151
|
Ren D, Shen ZY, Qin LP, Zhu B. Pharmacology, phytochemistry, and traditional uses of Scrophularia ningpoensis Hemsl. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113688. [PMID: 33338592 DOI: 10.1016/j.jep.2020.113688] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. AIM OF REVIEW In this review, we provide an update on the botany, pharmacology, phytochemistry, pharmacokinetics, traditional uses, and safety of S. ningpoensis to highlight future research needs and potential uses of this plant. MATERIALS AND METHODS All information on S. ningpoensis was obtained from scientific databases including ScienceDirect, Springer, PubMed, Sci Finder, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar, and Baidu Scholar. Additional information was collected from Chinese herbal medicine books, Ph.D. dissertations, and M.Sc. Theses. Plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS S. ningpoensis displays fever reducing, detoxifying, and nourishing 'Yin' effects in traditional Chinese medicine (TCM). More than 162 compounds have been identified and isolated from S. ningpoensis, including iridoids and iridoid glycosides, phenylpropanoid glycosides, organic acids, volatile oils, terpenoids, saccharides, flavonoids, sterols, and saponins. These compounds possess a diverse variety of pharmacological properties that affect the cardiovascular, hepatic, and nervous systems, and protect the body against inflammation, oxidation, and carcinogenesis. CONCLUSIONS Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.
Collapse
Affiliation(s)
- Dan Ren
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhan-Yun Shen
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu-Ping Qin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
152
|
Chao J, Ko CY, Lin CY, Tomoji M, Huang CH, Chiang HC, Yang JJ, Huang SS, Su SY. Ethnobotanical Survey of Natural Galactagogues Prescribed in Traditional Chinese Medicine Pharmacies in Taiwan. Front Pharmacol 2021; 11:625869. [PMID: 33679390 PMCID: PMC7928277 DOI: 10.3389/fphar.2020.625869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Natural medicinal materials have been used to promote breast milk secretion. Here, we investigated the natural medicinal materials prescribed in traditional Chinese medicine (TCM) pharmacies across Taiwan to induce lactation. We collected medicinal materials from 87 TCM pharmacies, identified them in the prescriptions, and analyzed their drug contents. We examined their botanical origins, biological classifications, traditional usage, and modern pharmacological properties. We used the TCM Inheritance Support System to identify core medicinal materials in galactogenous prescriptions. We collected 81 medicinal materials from 90 galactogenous prescriptions. Leguminosae accounted for 12%, whereas Apiaceae accounted for 7% of all materials examined. The primary medicinal plant parts used were roots and seeds. Nineteen frequently used medicinal materials had a relative frequency of citation of greater than or equal to 0.2. According to their efficacy, 58% were warm, 54% were sweet, and 63% were tonifying; 74% of the frequently used medicinal materials have been showed efficacy against breast cancer. The primary core medicinal material was Angelica sinensis (Oliv.) Diels, whereas the secondary core medicinal materials were Tetrapanax papyrifer (Hook.) K. Koch and Hedysarum polybotrys Hand.-Mazz. Most galactogenous prescriptions consisted of multiple materials from Leguminosae and Apiaceae. The mechanisms underlying galactogenous efficacy warrant further investigations.
Collapse
Affiliation(s)
- Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Maeda Tomoji
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | | | - Hung-Che Chiang
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Jeng-Jer Yang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
153
|
Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, Kang CZ, Wang HY, Zhou L, Huang LQ, Guo LP. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113415. [PMID: 32987126 PMCID: PMC7521906 DOI: 10.1016/j.jep.2020.113415] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodis Rhizoma (AR), mainly includes Atractylodes lancea (Thunb.) DC. (A. lancea) and Atractylodes chinensis (DC.) Koidz. (A. chinensis) is widely used in East Asia as a diuretic and stomachic drug, for the treatment of rheumatic diseases, digestive disorders, night blindness, and influenza as it contains a variety of sesquiterpenoids and other components of medicinal importance. AIM OF THE REVIEW A systematic summary on the botany, traditional uses, phytochemistry, pharmacology, toxicology, and quality control of AR was presented to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A review of the literature was performed by consulting scientific databases including Google Scholar, Web of Science, Baidu Scholar, Springer, PubMed, ScienceDirect, CNKI, etc. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Over 200 chemical compounds have been isolated from AR, notably sesquiterpenoids and alkynes. Various pharmacological activities have been demonstrated, especially improving gastrointestinal function and thus allowed to assert most of the traditional uses of AR. CONCLUSIONS The researches on AR are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components need to be further elucidated. It is suggested that further studies should be carried out in the aspects of comprehensive evaluation of the quality of medicinal materials, understanding of the "effective forms" and "additive effects" of the pharmacodynamic substances based on the same pharmacophore of TCM, and its long-term toxicity in vivo and clinical efficacy.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen-Yu Zhao
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Kun Chang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ye Cao
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuan-Zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Yang Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
154
|
Qian Y, Li W, Wang H, Hu W, Wang H, Zhao D, Hu Y, Li X, Gao X, Yang W. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala). ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
155
|
Zhou TJ, Liu JF, Wang P, Hu AN, Chen LL, Zan JF. Identification of Targets and Active Components of Yiqi SanJie Formula Against Lung Neoplasms Based on Network Pharmacology Analysis and Molecular Docking. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Yiqi Sanjie formula (YQSJF) is mainly applied clinically for the treatment of lung neoplasms. The purpose of this study was to explore the pharmacodynamics of the active components of YQSJF and the mechanism of therapeutic effects in the treatment of lung neoplasm diseases based on network pharmacology. The network of component-target, target-pathway, and pathway-disease of YQSJF was constructed by using Cytoscape software. According to the screening result, 37 key components, 57 important targets, and 866 candidate pathways were obtained. The enrichment analysis results indicated that YQSJF might play a therapeutic role in lung cancer by regulating several signaling pathways, such as the PI3K-AKT, non-small cell lung cancer, small cell lung cancer, and apoptosis pathways. There were 53 intersection genes between YQSJF and the lung cancer gene, 52 common genes, and 11 key targets, including CASP8, CASP9, AR, ESR1, PTGS2, NOS3, PGR, TGFB1, PPARG, RELA, and NOS2, screened by using Protein-Protein Interaction (PPI) analysis. These could be the potential therapeutic targets of YQSJF against lung cancer. Enrichment analysis of the intersection gene pathways revealed 10 major functional pathways, including the VEGF, apoptosis, and IL-17 signaling pathways. The molecular docking results showed the potential regulating activity of kaempferol against AR, pelargonidin against PGR, and baicalein against both PTGS2 and AR. In conclusion, combinational network pharmacology analysis results indicated that YQSJF might present its efficacy of alleviating lung neoplasm symptoms through multiple targets in a synergetic way.
Collapse
Affiliation(s)
- Tian-jiao Zhou
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Liu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, China
| | - An-na Hu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-lin Chen
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Zan
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
156
|
Miao YF, Gao XN, Xu DN, Li MC, Gao ZS, Tang ZH, Mhlambi NH, Wang WJ, Fan WT, Shi XZ, Liu GL, Song SQ. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2021; 100:938-948. [PMID: 33518147 PMCID: PMC7858188 DOI: 10.1016/j.psj.2020.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common noninfectious cause of death in backyard chickens worldwide, which can cause a sudden drop in egg production in the affected flocks and cause huge losses to the laying hens breeding industry. In this study, we prepared polysaccharide from Atractylodes macrocephala Koidz (PAMK) by one-step alcohol precipitation. The structural analysis found that PAMK with a molecular weight of 2.816 × 103 Da was composed of glucose and mannose, in a molar ratio of 0.582 to 0.418. Furthermore, we investigated the hepatoprotective effects of PAMK on high-energy and low-protein (HELP) diet-induced FLHS in laying hens. The results showed that the hens' livers of the HELP diet showed yellowish-brown, greasy, and soft, whereas the supplement of PAMK (200 mg/kg or 400 mg/kg) could alleviate such pathological changes. The liver index, the abdominal fat percentage, and liver injury induced by the HELP diet were reduced in PAMK (200 mg/kg or 400 mg/kg). Supplementing 200 mg/kg or 400 mg/kg PAMK showed improvements of the antioxidant capacity in laying hens. Furthermore, we found that the HELP diet increased the expression of hepatic lipogenesis genes and decreased the expression of fatty acid β-oxidation genes, which could be reversed by 200 mg/kg or 400 mg/kg PAMK supplementation. Nevertheless, there is no difference between the addition of 40 mg/kg PAMK and the HELP group. Collectively, these results showed that PAMK supplements could ameliorate HELP diet-induced liver injury through regulating activities of antioxidant enzymes and hepatic lipid metabolism. Therefore, PAMK could be a potential feedstuff additive to alleviate FLHS in laying hens.
Collapse
Affiliation(s)
- Y F Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X N Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - D N Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - M C Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z S Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z H Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - N H Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W J Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W T Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X Z Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - G L Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - S Q Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
157
|
Zhang H, Zhou C, Zhang Z, Yao S, Bian Y, Fu F, Luo H, Li Y, Yan S, Ge Y, Chen Y, Zhan K, Yue M, Du W, Tian K, Jin H, Li X, Tong P, Ruan H, Wu C. Integration of Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanisms of Zhuanggu Busui Formula Against Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:841668. [PMID: 35154014 PMCID: PMC8831245 DOI: 10.3389/fendo.2021.841668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a common skeletal disease, characterized by decreased bone formation and increased bone resorption. As a novel Chinese medicine formula, Zhuanggu Busui formula (ZGBSF) has been proved to be an effective prescription for treating OP in clinic, however, the pharmacological mechanisms underlying the beneficial effects remain obscure. In this study, we explored the pharmacological mechanisms of ZGBSF against OP via network pharmacology analysis coupled with in vivo experimental validation. The results of the network pharmacology analysis showed that a total of 86 active ingredients and 164 targets of ZGBSF associated with OP were retrieved from the corresponding databases, forming an ingredient-target-disease network. The protein-protein interaction (PPI) network manifested that 22 core targets, including Caspase-3, BCL2L1, TP53, Akt1, etc, were hub targets. Moreover, functional enrichment analyses revealed that PI3K-Akt and apoptosis signalings were significantly enriched by multiple targets and served as the targets for in vivo experimental study validation. The results of animal experiments revealed that ZGBSF not only reversed the high expression of Caspase-3, Bax, Prap, and low expression of Bcl-2 in osteoblasts of the OP mouse model but also contributed to the phosphorylation of Akt1 and expression of PI3K, thereby promoting osteogenesis and ameliorating the progression of OP. In conclusion, this study systematically and intuitively illustrated that the possible pharmacological mechanisms of ZGBSF against OP through multiple ingredients, targets, and signalings, and especially the inhibition of the apoptosis and the activation of PI3K-Akt signaling.
Collapse
Affiliation(s)
- Huihao Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuxin Yan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kunyu Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weibin Du
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Orthopedics, The Affiliated Jiang Nan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
158
|
Wang G, Zhang TH, Liang JX, Long DL, Ma M, Chen LG, Lu DX, Jiang XH, Yang XS. Tocolysis effects of traditional Chinese medicine and their effective components. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.317389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
159
|
Buyuan decoction inhibits autophagy in a rat model of chronic obstructive pulmonary disease. ARCH BIOL SCI 2021. [DOI: 10.2298/abs211104047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Efforts have been made to find a better therapeutic approach with fewer side
effects in treating chronic obstructive pulmonary disease (COPD). This study
investigated the effect of Buyuan decoction (BYD) on autophagy in COPD rats.
An experimental model with Sprague-Dawley rats was established by
lipopolysaccharide (LPS) injection and cigarette smoke exposure. Rats were
randomly allocated into blank control (normal control), experimental model,
low-dose BYD (8.0 g/kg/day), medium-dose BYD (16.0 g/kg/day), high-dose BYD
(32.0 g/kg/day) and 3-MA (methyladenine) groups (6 rats/group). Cell and
tissue morphology were observed using hematoxylin and eosin staining.
Autophagic vesicles were examined with a transmission electron microscope.
Protein expression of LC3-II/I, BNIP-1, ATG7, p62, PI3K and p-PI3K in lung
tissue was detected by Western blotting. Compared with the experimental
model group, the inflammatory infiltrate in lung tissue was reduced, the
nuclei of the pulmonary epithelial cells were restored to normal, and the
expression of LC3, BNIP1, ATG7 and p-PI3K was significantly downregulated,
while p62 expression was significantly upregulated after treatment with the
BYD. The effect was most significant in the lowdose BYD group (P<0.05, all
groups). These findings suggest that the BYD inhibits the occurrence of
autophagy in the pathogenesis of COPD and that it can be a potential
treatment.
Collapse
|
160
|
Zhai C, Zhao J, Chittiboyina AG, Meng Y, Wang M, Khan IA. Newly Generated Atractylon Derivatives in Processed Rhizomes of Atractylodes macrocephala Koidz. Molecules 2020; 25:molecules25245904. [PMID: 33322214 PMCID: PMC7763829 DOI: 10.3390/molecules25245904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Thermally processed rhizomes of Atractylodes macrocephala (RAM) have a long history of use in traditional Chinese medicine (TCM) for treating various disorders, and have been an integral part of various traditional drugs and healthcare products. In TCM, herbal medicines are, in most cases, uniquely processed. Although it is thought that processing can alter the properties of herbal medicines so as to achieve desired functions, increase potency, and/or reduce side effects, the underlying chemical changes remain unclear for most thermally processed Chinese herbal medicines. In an attempt to shed some light on the scientific rationale behind the processes involved in traditional medicine, the RAM processed by stir-frying with wheat bran was investigated for the change of chemical composition. As a result, for the first time, five new chemical entities, along with ten known compounds, were isolated. Their chemical structures were determined by spectroscopic and spectrometric analyses. The possible synthetic pathway for the generation of such thermally-induced chemical entities was also proposed. Furthermore, biological activity evaluation showed that none of the compounds possessed cytotoxic effects against the tested mammalian cancer and noncancer cell lines. In addition, all compounds were ineffective at inhibiting the growth of the pathogenic microorganisms.
Collapse
Affiliation(s)
- Chunmei Zhai
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Yonghai Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, Department of Agriculture, University of Mississippi, Oxford, MS 38677, USA;
| | - Ikhlas A. Khan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-662-915-7821
| |
Collapse
|
161
|
Feng W, Liu J, Tan Y, Ao H, Wang J, Peng C. Polysaccharides from Atractylodes macrocephala Koidz. Ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism. Food Res Int 2020; 138:109777. [DOI: 10.1016/j.foodres.2020.109777] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
|
162
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
163
|
A potential treatment option for elderly non-Hodgkin lymphoma patients with multiple comorbidities: Two case reports and literature review. Explore (NY) 2020; 17:265-269. [PMID: 33132079 DOI: 10.1016/j.explore.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous lymphoproliferative malignancy. More than half of the NHL cases occur in patients over 65 years of age. As elderly patients have a poor performance status and multiple comorbidities, the use of standard chemotherapy is often limited, leading to poor clinical outcomes and an increasing need for an alternate therapeutic modalities. A 73-year-old man was diagnosed with extranodal NK/T-cell lymphoma concurrently combined with recurrent gastric adenocarcinoma and metastatic prostate cancer. A 79-year-old woman was diagnosed with T-cell and B-cell dual-phenotype NHL on the right chest wall showing tumor thrombosis and multiple enlarged lymph nodes under chronic emphysema with extensive pleural calcification. Both elderly patients had multiple comorbidities and pathologically confirmed non-Hodgkin lymphoma. Both patients achieved tumor responses following anticancer treatment with Korean medicine (KM), suggesting that the extracts of Angelica gigas Nakai and Geopungtang are potential options for treating NHL in elderly patients with multiple comorbidities. Considering the clinical outcomes of KM treatment in the two elderly patients with NHL and multiple comorbidities, this study generates a research hypothesis for future prospective clinical studies in patients with NHL who are ineligible for conventional anticancer therapy.
Collapse
|
164
|
Yang Z, Li J, Chen X, Zhao X, Wang Y. Deciphering bioactive compounds of complex natural products by tandem mass spectral molecular networking combined with an aggregation-induced emission based probe. J Pharm Anal 2020; 12:129-135. [PMID: 35573878 PMCID: PMC9073139 DOI: 10.1016/j.jpha.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023] Open
Abstract
Natural products are great treasure troves for the discovery of bioactive components. Current bioassay guided fractionation for identification of bioactive components is time- and workload-consuming. In this study, we proposed a robust and convenient strategy for deciphering the bioactive profile of natural products by mass spectral molecular networking combined with rapid bioassay. As a proof-of-concept, the strategy was applied to identify angiotensin converting enzyme (ACE) inhibitors of Fangjihuangqi decoction (FJHQD), a traditional medicine clinically used for the treatment of heart failure. The chemical profile of FJHQD was comprehensively revealed with the assistance of tandem mass spectral molecular networking, and a total of 165 compounds were identified. With characterized constituents, potential clinical applications of FJHQD were predicted by Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and a range of cardiovascular related diseases were significantly enriched. ACE inhibitory activities of FJHQD and its constituents were then investigated with an aggregation-induced emission based fluorescent probe. FJHQD exhibited excellent ACE inhibitory effects, and a bioactive molecular network was established to elucidate the ACE inhibitory profile of constituents in FJHQD. This bioactive molecular network provided a panoramic view of FJHQD's ACE inhibitory activities, which demonstrated that flavones from Astragali Radix and Glycyrrhizae Radix et Rhizoma, saponins from Astragali Radix, and sesquiterpenoids from Atractylodis Macrocephalae Rhizoma were principal components responsible for this effect of FJHQD. Among them, four novel ACE inhibitors were the first to be reported. Our study indicated that the proposed strategy offers a useful approach to uncover the bioactive profile of traditional medicines and provides a pragmatic workflow for exploring bioactive components. A novel strategy for deciphering the bioactive profile of traditional medicines was proposed. The chemical profile of FJHQD was revealed with assist of tandem mass spectral molecular networking. Four new angiotensin converting enzyme inhibitors were discovered.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuechun Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Corresponding author.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| |
Collapse
|
165
|
Atractylenolide III alleviates the apoptosis through inhibition of autophagy by the mTOR-dependent pathway in alveolar macrophages of human silicosis. Mol Cell Biochem 2020; 476:809-818. [PMID: 33078341 DOI: 10.1007/s11010-020-03946-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
Silica-induced apoptosis of alveolar macrophages (AMs) is an essential part of silicosis formation. Autophagy tends to present a bidirectional effect on apoptosis. Our previous study found that the blockade of autophagy degradation might aggravate the apoptosis of AMs in human silicosis. We presume that targeting the autophagic pathway is regarded as a promising new strategy for silicosis fibrosis. As a main active component of the Atractylodes rhizome, Atractylenolide III (ATL-III) has been widely applied in clinical anti-inflammation. However, the effect and mechanism of ATL-III on autophagy in AMs of silicosis are unknown. In this study, we found that ATL-III might inhibit autophagy by mTOR-dependent manner, thereby improving the blockage of autophagic degradation in AMs. ATL-III alleviated the apoptosis of AMs in human silicosis. Furthermore, Rapamycin reversed the protective effect of ATL-III in AMs. These results indicate that ATL-III may be a potentially protective ingredient targeting autophagy for workers exposed to silica dust. These findings also suggest that inhibition of autophagy may be an effective way to alleviate the apoptosis of AMs in silicosis.
Collapse
|
166
|
Four new sesquiterpene lactones from Atractylodes macrocephala and their CREB agonistic activities. Fitoterapia 2020; 147:104730. [PMID: 32971205 DOI: 10.1016/j.fitote.2020.104730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
One new bisesquiterpenoid, biepiasreorlid II (1), three new sesquiterpene lactones 8α-methoxy-epiasterolid (4), 3β-acetoxyl-8-epiasterolid (5), and 3β-acetoxyl-atractylenolide I (6), along with five known analogues (2-3 and 7-9), were obtained from rhizome of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by the analysis of single-crystal X-ray diffraction with Ga Kα radiation, and 4-6 were elucidated by TDDFT-ECD calculations. The CREB agonistic activity was investigated in HEK293T cells using dual luciferase reporter assay. Compounds 1, 2, 5, and 7-9 exhibited strong to agonistic activities on CREB.
Collapse
|
167
|
Wu YX, Lu WW, Geng YC, Yu CH, Sun HJ, Kim YJ, Zhang G, Kim T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Essential Oil Derived from the Wild Rhizome of Atractylodes macrocephala. Chem Biodivers 2020; 17:e2000268. [PMID: 32533626 DOI: 10.1002/cbdv.202000268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The present study investigated the chemical composition, antioxidant, antimicrobial, and anti-inflammatory activities of essential oil (EO) derived from the wild rhizomes of Atractylodes macrocephala Koidz. (AMA) growing in Qimen County (eastern China). GC/MS analysis identified fifteen compounds, representing 92.55 % of AMA EO. The major compounds were atractylone (39.22 %), β-eudesmol (27.70 %), thymol (5.74 %), hinesol (5.50 %), and 11-isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-en-10-one (4.71 %). Ferricyanide reducing, 1,1-diphenyl-2-picyrlhydrazyl (DPPH) and 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) scavenging assays revealed that AMA EO exhibited strong antioxidant capacities. Additionally, AMA EO showed inhibitory effects on growth of Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, and Bacillus subtilis, with the minimum inhibitory concentrations (MIC) ranging from 0.5 to 2.0 mg/mL. Treatments with AMA EO also significantly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in lipopolysaccharide-stimulated RAW264.7 cells, indicating anti-inflammatory activity of AMA EO. Furthermore, treatments with AMA EO decreased the transcriptional levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which might be the molecular mechanisms underlying its anti-inflammatory effects. Overall, these results provide a theoretical basis for further study and application of AMA EO in food and medicine products.
Collapse
Affiliation(s)
- Yong-Xiang Wu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Wei-Wei Lu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Yu-Chuang Geng
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Chang-Hao Yu
- College of Life and Environment Science, Huangshan University, Huangshan, 245041, P. R. China
| | - Han-Ju Sun
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - You-Jeong Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited, Shenzhen, 518101, P. R. China
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 760749, Korea
| |
Collapse
|
168
|
Zhong Y, Li M, Zhang X, Chen L, Wang Y, Xu Y. Dissecting Chemical Composition and Cardioprotective Effects of Fuzhengkangfu Decoction against Doxorubicin-Induced Cardiotoxicity by LC-MS and Bioinformatics Approaches. ACS OMEGA 2020; 5:14051-14060. [PMID: 32566871 PMCID: PMC7301600 DOI: 10.1021/acsomega.0c01494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Cardiotoxicity of doxorubicin (DOX) has gained increasing attention in clinical application. Fuzhengkangfu (FZK) decoction, a traditional Chinese herbal formula of replenishing Qi strengthening spleen, has been used to treat various cardiovascular diseases. However, the chemical composition, the protective effects of FZK, and the underlying mechanisms are yet unclear. In this study, an high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method was established for the structural identification of constituents in FZK extracts. Target prediction and enrichment analysis of the identified ingredients were performed. The cell viability was measured via (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (MTT) assay. The protective effects of FZK on cell survival, mitochondrial membrane potential, intracellular calcium homeostasis, and cell apoptosis were detected. The level of relevant proteins was measured by Western blot. The effect of FZK on the antitumor activity of DOX was evaluated in HeLa cells. A total of 42 major chemical constituents were identified in FZK extracts by HPLC-MS. A comprehensive target prediction of these constituents retrieved 46 pathways, of which several key pathways were related to mitochondrial dysfunction, including metabolic pathways and calcium signaling pathways. Furthermore, FZK ameliorated DOX-induced H9C2 cell apoptosis and increased the Bcl-2/Bax ratio. Also, it moderated the loss of mitochondrial membrane potential and reduced the intracellular calcium overload, which are the major targets of DOX-induced injury. These results confirmed that FZK ameliorates DOX-induced cardiotoxicity via antiapoptotic and mitochondrial protection but does not affect the antitumor activity of DOX.
Collapse
Affiliation(s)
- Yigang Zhong
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Miaofu Li
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| | - Xiaohui Zhang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liuying Chen
- Zhejiang
Chinese Medical University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical
Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Xu
- Department
of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Affiliated
Hangzhou Hospital of Nanjing Medical University, Hangzhou 310058, China
| |
Collapse
|
169
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
170
|
Zong S, Tang Y, Li W, Han S, Shi Q, Ruan X, Hou F. A Chinese Herbal Formula Suppresses Colorectal Cancer Migration and Vasculogenic Mimicry Through ROS/HIF-1 α/MMP2 Pathway in Hypoxic Microenvironment. Front Pharmacol 2020; 11:705. [PMID: 32499699 PMCID: PMC7242742 DOI: 10.3389/fphar.2020.00705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Various malignant tumors, including colorectal cancer, have the ability to form functional blood vessels for tumor growth and metastasis. Vasculogenic mimicry (VM) refers to the ability of highly invasive tumor cells to link each other to form vessels, which is associated with poor cancer prognosis. However, the antitumor VM agents are still lacking in the clinic. Astragalus Atractylodes mixture (AAM), a traditional Chinese medicine, has shown to inhibit VM formation; however the exact mechanism is not completely clarified. In this study, we found that HCT-116 and LoVo could form a VM network. Additionally, hypoxia increases the intracellular reactive oxygen species (ROS) level and accelerates migration, VM formation in colorectal cancer cells, while N-Acetylcysteine (NAC) could reverse these phenomena. Notably, further mechanical exploration confirmed that the matrix metalloprotease 2 (MMP2) induction is ROS dependent under hypoxic condition. On the basis, we found that AAM could effectively inhibit hypoxia-induced ROS generation, migration, VM formation as well as HIF-1α and MMP2 expression. In vivo, AAM significantly inhibits metastasis of colorectal cancer in murine lung-metastasis model. Taken together, these results verified that AAM effectively inhibits migration and VM formation by suppressing ROS/HIF-1α/MMP2 pathway in colorectal cancer under hypoxic condition, suggesting AAM could serve as a therapeutic agent to inhibit VM formation in human colorectal cancer.
Collapse
Affiliation(s)
- Shaoqi Zong
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Tang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Susu Han
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Ruan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
171
|
Fan L, Li L, Yu X, Liang Z, Cai T, Chen Y, Xu Y, Hu T, Wu L, Lin L. Jianpiyifei II Granules Suppress Apoptosis of Bronchial Epithelial Cells in Chronic Obstructive Pulmonary Disease via Inhibition of the Reactive Oxygen Species-Endoplasmic Reticulum Stress-Ca 2+ Signaling Pathway. Front Pharmacol 2020; 11:581. [PMID: 32425799 PMCID: PMC7204496 DOI: 10.3389/fphar.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Jianpiyifei II granules (JPYF II), a herbal formula, are used for the treatment of chronic obstructive pulmonary disease (COPD) in Guangdong Provincial Hospital of Chinese Medicine. The protective effects of JPYF II against bronchial epithelial cell apoptosis in mice exposed to cigarette smoke (CS) and apoptosis of human bronchial epithelial cell lines (BEAS-2B and 16-HBE) stimulated with cigarette smoke extract (CSE) were investigated. Mice were exposed to CS generated from four cigarettes/day for 30 days and administered a dose of JPYF II (0.75, 1.5, and 3 g/kg/d) from the 3rd week of CS exposure. In mice exposed to CS, JPYF II significantly inhibited CS-induced apoptosis and overexpression of endoplasmic reticulum (ER) stress-related markers in bronchial epithelial cells of the lung tissues. In CSE-stimulated BEAS-2B and 16-HBE cells, JPYF II attenuated apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, CSE initially induced intracellular reactive oxygen species (ROS) production, which then triggered ER stress, leading to the release of Ca2+ from ER inositol trisphosphate receptor (IP3R)-mediated stores and finally cell death. Treatment with JPYF II resulted in a significant reduction in CSE-induced apoptosis through interruption of the ROS-ER stress-Ca2+ signaling pathway. Therefore, the results of this study have revealed the underlying mechanism of action of JPYF II in the treatment of COPD.
Collapse
Affiliation(s)
- Long Fan
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leng Li
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyao Liang
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Cai
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanbin Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinji Xu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Hu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Lin
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
172
|
Zhu B, Wu J, Ji Q, Wu W, Dong S, Yu J, Zhang Q, Qin L. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ 2020; 8:e8905. [PMID: 32292655 PMCID: PMC7144587 DOI: 10.7717/peerj.8905] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 12/03/2022] Open
Abstract
Rhizospheric and endophytic fungi are key factors which influence plant fitness and soil fertility. Atractylodes macrocephala is one of the best-known perennial herbs used in traditional Chinese medicine. Continuous cropping has been shown to have a negative effect on its growth and renders it more susceptible to microbial pathogen attacks. In this study, we investigated the effects of continuous cropping on the endophytic and rhizospheric fungi associated with A. macrocephala using culture-independent Illumina MiSeq. Continuous cropping was found to decrease fungal diversity inside plant roots, stems, leaves and tubers. Additionally, we found that the structure and diversity of rhizospheric and endophytic fungal communities were altered by root-rot disease. Fusarium was overrepresented among root-rot rhizospheric and endophytic fungi, indicating that it has a major negative impact on plant health during A. macrocephala monocropping. Canonical correspondence analysis of the control and diseased samples revealed that pH, hydrolysis N, electrical conductivity and Hg content were well-correlated with fungal community composition during continuous cropping. Taken together, these results highlight the ecological significance of fungal communities in maintaining plant fitness and will guide the development strategies to attenuate the negative impacts of A. macrocephala continuous cropping.
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyong Ji
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Wei Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shihui Dong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayan Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
173
|
Li Y, Wang Y, Liu Z, Guo X, Miao Z, Ma S. Atractylenolide I Induces Apoptosis and Suppresses Glycolysis by Blocking the JAK2/STAT3 Signaling Pathway in Colorectal Cancer Cells. Front Pharmacol 2020; 11:273. [PMID: 32273843 PMCID: PMC7114890 DOI: 10.3389/fphar.2020.00273] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and is associated with a poor clinical outcome and survival. Therefore, the development of novel therapeutic agents for CRC is imperative. Atractylenolide I (AT-I) is a sesquiterpenoid lactone derivative of Rhizoma Atractylodis macrocephalae that exhibits diverse biological activities, including anti-cancer activities. However, the effects and potential mechanism of AT-I in CRC have yet to be fully elucidated. In this study, we aimed to examine the anti-cancer properties of AT-I and the associated functional mechanisms in vitro and in vivo. We found that AT-I treatment significantly suppressed the viability of CRC cell lines and inhibited colony formation, but to a lesser extent in NCM460 cells. Annexin V/PI staining showed that AT-I induced apoptosis in CRC cells, accompanied by increased caspase-3 and PARP-1 cleavage, enhanced expression of Bax, and reduced expression of Bcl-2. Furthermore, AT-I blocked cell glycolysis by inhibiting both glucose uptake and lactate production in CRC cells, and specifically downregulated the expression of the rate-limiting glycolytic enzyme HK2. In contrast, it had no discernable effects on the glycolytic enzymes PFK and PKM2. A mechanistic study revealed that AT-1 negatively regulates STAT3 phosphorylation through direct interaction with JAK2, thereby inhibiting its activation. Moreover, restoring the expression of STAT3 reversed the effect of AT-I on apoptosis and glycolysis in CRC cells. In vivo results revealed that AT-I significantly suppressed tumor growth in HCT116-xenografted mice. Collectively, our findings indicate that the anti-cancer activity of AT-I in CRC is associated with the induction of apoptosis and suppression of glycolysis in CRC cells, via the disruption of JAK2/STAT3 signaling. Our preliminary experimental data indicate that AT-I may have applications as a promising candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Zhexian Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xingqi Guo
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Ziwei Miao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
174
|
Wang K, Huang W, Sang X, Wu X, Shan Q, Tang D, Xu X, Cao G. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153191. [PMID: 32135457 DOI: 10.1016/j.phymed.2020.153191] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Atractylenolide I (ATL-1) is a natural herbal compound used in traditional Chinese medicine that has exhibited anti-cancer properties. The anti-tumorigenic activity of ATL-1 against colorectal cancer (CRC) and the underlying signaling pathways involved in its mechanisms are examined here. HYPOTHESIS ATL-1 exerts therapeutic effect against CRC by disrupting glucose metabolism and cancer stem cell maintenance via AKT/mTOR pathway regulation. STUDY DESIGN In vitro studies were performed in COLO205 and HCT116 CRC cell lines and in vivo studies were conducted in a mouse xenograft model of CRC tumor. METHODS CRC cells were treated with ATL-1 at various concentrations, with or without inhibitors of AKT or mTOR. Cell proliferation, apoptosis, invasion, stemness maintenance, glucose metabolism, and AKT/mTOR signaling were evaluated. CRC tumor-xenografted mice were treated with an AKT inhibitor and/or ATL-1, and glucose metabolism and stemness maintenance were examined in tumor tissues. RESULTS ATL-1 significantly inhibited the invasion of CRC cells by inducing their apoptosis, possibly via the excessive production of reactive oxygen species. Glucose metabolism (Warburg effect) was also altered and stem-like traits were suppressed by ATL-1. In addition, ATL-1 effectively acted as an inhibitor or AKT/mTOR by downregulating the phosphorylation of proteins related to the AKT/mTOR pathway. In vivo studies showed that tumor weight and volume were reduced by ATL-1 and that aerobic glycolysis, stemness maintenance, and AKT/mTOR activation were impaired by ATL-1 in colorectal tumors. CONCLUSIONS ATL-1 acts as an effective agent to suppress colorectal tumor progression, mainly by inhibiting CRC cell proliferation through altering apoptosis, glucose metabolism, and stem-like behavior. These processes were mediated by the AKT/mTOR signaling pathway both in vitro and in vivo. ATL-1 may be a potential agent to be used in molecular-targeted strategies for cancer treatment.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Wei Huang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Dongxin Tang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
175
|
Zhang WL, Li N, Shen Q, Fan M, Guo XD, Zhang XW, Zhang Z, Liu X. Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. Acta Pharmacol Sin 2020; 41:237-248. [PMID: 31341256 PMCID: PMC7470874 DOI: 10.1038/s41401-019-0275-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a multifactorial metabolic syndrome that affects ∼50%-80% of cancer patients, and no effective therapy for cancer cachexia is presently available. In traditional Chinese medicine, a large portion of patients with cancer cachexia was diagnosed as spleen deficiency syndrome and treated with tonifying TCMs that produce clinic benefits. In this study we established a new animal model of spleen deficiency and cancer cachexia in mice and evaluated the therapeutic effects of atractylenolide I, an active component of tonifying TCM BaiZhu, in the mouse model. Cancer cachexia was induced in male BALB/c mice by inoculation of mouse C26 colon adenocarcinoma cells, whereas spleen deficiency syndrome was induced by treating the mice with spleen deficiency-inducing factors, including limited feeding, fatigue, and purging. The mouse model was characterized by both cachexia and spleen deficiency characteristics, including significant body weight loss, cancer growth, muscle atrophy, fat lipolysis, spleen, and thymus atrophy as compared with healthy control mice, cancer cachexia mice, and spleen deficiency mice. Oral administration of atractylenolide I (20 mg· kg-1per day, for 30 days) significantly ameliorated the reduction in body weight and atrophy of muscle, fat, spleen, and thymus in mice with spleen deficiency and cachexia. The established model of spleen deficiency and cancer cachexia might be useful in the future for screening possible anticachexia TCMs and clarifying their mechanisms.
Collapse
Affiliation(s)
- Wan-Li Zhang
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Na Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Men Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Dong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Zhou Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
176
|
Zhu B, Qi F, Wu J, Yin G, Hua J, Zhang Q, Qin L. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front Pharmacol 2019; 10:1449. [PMID: 31849687 PMCID: PMC6901015 DOI: 10.3389/fphar.2019.01449] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Red yeast rice (RYR), a Chinese traditional folk medicine produced by the fermentation of cooked rice kernels with a Monascaceae mold, Monascus purpureus, has long been used to treat blood circulation stasis, indigestion, diarrhea, and limb weakness in East Asian countries. This article provides a systematic review of the traditional uses, chemistry, biological activities, and toxicology of RYR to highlight its future prospects in the field of medicine. The literature reviewed for this article was obtained from the Web of Science, Elsevier, SciFinder, PubMed, CNKI, ScienceDirect, and Google Scholar, as well as Ph.D. and M.Sc. dissertations, published prior to July 2019. More than 101 chemical constituents have been isolated from RYR, mainly consisting of monacolins, pigments, organic acids, sterols, decalin derivatives, flavonoids, polysaccharides, and other compounds. Crude extracts of RYR, as well as its isolated compounds, possess broad pharmacological properties with hypolipidemic, anti-atherosclerotic, anti-cancer, neurocytoprotective, anti-osteoporotic, anti-fatigue, anti-diabetic, and anti-hypertensive activities. However, further studies are needed to characterize its diverse chemical constituents and the toxicological actions of the main bioactive compounds. New pharmacological trials addressing the overlooked traditional uses of RYR, such as in the treatment of indigestion and diarrhea, are required.
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangyuan Qi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Yin
- Department of Pharmacy, Hangzhou Twin-Horse Biotechnology Co., Ltd., Hangzhou, China
| | - Jinwei Hua
- Institute of Traditional Chinese Medicine, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Qiaoyan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
177
|
朱 云, 李 成, 林 鑫, 孙 晶, 程 旸. [Effect of Atractylodes macrocephala polysaccharide on proliferation and invasion of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1180-1185. [PMID: 31801717 PMCID: PMC6867946 DOI: 10.12122/j.issn.1673-4254.2019.10.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of polysaccharide of Atractylodes macrocephala (PAM) on the proliferation and invasion of hepatocellular carcinoma cells and the underlying mechanism. METHODS Hepatocellular carcinoma HepG2 cells were treated with different concentrations of PAM, and their proliferation and invasive ability were examined using CCK-8 assay and Transwell assay. Immunofluorescence assay was performed to detect the expression level of β-catenin, and real-time PCR and Western blotting were used to detect the mRNA and protein expressions of AKT, GSK-3β and MMP-2 in the cells. The changes in the proliferation, invasiveness and the expressions of pGSK-3β and MMP2 were examined in the cells following treatment with LiCl/PAM/LiCl plus PAM. RESULTS PAM treatment significantly reduced the cell viability, the number of migration cells, and the expression levels of β-catenin and MMP-2 (P < 0.05), and obviously inhibited the phosphorylation of AKT and GSK-3β in the cells (P < 0.05) in a dose-dependent manner. The rescue experiment showed that LiCl reversed the inhibition of cell proliferation, invasiveness, and the Wnt/β-catenin pathway induced by PAM. CONCLUSIONS PAM can inhibit the proliferation and invasion of hepatocellular carcinoma cells in vitro possibly by inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- 云 朱
- 南方医科大学南方医院感染内科肝脏肿瘤中心,广东 广州 510515Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzgou 510515, China
| | - 成 李
- 南方医科大学第二临床医学院,广东 广州 510280The Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China
| | - 鑫盛 林
- 南方医科大学第二临床医学院,广东 广州 510280The Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China
| | - 晶晶 孙
- 广州医科大学附属广州市妇女儿童医疗中心消化科,广东 广州 510623Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - 旸 程
- 广州医科大学附属广州市妇女儿童医疗中心消化科,广东 广州 510623Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| |
Collapse
|
178
|
Shi X, Li X, Ma J, Che H, Ma X, Xie J, Yin X, Wu H, Lv L, Chen T, Zhang J, Zeng E, Tang X, Wang F. Chinese medicine JQ granule combined with half-dose omeprazole for nonerosive reflux disease: A multicenter, randomized, double-blind, placebo-controlled trial study protocol. Eur J Integr Med 2019; 31:100974. [DOI: 10.1016/j.eujim.2019.100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
179
|
Oxidative coupling of coumarins catalyzed by laccase. Int J Biol Macromol 2019; 135:1028-1033. [DOI: 10.1016/j.ijbiomac.2019.05.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
180
|
Ye JT, Dai YK, Li DY, Zhang YZ, Huang MX, Chen WJ, Li RL, Hu L. Efficacy of Jianpi Liqi therapy for functional dyspepsia: A meta-analysis of randomized, positive medicine-controlled trials. Medicine (Baltimore) 2019; 98:e16607. [PMID: 31415353 PMCID: PMC6831318 DOI: 10.1097/md.0000000000016607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We performed this meta-analysis to assess the efficacy and safety of Jianpi Liqi therapy (JLT), a traditional Chinese medicine therapy, in treating functional dyspepsia (FD). METHODS We systematically searched 13 databases from their inception to 15th, May 2019. Eligible studies were randomized controlled trials (RCTs) that compared JLT medicine with conventional pharmacotherapy (CP) in treating patients with FD. Cochrane Collaboration tool, Review Manager 5.3 and STATA 11.0, GRADE profiler 3.6 were used for evaluating risk of bias, analyzing, and assessing quality of evidence respectively. RESULTS After exclusions, 15 RCTs including a total of 1451 participants were included for analysis. We found evidence that JLT had better efficacy than CP (domperidone, omeprazole, esomeprazole, mosapride, lansoprazole, compound digestive enzymes, lactasin tablets) for FD (OR 0.34; 95% CI 0.26, 0.45; P < .00001). Moreover, JLT had more improvement on symptoms including abdominal pain, abdominal distention, early satiety, belching, poor appetite, and fatigue compared with CP. In addition, serious adverse events were not observed in treatment courses. CONCLUSION This meta-analysis suggested that JLT appears to have better efficacy in treating FD compared with CP. It may be an effective and safe therapy option for patients with FD. Though, more large-sample and strictly designed RCTs are needed to confirm our findings.PROSPERO registration number: CRD42019133241.
Collapse
|
181
|
Anti-Inflammatory Compounds from Atractylodes macrocephala. Molecules 2019; 24:molecules24101859. [PMID: 31091823 PMCID: PMC6571718 DOI: 10.3390/molecules24101859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.
Collapse
|
182
|
Synthesis of 1,2-phenylenedimethanols by base-promoted reduction of isobenzofuran-1(3H)-ones with silane. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
183
|
Lin YC, Huang WT, Ou SC, Hung HH, Cheng WZ, Lin SS, Lin HJ, Huang ST. Neural network analysis of Chinese herbal medicine prescriptions for patients with colorectal cancer. Complement Ther Med 2018; 42:279-285. [PMID: 30670255 DOI: 10.1016/j.ctim.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is an experiential form of medicine with a history dating back thousands of years. The present study aimed to utilize neural network analysis to examine specific prescriptions for colorectal cancer (CRC) in clinical practice to arrive at the most effective prescription strategy. The study analyzed the data of 261 CRC cases recruited from a total of 141,962 cases of renowned veteran TCM doctors collected from datasets of both the DeepMedic software and TCM cancer treatment books. The DeepMedic software was applied to normalize the symptoms/signs and Chinese herbal medicine (CHM) prescriptions using standardized terminologies. Over 20 percent of CRC patients demonstrated symptoms of poor appetite, fatigue, loose stool, and abdominal pain. By analyzing the prescription patterns of CHM, we found that Atractylodes macrocephala (Bai-zhu) and Poria (Fu-ling) were the most commonly prescribed single herbs identified through analysis of medical records, and supported by the neural network analysis; although there was a slight difference in the sequential order. The study revealed an 81.9% degree of similarity of CHM prescriptions between the medical records and the neural network suggestions. The patterns of nourishing Qi and eliminating dampness were the most common goals of clinical prescriptions, which corresponds with treatments of CRC patients in clinical practice. This is the first study to employ machine learning, specifically neural network analytics to support TCM clinical diagnoses and prescriptions. The DeepMedic software may be used to deliver accurate TCM diagnoses and suggest prescriptions to treat CRC.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wie-Zen Cheng
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sheng-Shing Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan; Tainan Municipal An-Nan Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|