, intimate knowledge of the therapeutics and the potential barriers to adherence are integral to providing optimal care for this high-risk patient population. While current PAH-specific therapies largely mediate their effects through pulmonary vasodilation, ongoing research efforts are focused on ways to disrupt the mechanisms leading to pulmonary vascular remodeling. By targeting aberrations identified in the metabolism and proliferative state of pulmonary vascular cells, novel PAH treatment pathways may be just on the horizon.
Collapse
|
160
|
Hannemann J, Glatzel A, Hillig J, Zummack J, Schumacher U, Lüneburg N, Harbaum L, Böger R. Upregulation of DDAH2 Limits Pulmonary Hypertension and Right Ventricular Hypertrophy During Chronic Hypoxia in Ddah1 Knockout Mice. Front Physiol 2020; 11:597559. [PMID: 33281630 PMCID: PMC7689360 DOI: 10.3389/fphys.2020.597559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Chronic hypoxia causes pulmonary vasoconstriction leading to pulmonary hypertension and right ventricular hypertrophy. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis; its level increases in hypoxia (HX) concomitantly with reduced activity of dimethylarginine dimethylaminohydrolases (DDAH-1 and DDAH-2), enzymes metabolizing ADMA. Ddah1 knockout (KO) mice may therefore help to understand the pathophysiological roles of this enzyme and its substrate, ADMA, in the development of hypoxia-associated pulmonary hypertension. Methods: Ddah1 KO mice and their wild-type (WT) littermates were subjected to normoxia (NX) or for 21 days. We measured ADMA concentration in plasma and lungs, DDAH1 and DDAH2 mRNA and protein expression in the lungs, right ventricular systolic pressure (RVSP), right ventricular hypertrophy by the Fulton index, and cardiomyocyte hypertrophy by dystrophin staining of the heart. Results: Ddah1 KO mice had higher ADMA concentrations in plasma and in lung tissue than WT in NX (p < 0.05). ADMA significantly increased in WT-HX in plasma and lungs, while there were no significant differences in WT-HX vs. KO-HX. This finding was paralleled by a 38 ± 13% reduction in Ddah1 but not Ddah2 mRNA expression, and reduced DDAH1 protein expression but stable DDAH2 protein levels in WT mice. Ddah1 KO mice showed significant elevation of DDAH2 protein but not mRNA levels, which further increased in HX. HX led to increased RVSP and right ventricular hypertrophy in both, WT and KO mice, with no significant differences between both genotypes. Conclusions: Chronic hypoxia causes an elevation of ADMA, which may impair NO production and lead to endothelial dysfunction and vasoconstriction. Downregulation of DDAH1 expression and activity may be involved in this; however, knockout of the Ddah1 gene does not modify the hypoxia-induced pathophysiological changes of pulmonary blood pressure and right ventricular hypertrophy, possibly due to compensatory upregulation of DDAH2 protein.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER (German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae), Hamburg, Germany
| | - Antonia Glatzel
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Hillig
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER (German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae), Hamburg, Germany
| | - Julia Zummack
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER (German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae), Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Lüneburg
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Department of Pulmonology, II. Medical Clinic and Policlinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER (German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae), Hamburg, Germany
| |
Collapse
|
161
|
Rawal H, Suman A, Bhoite RR, Kanwal A, Young RK, Aronow WS, Lavie C, Ghosh RK. Anticoagulation in Pulmonary Arterial Hypertension: Do We Know the Answer? Curr Probl Cardiol 2020; 46:100738. [PMID: 33250263 DOI: 10.1016/j.cpcardiol.2020.100738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023]
Abstract
The shear stress and hypoxia in the pulmonary artery in patients with pulmonary arterial hypertension(PAH) causes endothelial dysfunction, smooth muscle proliferation and activation of thrombotic pathways leading to in situ thrombosis. Targeting the thrombotic pathways is a proposed mechanism to slow disease progression and improve survival. Over the years, the survival in patients with PAH has improved due to multiple factors with the increased use of anticoagulation as one of them. Both European Respiratory Society/European Society of Cardiology and American College of Cardiology/American Heart Association guidelines make grade II recommendations for using anticoagulation in PAH. The guidelines are based on weak observational studies with high risk of bias which have only studied warfarin as the choice of anticoagulation. In this article, we review the pathophysiology, rationale and the current literature investigating the role of anticoagulation in PAH.
Collapse
Affiliation(s)
- Himanshu Rawal
- Department of Pulmonary, Critical Care, Allergy and Immunology, Wake Forest Baptist Health, Winston-Salem, NC
| | - Annya Suman
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD
| | - Rahul R Bhoite
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD
| | - Arjun Kanwal
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD
| | - Raymond K Young
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD
| | - Wilbert S Aronow
- Division of Cardiology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY
| | - Carl Lavie
- John Ochsner Heart and Vascular Institute, New Orleans, LA
| | - Raktim K Ghosh
- MedStar Heart and Vascular Institute, Union Memorial Hospital, Baltimore, MD.
| |
Collapse
|
162
|
Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 2020; 163:105287. [PMID: 33157235 DOI: 10.1016/j.phrs.2020.105287] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022]
Abstract
Resveratrol, trans 3,5,4'-trihydroxystilbene, is a stilbenoid polyphenol with a wide range of properties including antioxidant, neuroprotective, cardioprotective, anti-inflammatory and anticancer activities. It is found in the skins of grape (50-100 μg/mL), red wine, peanuts, bilberries, blueberries and cranberries. The most important effects of resveratrol have been found in cardiovascular disease, with pulmonary arterial hypertension (PAH) being a major severe and progressive component. Many factors are involved in the pathogenesis of PAH, including enzymes, transcription factors, proteins, chemokines, cytokines, hypoxia, oxidative stress and others. Resveratrol treats PAH through its actions on various signaling pathways. These signaling pathways are mainly suppressed SphK1-mediated NF-κB activation, BMP/SMAD signaling pathway, miR-638 and NR4A3/cyclin D1 pathway, SIRT1 pathway, Nrf-2, HIF-1 α expression, MAPK/ERK1 and PI3K/AKT pathways, and RhoA-ROCK signaling pathway. Resveratrol efficiently inhibits the proliferation of pulmonary arterial smooth muscle cells and right ventricular remodeling, which are underlying processes leading to enhanced PAH. While supportive evidence from randomized controlled trials is yet to be available, current in vitro and in vivo studies seem to be convincing and suggest a therapeutic promise for the use of resveratrol in PAH.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
163
|
Abstract
Pulmonary arterial hypertension is a rare disease that predominantly affects women. The pathophysiology of the disease is complex, with both genetic and hormonal influences. Pregnancy causes significant physiologic changes that may not be well tolerated with underlying pulmonary arterial hypertension, in particular leading to volume overload and increased pulmonary pressures. A multidisciplinary approach and careful monitoring are essential for appropriate management of pulmonary arterial hypertension during pregnancy. Nonetheless, outcomes are still poor, and pregnancy is considered a contraindication in patients with pulmonary arterial hypertension.
Collapse
|
164
|
Fuller HC, Wei TY, Behrens MR, Ruder WC. The Future Application of Organ-on-a-Chip Technologies as Proving Grounds for MicroBioRobots. MICROMACHINES 2020; 11:E947. [PMID: 33092054 PMCID: PMC7589118 DOI: 10.3390/mi11100947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
An evolving understanding of disease pathogenesis has compelled the development of new drug delivery approaches. Recently, bioinspired microrobots have gained traction as drug delivery systems. By leveraging the microscale phenomena found in physiological systems, these microrobots can be designed with greater maneuverability, which enables more precise, controlled drug release. Their function could be further improved by testing their efficacy in physiologically relevant model systems as part of their development. In parallel with the emergence of microscale robots, organ-on-a-chip technologies have become important in drug discovery and physiological modeling. These systems reproduce organ-level functions in microfluidic devices, and can also incorporate specific biological, chemical, and physical aspects of a disease. This review highlights recent developments in both microrobotics and organ-on-a-chip technologies and envisions their combined use for developing future drug delivery systems.
Collapse
Affiliation(s)
- Haley C. Fuller
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Ting-Yen Wei
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Michael R. Behrens
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
| | - Warren C. Ruder
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; (H.C.F.); (T.-Y.W.); (M.R.B.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
165
|
Wang J, Hu L, Huang H, Yu Y, Wang J, Yu Y, Li K, Li Y, Tian T, Chen F. CAR (CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy. Hypertension 2020; 76:1147-1160. [DOI: 10.1161/hypertensionaha.120.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, mesenchymal stem cells (MSCs)–derived extracellular vesicles (EVs) are emerging as a potential therapeutic agent for pulmonary hypertension (PH). However, the full realization of MSCs-derived EVs therapy has been hampered by the absence of standardization in MSCs culture and the challenges of industrial scale-up. The study was to exploit an alternative replacement for MSCs using currently commercialized stem cell lines for effective targeted PH therapy. ReNcell VM—a human neural stem cell line—has been utilized here as a reliable and easily adoptable source of EVs. We first demonstrated that ReNcell-derived EVs (ReNcell-EVs) pretreatment effectively prevented Su/Hx (SU5416/hypoxia)-induced PH in mice. Then for targeted therapy, we conjugated ReNcell-EVs with CAR (CARSKNKDC) peptide (CAR-EVs)—a peptide identified to specifically target hypertensive pulmonary arteries, by bio-orthogonal chemistry. Intravenous administration of CAR-EVs selectively targeted hypertensive pulmonary artery lesions especially pulmonary artery smooth muscle cells. Moreover, compared with unmodified ReNcell-EVs, CAR-EVs treatment significantly improved therapeutic effect in reversing Su/Hx-induced PH in mice. Mechanistically, ReNcell-EVs inhibited hypoxia-induced proliferation, migration, and phenotype switch of pulmonary artery smooth muscle cells, at least in part, via the delivery of its endogenous highly expressed miRNAs, let-7b-5p, miR-92b-3p, and miR-100-5p. In addition, we also found that ReNcell-EVs inhibited hypoxia-induced cell apoptosis and endothelial-mesenchymal transition in human microvascular endothelial cells. Taken together, our results provide an alternative to MSCs-derived EVs–based PH therapy via using ReNcell as a reliable source of EVs. Particularly, our CAR-conjugated EVs may serve as a novel drug carrier that enhances the specificity and efficiency of drug delivery for effective PH-targeted therapy.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Li Hu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Huijie Huang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yanfang Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Jingshen Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Youjia Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Kai Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yan Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
166
|
Hu L, Li L, Chang Q, Fu S, Qin J, Chen Z, Li X, Liu Q, Hu G, Li Q. Discovery of Novel Pyrazolo[3,4- b] Pyridine Derivatives with Dual Activities of Vascular Remodeling Inhibition and Vasodilation for the Treatment of Pulmonary Arterial Hypertension. J Med Chem 2020; 63:11215-11234. [PMID: 32914624 DOI: 10.1021/acs.jmedchem.0c01132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current pulmonary arterial hypertension (PAH) therapeutic strategies mainly focus on vascular relaxation with less emphasis on vascular remodeling, which results in poor prognosis. Hence, dual pathway regulators with vasodilation effect via soluble guanylate cyclase (sGC) stimulation and vascular remodeling regulation effect by AMP-activated protein kinase (AMPK) inhibition provide more advantages and potentialities. Herein, we designed and synthesized a series of novel pyrazolo[3,4-b] pyridine derivatives based on sGC stimulator and AMPK inhibitor scaffolds. In vitro, 2 exhibited moderate vasodilation activity and higher proliferation and migration suppressive effects compared to riociguat. In vivo, 2 significantly decreased right ventricular systolic pressure (RVSP), attenuated pulmonary artery medial thickness (PAMT), and right ventricular hypertrophy (RVH) in hypoxia-induced PAH rat models (i.g.). Given the unique advantages of significant vascular remodeling inhibition and moderate vascular relaxation based on the dual pathway regulation, we proposed 2 as a promising lead for anti-PAH drug discovery.
Collapse
Affiliation(s)
- Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China.,Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, 23298 Virginia, United States
| | - Lijun Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Songsen Fu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, 23298 Virginia, United States
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
167
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
168
|
Hu L, Zhao R, Liu Q, Li Q. New Insights Into Heat Shock Protein 90 in the Pathogenesis of Pulmonary Arterial Hypertension. Front Physiol 2020; 11:1081. [PMID: 33041844 PMCID: PMC7522509 DOI: 10.3389/fphys.2020.01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rui Zhao
- The First Clinical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Qianbin Li,
| |
Collapse
|
169
|
Docherty CK, Denver N, Fisher S, Nilsen M, Hillyard D, Openshaw RL, Labazi H, MacLean MR. Direct Delivery of MicroRNA96 to the Lungs Reduces Progression of Sugen/Hypoxia-Induced Pulmonary Hypertension in the Rat. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:396-405. [PMID: 33230444 PMCID: PMC7533346 DOI: 10.1016/j.omtn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
The 5HT1B receptor (5HT1BR) contributes to the pathogenic effects of serotonin in pulmonary arterial hypertension. Here, we determine the effect of a microRNA96 (miR96) mimic delivered directly to the lungs on development of severe pulmonary hypertension in rats. Female rats were dosed with sugen (30 mg/kg) and subjected to 3 weeks of hypobaric hypoxia. In normoxia, rats were dosed with either a 5HT1BR antagonist SB216641 (7.5 mg/kg/day for 3 weeks), miR96, or scramble sequence (50 μg per rat), delivered by intratracheal (i.t) administration, once a week for 3 weeks. Cardiac hemodynamics were determined, pulmonary vascular remodeling was assessed, and gene expression was assessed by qRT-PCR, and in situ hybridization and protein expression were assessed by western blot and ELISA. miR96 expression was increased in pulmonary arteries and associated with a downregulation of the 5HT1BR protein in the lung. miR96 reduced progression of right ventricular systolic pressure, pulmonary arterial remodeling, right ventricular hypertrophy, and the occurrence of occlusive pulmonary lesions. Importantly, miR96 had no off-target effects and did not affect fibrotic markers of liver and kidney function. In conclusion, direct delivery of miR96 to the lungs was effective, reducing progression of sugen/hypoxia-induced pulmonary hypertension with no measured off-target effects. miR96 may be a novel therapy for pulmonary arterial hypertension, acting through downregulation of 5HT1BR.
Collapse
Affiliation(s)
- Craig K Docherty
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.,Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Nina Denver
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Simon Fisher
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Margaret Nilsen
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.,Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Dianne Hillyard
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Rebecca L Openshaw
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Hicham Labazi
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.,Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| |
Collapse
|
170
|
Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020; 10:biom10091261. [PMID: 32882918 PMCID: PMC7564204 DOI: 10.3390/biom10091261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-40-94-22-99
| |
Collapse
|
171
|
Xue C, Senchanthisai S, Sowden M, Pang J, White J, Berk BC. Endothelial-to-Mesenchymal Transition and Inflammation Play Key Roles in Cyclophilin A-Induced Pulmonary Arterial Hypertension. Hypertension 2020; 76:1113-1123. [PMID: 32829656 DOI: 10.1161/hypertensionaha.119.14013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress and inflammation play key roles in development of pulmonary arterial hypertension (PAH). We previously reported that an endothelial cell (EC)-specific cyclophilin A overexpression mouse developed many characteristics of PAH. In other models of cardiovascular disease, cyclophilin A stimulates smooth muscle proliferation and vascular inflammation, but mechanisms responsible for PAH have not been defined. In particular, the contribution of endothelial-to-mesenchymal transition in cyclophilin A-mediated PAH has not been studied. We identified increased levels of cyclophilin A in endothelial and neointimal cells of pulmonary arteries in patients with PAH and animal pulmonary hypertension models. In the EC-specific cyclophilin A overexpression mouse that exhibited features characteristic of PAH, lineage tracing showed high level expression of mesenchymal markers in pulmonary ECs. A significant number of mesenchymal cells in media and perivascular regions of pulmonary arterioles and alveoli were derived from ECs. Pulmonary ECs isolated from these mice showed phenotypic changes characteristic of endothelial-to-mesenchymal transition in culture. Cultured pulmonary ECs stimulated with extracellular cyclophilin A and acetylated cyclophilin A demonstrated functional changes associated with endothelial-to-mesenchymal transition such as increased cytokine release, migration, proliferation, and mitochondrial dysfunction. Acetylated cyclophilin A stimulated greater increases for most features of endothelial-to-mesenchymal transition. In conclusion, extracellular cyclophilin A (especially acetylated form) contributes to PAH by mechanisms involving increased endothelial-to-mesenchymal transition, cytokine release, EC migration, proliferation, and mitochondrial dysfunction; strengthening the basis for studying cyclophilin A inhibition as a therapy for PAH.
Collapse
Affiliation(s)
- Chao Xue
- From the Department of Pathology and Laboratory Medicine (C.X., B.C.B.), University of Rochester, NY.,Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY
| | - Sharon Senchanthisai
- Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY
| | - Mark Sowden
- Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY
| | - Jim White
- Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY.,Department of Medicine (J.W.), University of Rochester, NY
| | - Bradford C Berk
- From the Department of Pathology and Laboratory Medicine (C.X., B.C.B.), University of Rochester, NY.,Aab Cardiovascular Research Institute (C.X., S.S., M.S., J.P., J.W., B.C.B.), University of Rochester, NY
| |
Collapse
|
172
|
Hao L, Gao X, Zhou T, Cao J, Sun Y, Dang Y, Pan D. Angiotensin I-Converting Enzyme (ACE) Inhibitory and Antioxidant Activity of Umami Peptides after In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8232-8241. [PMID: 32662986 DOI: 10.1021/acs.jafc.0c02797] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Umami peptides can help reduce the salt content in foods while still maintaining a savory taste. Few studies have reported the bioactivity of umami peptides after consumption. We studied the bioactivities of 12 umami peptides after gastrointestinal digestion. Three umami peptides exhibited angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity after digestion. Six novel peptides were identified from digestion solutions of the peptides by HPLC-MS/MS. Among them, CC, CCNK, and HCHT had both ACE inhibitory activity (IC50 values were 9.81, 9.00, and 114.99 μM, respectively) and antioxidant activity (strong 1,1-Diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging activities). AHSVRF had strong ACE inhibitory activity. These peptides increased the nitric oxide concentration and decreased the content of endothelin-1 in a medium of human umbilical vein endothelial cells in a dose-dependent manner. Experiments with damaged HepG2 cells showed that peptides CC, CCNK, and HCHT had antioxidant activity through their cytoprotective effects and by reducing the reactive oxygen species content. The results indicated that umami peptides may provide many health benefits after consumption.
Collapse
Affiliation(s)
- Li Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tingyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
173
|
Mallah H, Ball S, Sekhon J, Parmar K, Nugent K. Platelets in chronic obstructive pulmonary disease: An update on pathophysiology and implications for antiplatelet therapy. Respir Med 2020; 171:106098. [PMID: 32777683 DOI: 10.1016/j.rmed.2020.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022]
Abstract
Platelets are essential mediators of inflammation and thrombosis. Chronic obstructive pulmonary disease (COPD) is a heterogeneous multisystem disease, causing significant morbidity and mortality worldwide. Recent evidence suggests that the lung is an important organ for platelet biogenesis. Cigarette smoking has been shown to induce platelet aggregation and decrease the capacity of mitochondrial electron transport system in platelets. Preclinical and clinical studies have suggested that platelets may contribute to the development of COPD through the breakdown of lung elastin by platelet factor 4, platelet activation and formation of platelet aggregates, and modulation of hypoxia signaling pathways. Recent large population studies have produced encouraging results indicating a potential role for aspirin in preventing exacerbations and delaying disease progression in patients with COPD. This review summarizes the information about the lung as an organ for platelet production, pathophysiological functions of platelets and platelet mediators in the development of COPD, and the most updated evidence on the utility of aspirin in patients with COPD.
Collapse
Affiliation(s)
- Haneen Mallah
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Somedeb Ball
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jasmine Sekhon
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Division of Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
174
|
Vitamin C Deficiency-Induced Pulmonary Arterial Hypertension. Chest 2020; 157:e21-e23. [PMID: 32033656 DOI: 10.1016/j.chest.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
We report a case of a man in his 60s who developed pulmonary arterial hypertension (PAH) in association with profound vitamin C deficiency. Decreased availability of endothelial nitric oxide and activation of the hypoxia-inducible family of transcription factors, both consequences of vitamin C deficiency, are believed to be mechanisms contributing to the pathogenesis of the pulmonary hypertension. The PAH resolved following vitamin C supplementation. The current case highlights the importance of testing for vitamin C deficiency in patients with PAH in the proper clinical setting.
Collapse
|
175
|
Radosevich JJ, DeChristopher A, Irandost M, Fann J, Feldman J. Rapid transition from oral selexipag to parenteral treprostinil in a patient with mixed-etiology pulmonary hypertension. Am J Health Syst Pharm 2020; 77:1208-1212. [PMID: 32620953 DOI: 10.1093/ajhp/zxaa158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PURPOSE Selexipag is an oral nonprostanoid IP prostacyclin receptor agonist that is indicated for treatment of pulmonary arterial hypertension (PAH). In patients with continued symptoms of PAH despite maximized oral therapy with selexipag and other oral therapies, a transition to parenteral prostacyclin may be warranted. There is a paucity of data regarding how to safely transition from oral selexipag to parenteral treprostinil. We describe rapid transition from oral selexipag to parenteral treprostinil in this case report. SUMMARY A 65-year-old female with mixed-etiology PAH as result of pulmonary fibrosis related to polymyositis was admitted to the intensive care unit to be transitioned from selexipag to treprostinil due to dyspnea at rest despite therapy with selexipag 1,600 mg twice daily and macitentan 10 mg daily for 3 years. At baseline the patient required oxygen support (4 L/min) at rest to maintain oxygen saturation at or above 90%. Right heart catheterization performed 8 weeks prior to admission revealed severe PAH, with a pulmonary arterial pressure of 73/27 mm Hg and pulmonary vascular resistance of 10 Wood units. On the day of admission the patient was given selexipag 800 µg at 9 am and simultaneously started on intravenous (i.v.) treprostinil at a dose of 2 ng/kg/min. The treprostinil dose was increased by 2 ng/kg/min every 3 hours until a target dose of 22 ng/kg/min was achieved, at which point the patient had experienced dyspnea improvement. She experienced a mild headache and flushing during rapid treprostinil dose escalation. After 30 hours of i.v. treprostinil infusion, the patient was transitioned to subcutaneous treprostinil therapy and discharged. CONCLUSION In this case the patient was rapidly transitioned from oral selexipag to i.v. and then subcutaneous treprostinil therapy over a 30-hour period, with minimal adverse effects.
Collapse
Affiliation(s)
| | | | | | - Jade Fann
- St. Joseph's Hospital & Medical Center, Phoenix, AZ
| | | |
Collapse
|
176
|
Waller L, Krüger K, Conrad K, Weiss A, Alack K. Effects of Different Types of Exercise Training on Pulmonary Arterial Hypertension: A Systematic Review. J Clin Med 2020; 9:jcm9061689. [PMID: 32498263 PMCID: PMC7356848 DOI: 10.3390/jcm9061689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) represents a chronic progressive disease characterized by high blood pressure in the pulmonary arteries leading to right heart failure. The disease has been a focus of medical research for many years due to its worse prognosis and limited treatment options. The aim of this study was to systematically assess the effects of different types of exercise interventions on PAH. Electronic databases were searched until July 2019. MEDLINE database was used as the predominant source for this paper. Studies with regards to chronic physical activity in adult PAH patients are compared on retrieving evidence on cellular, physiological, and psychological alterations in the PAH setting. Twenty human studies and 12 rat trials were identified. Amongst all studies, a total of 628 human subjects and 614 rats were examined. Regular physical activity affects the production of nitric oxygen and attenuates right ventricular hypertrophy. A combination of aerobic, anaerobic, and respiratory muscle training induces the strongest improvement in functional capacity indicated by an increase of 6 MWD and VO2peak. In human studies, an increase of quality of life was found. Exercise training has an overall positive effect on the physiological and psychological components of PAH. Consequently, PAH patients should be encouraged to take part in regular exercise training programs.
Collapse
Affiliation(s)
- Lena Waller
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University Giessen, 35394 Giessen, Germany; (K.K.); (K.C.); (K.A.)
- Correspondence: ; Tel.: +49-641-99-25212
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University Giessen, 35394 Giessen, Germany; (K.K.); (K.C.); (K.A.)
| | - Kerstin Conrad
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University Giessen, 35394 Giessen, Germany; (K.K.); (K.C.); (K.A.)
| | - Astrid Weiss
- Department of Internal Medicine, Institute of Pulmonary Pharmacotherapy, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
| | - Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University Giessen, 35394 Giessen, Germany; (K.K.); (K.C.); (K.A.)
| |
Collapse
|
177
|
Gu X, Wang Y, Wang H, Wu H, Li W, Wang J, Li N. Homology modeling, molecular dynamics and virtual screening of endothelin-A receptor for the treatment of pulmonary arterial hypertension. J Biomol Struct Dyn 2020; 39:3912-3923. [PMID: 32431219 DOI: 10.1080/07391102.2020.1772106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of pulmonary arteries, causing serious shortness of breath and right ventricular failure with high mortality. Numerous studies have verified that the symptoms of PAH could be attenuated effectively with endothelin-A receptor (ETAR) antagonists. Unfortunately, the 3D structure of ETAR has not been released, making it difficult to understand the interactions between ETAR and its antagonists. In this study, computational methods including homology modeling, molecular docking and molecular dynamics simulations were performed to build the structure of ETAR and predict the binding patterns of ETAR with its two antagonists. Based on these results, virtual screening study was implemented against Traditional Chinese Medicine (TCM) database to identify novel natural ETAR antagonists. Six compounds with best binding energies were screened out and two of them were found to bind steadily with ETAR validated through molecular dynamics simulations and MM-GBSA calculation, indicating that they were potential antagonists of ETAR. In a word, our research provided a deep exploration into the interaction between ETAR and its antagonists, which could promote the development of novel therapy against PAH.[Formula: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xi Gu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Hairui Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
178
|
Zolty R. Pulmonary arterial hypertension specific therapy: The old and the new. Pharmacol Ther 2020; 214:107576. [PMID: 32417272 DOI: 10.1016/j.pharmthera.2020.107576] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disorder associated with high morbidity and mortality rate and is characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in right ventricular failure and death. Over the past few decades, significant advances in the understanding of the epidemiology, pathogenesis, and pathophysiology of pulmonary arterial hypertension have occured. This has led to the development of disease specific treatment including prostanoids, endothelin receptor antagonists, phosphodiesterase inhibitors, and soluble guanylate cyclase stimulators. These therapies significantly improve exercise capacity, quality of life, pulmonary hemodynamics, but none of the current treatments are actually curative and long-term prognosis remains poor. Thus, there is a clear need to develop new therapies. Several potential pharmacologic agents for the treatment of pulmonary arterial hypertension are under clinical development and some promising results with these treatments have been reported. These agents include tyrosine protein kinase inhibitors, rho-kinase inhibitors, synthetically produced vasoactive intestinal peptide, antagonists of the 5-HT2 receptors, and others. This article will review several of these promising new therapies and will discuss the current evidence regarding their potential benefit in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ronald Zolty
- Cardiovascular Divisions, 982265 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
179
|
Gorr MW, Sriram K, Muthusamy A, Insel PA. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension. Br J Pharmacol 2020; 177:3505-3518. [PMID: 32337710 DOI: 10.1111/bph.15074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH, type 1 pulmonary hypertension) has a 3-year survival of ~50% and is in need of new, effective therapies. In PAH, remodelling of the pulmonary artery (PA) increases pulmonary vascular resistance and can result in right heart dysfunction and failure. Genetic mutations can cause PAH but it can also be idiopathic (IPAH). Enhanced contractility and proliferation of PA smooth muscle cells (PASMCs) are key contributors to the pathophysiology of PAH, but the underlying mechanisms are not well understood. EXPERIMENTAL APPROACH We utilized RNA-sequencing (RNA-seq) of IPAH and control patient-derived PASMCs as an unbiased approach to define differentially expressed (DE) genes that may identify new biology and potential therapeutic targets. KEY RESULTS Analysis of DE genes for shared gene pathways revealed increases in genes involved in cell proliferation and mitosis and decreases in a variety of gene sets, including response to cytokine signalling. ADGRG6/GPR126, an adhesion G protein-coupled receptor (GPCR), was increased in IPAH-PASMCs compared to control-PASMCs. Increased expression of this GPCR in control-PASMCs decreased their proliferation; siRNA knockdown of ADGRG6/GPR126 in IPAH-PASMCs tended to increase proliferation. CONCLUSION AND IMPLICATIONS These data provide insights regarding the expression of current and experimental PAH drug targets, GPCRs and GPCR-related genes as potentially new therapeutic targets in PAH-PASMCs. Overall, the findings identify genes and pathways that may contribute to IPAH-PASMC function and suggest that ADGRG6/GPR126 is a novel therapeutic target for IPAH.
Collapse
Affiliation(s)
- Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Colleges of Nursing and Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Abinaya Muthusamy
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
180
|
Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med 2020; 9:jcm9051366. [PMID: 32384746 PMCID: PMC7290927 DOI: 10.3390/jcm9051366] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is a nucleoside that impacts the cardiovascular system via the activation of its membrane receptors, named A1R, A2AR, A2BR and A3R. Adenosine is released during hypoxia, ischemia, beta-adrenergic stimulation or inflammation and impacts heart rhythm and produces strong vasodilation in the systemic, coronary or pulmonary vascular system. This review summarizes the main role of adenosine on the cardiovascular system in several diseases and conditions. Adenosine release participates directly in the pathophysiology of atrial fibrillation and neurohumoral syncope. Adenosine has a key role in the adaptive response in pulmonary hypertension and heart failure, with the most relevant effects being slowing of heart rhythm, coronary vasodilation and decreasing blood pressure. In other conditions, such as altitude or apnea-induced hypoxia, obstructive sleep apnea, or systemic hypertension, the adenosinergic system activation appears in a context of an adaptive response. Due to its short half-life, adenosine allows very rapid adaptation of the cardiovascular system. Finally, the effects of adenosine on the cardiovascular system are sometimes beneficial and other times harmful. Future research should aim to develop modulating agents of adenosine receptors to slow down or conversely amplify the adenosinergic response according to the occurrence of different pathologic conditions.
Collapse
|
181
|
Holmes D, Corr M, Thomas G, Harbinson M, Campbell M, Spiers P, Bell D. Protective effects of intermedin/adrenomedullin-2 in a cellular model of human pulmonary arterial hypertension. Peptides 2020; 126:170267. [PMID: 32017948 DOI: 10.1016/j.peptides.2020.170267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
Proliferation of pulmonary fibroblasts (PF) and distal migration of smooth muscle cells (PSM) are hallmarks of pulmonary arterial hypertension (PAH). Intermedin/adrenomedullin-2 (IMD/AM2) belongs to the Calcitonin Gene-Related Peptide (CGRP)/Adrenomedullin (AM) superfamily. These peptides act via Calcitonin-Like Receptors (CLR) combined with one of three Receptor activity-modifying proteins (RAMPs). IMD/AM2 is a potent pulmonary vasodilator in animal studies. The aim was to describe expression of IMD/AM2, AM and receptor components in human pulmonary vascular cells and to elucidate effects of IMD/AM2 on human PSM migration and PF proliferation. Gene expression was detected by immunofluorescence, immunoblotting and qRT-PCR. Normotension and hypertension were simulated by applying pulsatile mechanical stretch (Flexcell® apparatus). Viable cell numbers were determined by dye exclusion. PSM chemotaxis was measured via Dunn chamber. IMD/AM2 protein was co-expressed with AM and their receptor components in pulmonary artery and microvascular endothelial (PAEC, PMVEC) and non-endothelial cells (PF, PSM), and localised to vesicles. IMD/AM2 was secreted under basal conditions, most abundantly from PF and PMVEC. Secretion from PF and PSM was enhanced by stretch. IMD/AM2 mRNA expression increased in response to hypertensive stretch of PSM. IMD/AM2 inhibited PDGF (10-7 M)-mediated PSM migration maximally at 3 × 10-10 M and PF proliferation maximally at 3 × 10-9 M. Angiotensin II (5 × 10-8 M), normotensive and hypertensive stretch augmented PF proliferation. IMD/AM2 (10-9 M) abolished the proliferative effects of Angiotensin II and normotensive stretch and attenuated the proliferative effect of hypertensive stretch alone and combined with angiotensin II. These findings indicate an important counter-regulatory role for IMD/AM2 in PAH.
Collapse
Affiliation(s)
- David Holmes
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Michael Corr
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Gavin Thomas
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Mark Harbinson
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Malcolm Campbell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Paul Spiers
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - David Bell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
182
|
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease in infants and children that is associated with significant morbidity and mortality. The disease is characterized by progressive pulmonary vascular functional and structural changes resulting in increased pulmonary vascular resistance and eventual right heart failure and death. In many pediatric patients, PAH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. PAH associated with developmental lung diseases such as bronchopulmonary dysplasia or congenital diaphragmatic hernia is increasingly more recognized in infants and children. Although treatment of the underlying disease and reversal of advanced structural changes have not yet been achieved with current therapy, quality of life and survival have improved significantly. Targeted pulmonary vasodilator therapies, including endothelin receptor antagonists, prostacyclin analogs, and phosphodiesterase type 5 inhibitors have resulted in hemodynamic and functional improvement in children. The management of pediatric PAH remains challenging as treatment decisions depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts. This article reviews the current drug therapies and their use in the management of PAH in children.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erika E Vorhies
- Division of Pediatric Cardiology, Department of Pediatrics, University of Calgary Cumming School of Medicine, Alberta Children's Hospital, Calgary, Canada
| | - David Dunbar Ivy
- B100, Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
183
|
Frump AL, Lahm T. Tips for success in pulmonary hypertension treatment: progress in isolating endothelial cells from pulmonary artery catheters. Eur Respir J 2020; 55:55/3/2000122. [PMID: 32198271 DOI: 10.1183/13993003.00122-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Dept of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Dept of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
184
|
Walther CP, Nambi V, Hanania NA, Navaneethan SD. Diagnosis and Management of Pulmonary Hypertension in Patients With CKD. Am J Kidney Dis 2020; 75:935-945. [PMID: 32199709 DOI: 10.1053/j.ajkd.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a highly prevalent and important condition in adults with chronic kidney disease (CKD). In this review, we summarize the definition of PH, discuss its pathophysiology and classifications, and describe diagnostic and management strategies in patients with CKD, including those with kidney failure treated by kidney replacement therapy. In the general population, PH is classified into 5 groups based on clinical presentation, pathology, hemodynamics, and management strategies. In this classification system, PH in CKD is placed in a diverse group with unclear or multifactorial mechanisms, although underlying cardiovascular disease may account for most cases. CKD may itself directly incite pulmonary circulatory dysfunction and remodeling through uremic toxins, inflammation, endothelial dysfunction, and altered vasoregulation. Despite several studies describing the higher prevalence of PH in CKD and kidney failure, along with an association with poor outcomes, high-quality evidence is not available for its diagnostic and management strategies in those with CKD. In CKD not requiring kidney replacement therapy, volume management along with treatment of underlying risk factors for PH are critical. In those receiving hemodialysis, options are limited and transition to peritoneal dialysis may be considered if recurrent hypotension precludes optimal volume control.
Collapse
Affiliation(s)
- Carl P Walther
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Vijay Nambi
- Micheal E DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX; Sections of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Nicola A Hanania
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sankar D Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; Section of Nephrology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX.
| |
Collapse
|
185
|
Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 2020; 11:145. [PMID: 32226378 PMCID: PMC7080987 DOI: 10.3389/fphar.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease that is associated with pulmonary arteries remodeling, right ventricle hypertrophy, right ventricular failure and finally death. The present study aims to review the medicinal plants and phytochemicals used for PH treatment in the period of 1994 – 2019. Methods PubMed, Cochrane and Scopus were searched based on pulmonary hypertension, plant and phytochemical keywords from August 23, 2019. All articles that matched the study based on title and abstract were collected, non-English, repetitive and review studies were excluded. Results Finally 41 studies remained from a total of 1290. The results show that many chemical treatments considered to this disease are ineffective in the long period because they have a controlling role, not a therapeutic one. On the other hand, plants and phytochemicals could be more effective due to their action on many mechanisms that cause the progression of PH. Conclusion Studies have shown that herbs and phytochemicals used to treat PH do their effects from six mechanisms. These mechanisms include antiproliferative, antioxidant, antivascular remodeling, anti-inflammatory, vasodilatory and apoptosis inducing actions. According to the present study, many of these medicinal plants and phytochemicals can have effects that are more therapeutic than chemical drugs if used appropriately.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
186
|
Morin-Thibault LV, Wiseman D, Joubert P, Paulin R, Bonnet S, Provencher S. Pulmonary tumor thrombotic microangiopathy: A systematic review of the literature. CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE 2020. [DOI: 10.1080/24745332.2020.1724061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- L. V. Morin-Thibault
- Pulmonary Hypertension Research Group, Laval University, Québec City, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Québec, Canada
| | - D. Wiseman
- Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - P. Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Québec, Canada
| | - R. Paulin
- Pulmonary Hypertension Research Group, Laval University, Québec City, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Québec, Canada
- Department of Medicine, Laval University, Québec City, Québec, Canada
| | - S. Bonnet
- Pulmonary Hypertension Research Group, Laval University, Québec City, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Québec, Canada
- Department of Medicine, Laval University, Québec City, Québec, Canada
| | - S. Provencher
- Pulmonary Hypertension Research Group, Laval University, Québec City, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Québec, Canada
- Department of Medicine, Laval University, Québec City, Québec, Canada
| |
Collapse
|
187
|
Keshavarz A, Kadry H, Alobaida A, Ahsan F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin Drug Deliv 2020; 17:439-461. [PMID: 32070157 DOI: 10.1080/17425247.2020.1729119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of small pulmonary arteries leading to increased pulmonary arterial pressure. Existing treatments acts to normalize vascular tone via three signaling pathways: the prostacyclin, the endothelin-1, and the nitric oxide. Although over the past 20 years, there has been considerable progress in terms of treatments for PAH, the disease still remains incurable with a disappointing prognosis.Areas covered: This review summarizes the pathophysiology of PAH, the advantages and disadvantages of the inhalation route, and assess the relative advantages various inhaled therapies for PAH. The recent studies concerning the development of controlled-release drug delivery systems loaded with available anti-PAH drugs have also been summarized.Expert opinion: The main obstacles of current pharmacotherapies of PAH are their short half-life, stability, and formulations, resulting in reducing the efficacy and increasing systemic side effects and unknown pathogenesis of PAH. The pulmonary route has been proposed for delivering anti-PAH drugs to overcome the shortcomings. However, the application of approved inhaled anti-PAH drugs is limited. Inhalational delivery of controlled-release nanoformulations can overcome these restrictions. Extensive studies are required to develop safe and effective drug delivery systems for PAH patients.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hossam Kadry
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
188
|
Shen Y, Goncharov DA, Avolio T, Ray A, Okorie E, DeLisser H, Mora AL, Vanderpool R, Kudryashova TV, Goncharova EA. Differential effects of integrin-linked kinase inhibitor Cpd22 on severe pulmonary hypertension in male and female rats. Pulm Circ 2020; 10:2045894019898593. [PMID: 32110386 PMCID: PMC7016388 DOI: 10.1177/2045894019898593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive fatal disease with no cure. Inhibition of integrin-linked kinase (ILK) reverses experimental pulmonary hypertension (PH) in male mice, but its effect on severe experimental PH in either male or female animals is unknown. We examined effects of ILK inhibitor Cpd22 on rats with SU5416/hypoxia-induced PH; treatment was performed at six to eight weeks after PH initiation. Five weeks after PH initiation, male and female rats developed similar levels of PH. Eight weeks after PH induction, vehicle-treated male rats had more severe PH than females. Cpd22-treated males, but not females, showed complete suppression of phospho-Akt in small pulmonary arteries (PAs), significantly lower PA medial thickness and percentage of fully occluded arteries, decreased systolic right ventricle (RV) pressure, PA pressure, RV hypertrophy, RV end-diastolic pressure, and improved RV contractility index compared to vehicle-treated group. Cpd22 suppressed proliferation of human male and female PAH pulmonary artery vascular smooth muscle cell (PAVSMC). 17β-estradiol had no effect as a single agent but significantly attenuated Cpd22-dependent inhibition of proliferation in female, but not male, PAH PAVSMC. Taken together, these data demonstrate that male rats develop more severe PH than females but respond better to Cpd22 treatment by reducing pulmonary vascular remodeling, PH, and RV hypertrophy and improving RV functional outcomes. 17β-estradiol diminishes anti-proliferative effect of Cpd22 in female, but not male, human PAH PAVSMC. These findings suggest potential attractiveness of ILK inhibition to reduce established PH in males and suggest that the combination with estrogen-lowering drugs could be considered to maximize anti-proliferative and anti-remodeling effects of ILK inhibitors in females.
Collapse
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Dmitry A Goncharov
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Theodore Avolio
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Arnab Ray
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Evelyn Okorie
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pulmonary Vascular Disease Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana L Mora
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Ageing Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Elena A Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Department of Bioengineering, Pittsburgh, PA, USA
| |
Collapse
|
189
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
190
|
Pulmonary Artery Denervation as an Innovative Treatment for Pulmonary Hypertension With and Without Heart Failure. Cardiol Rev 2020; 29:89-95. [PMID: 32032132 DOI: 10.1097/crd.0000000000000299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary hypertension (PH) is categorized into 5 groups based on etiology. The 2 most prevalent forms are pulmonary arterial hypertension (PAH) and PH due to left heart disease (PH-LHD). Therapeutic options do exist for PAH to decrease symptoms and improve functional capacity; however, the mortality rate remains high and clinical improvements are limited. PH-LHD is the most common cause of PH; however, no treatment exists and the use of PAH-therapies is discouraged. Pulmonary artery denervation (PADN) is an innovative catheter-based ablation technique targeting the afferent and efferent fibers of a baroreceptor reflex in the main pulmonary artery (PA) trunk and its bifurcation. This reflex is involved in the elevation of the PA pressure seen in PH. Since 2013, both animal trials and human trials have shown the efficacy of PADN in improving PAH, including improved hemodynamic parameters, increased functional capacity, decreased PA remodeling, and much more. PADN has been shown to decrease the rate of rehospitalization, PH-related complications, and death, and is an overall safe procedure. PADN has also been shown to be effective for PH-LHD. Additional therapeutic mechanisms and benefits of PADN are discussed along with new PADN techniques. PADN has shown efficacy and safety as a potential treatment option for PH.
Collapse
|
191
|
Efficacy and Safety of Bronchial Artery Embolization on Hemoptysis in Chronic Thromboembolic Pulmonary Hypertension: A Pilot Prospective Cohort Study. Crit Care Med 2020; 47:e182-e189. [PMID: 30531186 PMCID: PMC6407824 DOI: 10.1097/ccm.0000000000003578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: Managing hemoptysis in chronic thromboembolic pulmonary hypertension can be challenging due to the difficulties in maintaining coagulation homeostasis in affected patients. In this study, we evaluated the efficacy and safety of bronchial artery embolization in treating hemoptysis in chronic thromboembolic pulmonary hypertension patients. Design: Pilot, prospective cohort study. Setting: A large respiratory medical institute. Patients: From January 1, 2012, to December 31, 2017, hospitalized chronic thromboembolic pulmonary hypertension patients were eligible for inclusion. Patients with pulmonary hypertension caused by other conditions, or who failed to participate in the follow-up were excluded. Interventions: Hemoptysis in chronic thromboembolic pulmonary hypertension patients was treated with or without bronchial artery embolization based on whether the bleeding could be stopped with medication alone and patient willingness for bronchial artery embolization treatment. Measurements and Main Results: A total of 328 patients diagnosed with chronic thromboembolic pulmonary hypertension were consecutively collected, 317 patients were completed the follow-up. There were 15 chronic thromboembolic pulmonary hypertension patients with hemoptysis in total, and the occurrence rate of hemoptysis in chronic thromboembolic pulmonary hypertension patients was 4.7%. Among the hemoptysis chronic thromboembolic pulmonary hypertension patients, 10 (67%) underwent bronchial artery embolization, and five (33%) were treated with medication only. The median follow-up period for hemoptysis patients was 7.6 months. In patients underwent bronchial artery embolization treatment, oxygenation index and right heart function showed no significant difference between pre bronchial artery embolization and post bronchial artery embolization. Hemoptysis relapse (20% vs 80%; p = 0.025) and hemoptysis-related mortality (0% vs 40%; p = 0.032) were significantly lower, whereas the overall survival (90% vs 40%; p = 0.040) was higher in patients treated with bronchial artery embolization than in patients treated without bronchial artery embolization. Conclusions: Bronchial artery embolization procedure demonstrated effectiveness and safety to treat hemoptysis in chronic thromboembolic pulmonary hypertension patients at our center, but further controlled studies are needed before it can be considered as an effective therapy for these patients.
Collapse
|
192
|
Sargsyan LA, Faiz SA. Pulmonary Hypertension in an Oncologic Intensive Care Unit. ONCOLOGIC CRITICAL CARE 2020. [PMCID: PMC7123640 DOI: 10.1007/978-3-319-74588-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Pulmonary hypertension (PH) is the condition of elevated pressures in the pulmonary circulation. PH can develop acutely in patients with critical illness such as acute respiratory distress syndrome, sepsis, massive pulmonary embolism, left ventricular dysfunction, or after surgery. In a cancer patient, unique etiologies such as myeloproliferative disorders, tyrosine kinase inhibitors, or tumor emboli may result in PH. Early recognition and treatment of the causative condition may reverse acute PH or return chronic PH to its baseline status. Progression of the disease or its decompensation due to infection, a thromboembolic event, or other triggers can lead to admission to an intensive care unit. Regardless of etiology, the development or worsening of PH may precipitate hypoxemia, hemodynamic instability, or right ventricular failure, which can be challenging to manage or even fatal. In select cases, rapid institution of advanced treatment modalities may be warranted. This chapter reviews the etiology, epidemiology, pathophysiology, clinical features, diagnosis, and prognosis of PH and presents a comprehensive analysis of PH and right heart failure management strategies in the critical care setting. In particular, a unique perspective on oncologically relevant PH is provided.
Collapse
|
193
|
Picken C, Laing P, Shen L, Clapp LH, Brocchini S. Synthetic routes to treprostinil N-acyl methylsulfonamide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
194
|
A novel function of calcium sensing receptor in chronic hypoxia-induced pulmonary venous smooth muscle cells proliferation. Hypertens Res 2019; 43:271-280. [PMID: 31853041 DOI: 10.1038/s41440-019-0373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 11/08/2022]
Abstract
Chronic hypoxia (CH) causes remodeling not only in pulmonary arteries but also in pulmonary veins. Pulmonary vascular remodeling stems from increased pulmonary vascular myocyte proliferation. However, the pathogenesis of CH-induced proliferation of pulmonary venous smooth muscle cells (PVSMCs) remains unknown. The present study aimed to explore the mechanisms by which CH affects PVSMCs proliferation. PVSMCs were isolated from rat distal pulmonary veins and exposed to CH (4% O2 for 60 h). The expression of calcium sensing receptor (CaSR) was determined by immunofluorescence, real-time quantitative PCR and Western blotting. Cell proliferation was assessed by cell counting, CCK-8 assay, and BrdU incorporation. Apoptosis analysis was examined by flow cytometry. In rat distal PVSMCs, CH increased the cell number and cell viability and enhanced DNA synthesis, which is accompanied by upregulated mRNA and protein expression levels of CaSR. Two negative CaSR modulators (NPS2143, NPS2390) not only attenuated CH-induced CaSR upregulation but also inhibited CH-induced increases in cell number, cell viability and the proliferation index of PVSMCs, whereas two positive modulators (spermine, R568) not only amplified CH-induced CaSR upregulation but also intensified CH-induced increases in cell number, cell viability and the proliferation index of PVSMCs. Silencing CaSR with siRNA similarly attenuated the CH-induced enhancement of cell number, cell viability and DNA synthesis in PVSMCs. Neither CH nor downregulation of CaSR with siRNA had an effect on apoptosis in PVSMCs. These results suggest that CaSR mediating excessive proliferation is a new pathogenic mechanism involved in the initiation and progression of distal PVSMCs proliferation under CH conditions.
Collapse
|
195
|
Zhang W, Li Y, Xi X, Zhu G, Wang S, Liu Y, Song M. MicroRNA‑15a‑5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP‑2 signaling pathway. Int J Mol Med 2019; 45:461-474. [PMID: 31894295 PMCID: PMC6984778 DOI: 10.3892/ijmm.2019.4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the role of microRNA-15a-5p (miR-15a-5p) in pulmonary arterial hypertension (PAH) and elucidate the underlying pro-apoptotic mechanism. Reverse transcription-quantitative PCR analysis and gene microarray hybridization were used to measure the expression of miR-15a-5p in the lung tissues of rats with monocrotaline (MCT)-induced PAH. Flow cytometry and caspase-3/9 activity assays were adopted to measure the apoptosis of pulmonary artery smooth muscle cells (PASMCs). The expression of apoptosis-related proteins was analyzed using western blotting. The results demonstrated that the expression of miR-15a-5p was significantly increased in the lung tissues of rats with MCT-induced PAH. In addition, the overexpression of miR-15a-5p reduced PASMC proliferation, induced apoptosis, promoted the activity of caspase-3/9, induced the protein expression of B-cell lymphoma 2-associated X protein (Bax), decreased the expression of B-cell lymphoma 2 (Bcl-2), increased inflammation, as indicated by the expression of tumor necrosis factor-α (TNF)-α and interleukin (IL)-1β, IL-6 and IL-18, suppressed the protein expression of vascular endothelial growth factor (VEGF), and promoted the protein expression levels of phosphorylated (p)-p38 mitogen-activated protein kinase (p38) and matrix metalloproteinase (MMP)-2 in the PASMCs of rats with MCT-induced PAH. By contrast, the downregulation of miR-15a-5p increased cell proliferation, decreased apoptosis, reduced the activity of caspase-3/9 and the protein expression of Bax, increased the expression of Bcl-2, inhibited inflammation (as suggested by the expression of TNF-α, IL-1β, IL-6 and IL-18), induced the protein expression of VEGF, and suppressed the protein expression of p-p38 and MMP-2 in the PASMCs of rats with MCT-induced PAH. The inhibition of VEGF attenuated the effects of the overexpression of miR-15a-5p on the inhibition of cell proliferation, apoptotic rate, caspase-3/9 activity and protein expression of Bax, and it attenuated the increased inflammation, as indicated by the protein expression of p38 and MMP-2 in the PASMCs. In conclusion, the data of the present study demonstrated that miR-15a-5p induced the apoptosis of PASMCs in an animal model of PAH via the VEGF/p38/MMP-2 signaling pathway. However, further research is required to fully elucidate the role of miR-15a-5p in the development of PAH.
Collapse
Affiliation(s)
- Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yanna Li
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Xin Xi
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Shenghao Wang
- Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yan Liu
- Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Man Song
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
196
|
Barnes JW, Tian L, Krick S, Helton ES, Denson RS, Comhair SAA, Dweik RA. O-GlcNAc Transferase Regulates Angiogenesis in Idiopathic Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:E6299. [PMID: 31847126 PMCID: PMC6941156 DOI: 10.3390/ijms20246299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.
Collapse
Affiliation(s)
- Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Liping Tian
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - E. Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Rebecca S. Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Suzy A. A. Comhair
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Raed A. Dweik
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
197
|
Wang Q, Shi W, Zhang Q, Feng W, Wang J, Zhai C, Yan X, Li M. Inhibition of Siah2 ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial remodeling through inactivation of YAP. Life Sci 2019; 242:117159. [PMID: 31837334 DOI: 10.1016/j.lfs.2019.117159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
AIMS It has been shown that up-regulation of E3 ubiquitin ligase seven-in-absentia-homolog 2 (Siah2) and activation of Hippo signaling pathway effector yes-associated protein (YAP) are involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether Siah2 activates YAP in monocrotaline (MCT)-induced PAH rat models. MAIN METHODS Intraperitoneal injection of MCT was used to induce PAH rat models. The right ventricular systolic pressure (RVSP), right ventricle hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-SMA, Ki-67 and TUNEL staining were performed to evaluate the development of PAH. Protein levels of Siah2, Lats1/2, YAP phosphorylation and total YAP, and the subcellular localization of YAP were examined using immunoblotting. Proteasome activity was measured by an assay kit. KEY FINDINGS The protein level of Siah2 was significantly increased in MCT-induced PAH rats, this was accompanied with the proteasome-dependent degradation of Lats1/2 and subsequent up-regulation and dephosphorylation of YAP and its nuclear localization. Administration of PAH rats with Siah2 inhibitor Vitamin K3 or proteasome inhibitor MG-132 dramatically suppressed MCT-induced down-regulation of Lats1/2 and activation of YAP, finally reduced RVSP, RVHI, %MT, pulmonary arterial muscularization, pulmonary arterial smooth muscle cells (PASMCs) proliferation and enhanced PASMCs apoptosis in PAH rats. SIGNIFICANCE Siah2 contributes to the development of MCT-induced PAH by destabilizing Lats1/2 and subsequently stimulating YAP activation. Inhibition of Siah2 or proteasome alleviates pulmonary arterial remodeling through inactivation of YAP, indicating Siah2 ubiquitin ligase as a novel target might have potential value in the management of PAH.
Collapse
Affiliation(s)
- Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
198
|
Felix NS, de Mendonça L, Braga CL, da Silva JS, Samary CDS, Vieira JB, Cruz F, Rocha NDN, Zapata-Sudo G, Rocco PRM, Silva PL. Effects of the FGF receptor-1 inhibitor, infigratinib, with or without sildenafil, in experimental pulmonary arterial hypertension. Br J Pharmacol 2019; 176:4462-4473. [PMID: 31351013 DOI: 10.1111/bph.14807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a progressive disease associated with high morbidity and mortality, despite advances in medical therapy. We compared the effects of infigratinib (NVP-BGJ398), a new FGF receptor-1 inhibitor, with or without the PDE-5 inhibitor sildenafil, on vascular function and remodelling as well as on gene expression of signal transducers for receptors of TGF-β (Smads-1/2/4) and transcription factor of endothelial-mesenchymal transition (Twist-1) in established experimental PAH. Types I and III pro-collagen and TGF-β expressions in lung fibroblasts were analysed in vitro after the different treatments. EXPERIMENTAL APPROACH PAH was induced in male Wistar rats with monocrotaline. 14 days later, treatments [sildenafil (SIL), infigratinib (INF) or their combination (SIL+INF)] were given for another 14 days. On Day 28, echocardiography and haemodynamic assays were performed, and lungs and pulmonary vessels were removed for analysis by histology, immunohistochemistry and RT-PCR. Fibroblasts prepared from PAH lungs were also analysed for TGF-β and pro-collagen. KEY RESULTS Only the combination of infigratinib and sildenafil significantly improved right ventricular systolic pressure and vascular remodelling parameters (right ventricular hypertrophy, smooth muscle α-actin, vessel wall thickness, and vascular collagen content). Infigratinib may act by reducing gene expression of Smads-1/4 and Twist-1 in lung tissue, as well as TGF-β and types I and III pro-collagen in lung fibroblasts. CONCLUSIONS AND IMPLICATIONS In this model of monocrotaline-induced PAH, the combination of the new inhibitor of FGF receptor-1, infigratinib, and sildenafil effectively improved haemodynamics and decreased vascular remodelling.
Collapse
Affiliation(s)
- Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Lucas de Mendonça
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Cassia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jaqueline Soares da Silva
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Dos Santos Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Juliana Borges Vieira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Physiology and Pharmacology Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
199
|
Dang ZC, Tang B, Li B, Liu S, Ge RL, Li ZQ, Lu DX. A meta-analysis of the safety and efficacy of bosentan therapy combined with prostacyclin analogues or phosphodiesterase type-5 inhibitors for pulmonary arterial hypertension. Exp Ther Med 2019; 18:4740-4746. [PMID: 31798703 PMCID: PMC6878909 DOI: 10.3892/etm.2019.8142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/21/2019] [Indexed: 02/01/2023] Open
Abstract
Bosentan is an effective drug for the treatment of pulmonary arterial hypertension (PAH). The aim of the present meta-analysis was to examine the evidence concerning the efficacy and safety of bosentan therapy combined with prostacyclin analogues or phosphodiesterase type 5 (PDE-5) inhibitors for treating PAH. Eligible published studies were collected from Embase, PubMed, The Cochrane Library and the www.clinicaltrials.gov website. Heterogeneity was assessed using the Cochran Q-statistic test. Results were presented as risk ratios or mean differences with 95% confidence intervals (CI). A total of five studies, comprising 310 patients were included for analysis. No significant improvements in six-minute walk distance (6MWD; mean difference, 16.43 m), clinical worsening (risk ratio, 0.54) and the World Health Organization functional classification (class I: risk ratio, 1.17; class II: risk ratio, 1.18) were observed in patients treated with bosentan in combination with prostacyclin analogues or PDE-5 inhibitors. However, a significant reduction in the mean pulmonary artery pressure (mPAP; 95% CI: -17.06, -6.83; P<0.0001) following bosentan combination therapy was observed. Comparisons of adverse event rates in the bosentan combination therapy (55.6%) and monotherapy (51.8%) suggested that there is no reduction in adverse events (risk ratio, 1.10). The results indicated that bosentan combined with prostacyclin analogues or PDE-5 inhibitors may not improve 6MWD, cardiac function, clinical worsening and adverse events. However, bosentan combined with prostacyclin analogues or PDE-5 inhibitor therapy was able to significantly reduce mPAP compared with the effect of bosentan monotherapy.
Collapse
Affiliation(s)
- Zhan-Cui Dang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, Qinghai 810000, P.R. China.,Public Health Department, Medical College, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Bo Tang
- Department of Orthopaedics, The First People's Hospital of Xining City in Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Bin Li
- Public Health Department, Medical College, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Shou Liu
- Public Health Department, Medical College, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Zhan-Qiang Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, Qinghai 810000, P.R. China
| | - Dian-Xiang Lu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
200
|
Jensen MF, Nedergaard S, Nielsen HN, Skovgaard N, Stevnsner TV, Wang T. Endothelin-1 induces a strong pressor effect in ball pythons (Python regius). Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110620. [PMID: 31770594 DOI: 10.1016/j.cbpa.2019.110620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/19/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022]
Abstract
Endothelin-1 (ET-1) is a very potent vasoactive peptide released from endothelial cells, and ET-1 plays an important role in the maintenance and regulation of blood pressure in mammals. ET-1 signaling is mediated by two receptors: ETA and ETB. In mammals, ETA receptors are located on vascular smooth muscle where they mediate vasoconstriction. ETB receptors located on the endothelium mediate vasodilatation through the release of nitric oxide, whereas stimulation of ETB receptors placed on vascular smooth muscle leads to vasoconstriction. Less is known about ET-1 signaling in reptiles. In anaesthetized alligators, ET-1 elicits a biphasic blood pressure with a long-lasting initial decrease followed by a smaller increase in systemic blood pressure. In anaesthetized freshwater turtles, ET-1 causes a dose-dependent systemic vasodilatation mediated through ETB receptors. In the present study, we investigated the cardiovascular effects of ET-1 on the systemic and pulmonary vasculature of pythons. The presence of ETA and ETB receptors in the vasculature of pythons was verified by means of immunoblotting. Myography on isolated vessels revealed a dose-dependent vasoconstrictory response to ET-1 in both mesenteric and pulmonary arteries. Pressure measurements in recovered specimens revealed an ET-1-induced rise in systemic blood pressure supporting our in vitro findings. In conclusion, our study shows that ET-1 induces a strong pressor effect in the systemic circulation.
Collapse
Affiliation(s)
- Maja Fuhlendorff Jensen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| | - Signe Nedergaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Nini Skovgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Tinna V Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
| |
Collapse
|