151
|
Abstract
Aging increases the incidence of chronic liver disease (CLD), worsens its prognosis, and represents the predominant risk factor for its development at all different stages. The hepatic sinusoid, which is fundamental for maintaining liver homeostasis, is composed by hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages. During CLD progression, hepatic cells suffer deregulations in their phenotype, which ultimately lead to disease development. The effects of aging on the hepatic sinusoid phenotype and function are not well understood, nevertheless, studies performed in experimental models of liver diseases and aging demonstrate alterations in all hepatic sinusoidal cells. This review provides an updated description of age-related changes in the hepatic sinusoid and discusses the implications for CLD development and treatment. Lastly, we propose aging as a novel therapeutic target to treat liver diseases and summarize the most promising therapies to prevent or improve CLD and extend healthspan.
Collapse
Affiliation(s)
- Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain.,Division of Hepatology, Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
152
|
Novel therapeutics for portal hypertension and fibrosis in chronic liver disease. Pharmacol Ther 2020; 215:107626. [DOI: 10.1016/j.pharmthera.2020.107626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
|
153
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
154
|
Thomann S, Weiler SME, Marquard S, Rose F, Ball CR, Tóth M, Wei T, Sticht C, Fritzsche S, Roessler S, De La Torre C, Ryschich E, Ermakova O, Mogler C, Kazdal D, Gretz N, Glimm H, Rempel E, Schirmacher P, Breuhahn K. YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver Tumorigenesis. Cancer Res 2020; 80:5502-5514. [PMID: 33087321 DOI: 10.1158/0008-5472.can-20-0242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.
Collapse
Affiliation(s)
- Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Marquard
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teng Wei
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eduard Ryschich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Center for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus TU Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Eugen Rempel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
155
|
Meurer SK, Karsdal MA, Weiskirchen R. Advances in the clinical use of collagen as biomarker of liver fibrosis. Expert Rev Mol Diagn 2020; 20:947-969. [PMID: 32865433 DOI: 10.1080/14737159.2020.1814746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatic fibrosis is the excessive synthesis and deposition of extracellular matrix including collagen in the tissue. Chronic liver insult leads to progressive parenchymal damage, portal hypertension, and cirrhosis. Determination of hepatic collagen by invasive liver biopsy is the gold standard to estimate severity and stage of fibrosis. However, this procedure is associated with pain, carries the risk of infection and bleeding, and is afflicted with a high degree of sampling error. Therefore, there is urgent need for serological collagen-derived markers to assess collagen synthesis/turnover. AREAS COVERED Biochemical properties of collagens, cellular sources of hepatic collagen synthesis, and regulatory aspects in collagen expression. Markers are discussed suitable to estimate hepatic collagen synthesis and/or turnover. Discussed studies were identified through a PubMed search done in May 2020 and the authors' topic knowledge. EXPERT OPINION Hepatic fibrosis is mainly characterized by accumulation of collagen-rich scar tissue. Although traditionally performed liver biopsy is still standard in estimating hepatic fibrosis, there is evidence that noninvasive diagnostic scores and collagen-derived neo-epitopes provide clinical useful information. These noninvasive tests are less expensive than liver biopsy, better tolerated, safer, and more acceptable to patients. Therefore, these tests will lead to dramatic changes in diagnosis.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biomarkers and Research , Herlev, Denmark
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| |
Collapse
|
156
|
Azparren-Angulo M, Royo F, Gonzalez E, Liebana M, Brotons B, Berganza J, Goñi-de-Cerio F, Manicardi N, Abad-Jordà L, Gracia-Sancho J, Falcon-Perez JM. Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities. Pharmacol Ther 2020; 218:107683. [PMID: 32961265 DOI: 10.1016/j.pharmthera.2020.107683] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Since the first descriptions of hepatocyte-released exosome-like vesicles in 2008, the number of publications describing Extracellular Vesicles (EVs) released by liver cells in the context of hepatic physiology and pathology has grown exponentially. This growing interest highlights both the importance that cell-to-cell communication has in the organization of multicellular organisms from a physiological point of view, as well as the opportunity that these circulating organelles offer in diagnostics and therapeutics. In the present review, we summarize systematically and comprehensively the myriad of works that appeared in the last decade and lighted the discussion about the best opportunities for using EVs in liver disease therapeutics.
Collapse
Affiliation(s)
- Maria Azparren-Angulo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Marc Liebana
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Bruno Brotons
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Jesús Berganza
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170 Zamudio, Bizkaia, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170 Zamudio, Bizkaia, Spain
| | - Nicoló Manicardi
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Laia Abad-Jordà
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain; Hepatology, Department of Biomedical Research, Inselspital & University of Bern, Switzerland
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain.
| |
Collapse
|
157
|
Uschner FE, Glückert K, Paternostro R, Gnad T, Schierwagen R, Mandorfer M, Magdaleno F, Ortiz C, Schwarzkopf K, Kamath PS, Alessandria C, Boesecke C, Pfeifer A, Reiberger T, Kreisel W, Sauerbruch T, Ferlitsch A, Trebicka J, Klein S. Combination of phosphodiesterase-5-inhibitors and beta blockers improves experimental portal hypertension and erectile dysfunction. Liver Int 2020; 40:2228-2241. [PMID: 32627946 DOI: 10.1111/liv.14586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Phosphodiesterase-5 inhibitors (PDE-5-I) are used for treatment of erectile dysfunction (ED), which is common in patients with cirrhosis. They may improve portal hypertension (PH), but contradictory data on efficacy and side-effects have been reported. Non-selective beta blockers (NSBB) reduce portal pressure, but might aggravate ED. Thus, we evaluated the combination of PDE-5-I with NSBB and its impact on PH and ED in experimental cirrhosis. METHODS ED was assessed in cirrhotic patients (n = 86) using standardized questionnaire. Experimental cirrhosis was induced by bile-duct-ligation or carbon-tetrachloride intoxication in rats. Corpus cavernosum pressure - a surrogate of ED -, as well as systemic and portal haemodynamics, were measured in vivo and in situ after acute administration of udenafil alone or in combination with propranolol. mRNA and protein levels of PDE-5 signalling were analysed using PCR and western Blot. RESULTS ED in humans was related to severity of liver disease and to NSBB treatment. PDE-5 was mainly expressed in hepatic stellate cells and upregulated in human and experimental cirrhosis. Propranolol reduced corpus cavernosum pressure in cirrhotic rats and it was restored by udenafil. Even though udenafil treatment improved PH, it led to a reduction of mean arterial pressure. The combination of udenafil and propranolol reduced portal pressure and hepatic resistance without systemic side-effects. CONCLUSIONS ED is common with advanced cirrhosis and concomitant NSBB treatment. The combination of PDE-5-I and NSBB improves ED and PH in experimental cirrhosis.
Collapse
Affiliation(s)
- Frank E Uschner
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| | - Kathleen Glückert
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Rafael Paternostro
- Hepatic Hemodynamic Lab, Medical University Vienna, Vienna, Austria.,Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| | - Mattias Mandorfer
- Hepatic Hemodynamic Lab, Medical University Vienna, Vienna, Austria.,Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Fernando Magdaleno
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Cristina Ortiz
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| | - Katharina Schwarzkopf
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Christoph Boesecke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thomas Reiberger
- Hepatic Hemodynamic Lab, Medical University Vienna, Vienna, Austria.,Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| | - Arnulf Ferlitsch
- Hepatic Hemodynamic Lab, Medical University Vienna, Vienna, Austria.,Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jonel Trebicka
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Sabine Klein
- Department of Internal Medicine I, Hospital of the Goethe University, Frankfurt, Germany
| |
Collapse
|
158
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
159
|
Liu HQ, Li J, Liu XL, Zhao X, Ma HC. Folic acid and RAAS blockers in ischemia/reperfusion-induced hepatic injury: A current mechanistic concept for understanding the incidence, significance & outcome. Chem Biol Interact 2020; 327:109187. [PMID: 32610055 DOI: 10.1016/j.cbi.2020.109187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is not only one of the pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. IRI after liver transplant occurs due to in major resections and occlusion of vessels, or during the perioperative period, leads to acute liver failure which shows the dynamic process that involves two interrelated phases of local ischemic insult and inflammation-mediated reperfusion injury and has an impact on morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) is activated locally in the injured cells by the occurrence of I/R, which plays an essential role in the fate of the damaged tissue. However, a preclinical study explores the protective role of RAAS inhibitor in acute liver injury in a model of inflammation caused by ischemia and reperfusion. In-addition to RAAS blockers in monotherapy does not effectively block the complete pathway. Thus, the present study is designed to explore the effect of combined folic acid with RAAS blockers in combination, produce a synergistic effect. Moreover, in this review, we will describe the understanding of the possible incidence of downregulatory molecular mechanisms associated with renin-angiotensin-aldosterone system and the significance & outcome of the combination of folic acid and RAAS blockers in liver injury due to ischemia/reperfusion.
Collapse
Affiliation(s)
- Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Xinmin Street, Changchun, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Xinmin Street, Changchun, China
| | - Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Xinmin Street, Changchun, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Xinmin Street, Changchun, China.
| | - Hai-Chun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Xinmin Street, Changchun, China.
| |
Collapse
|
160
|
Ezhilarasan D. Endothelin-1 in portal hypertension: The intricate role of hepatic stellate cells. Exp Biol Med (Maywood) 2020; 245:1504-1512. [PMID: 32791849 DOI: 10.1177/1535370220949148] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Portal hypertension is pathologically defined as increase of portal venous pressure, mainly due to chronic liver diseases such as fibrosis and cirrhosis. In fibrotic liver, activated hepatic stellate cells increase their contraction in response to endothelin-1 (ET-1) via autocrine and paracrine stimulation from liver sinusoidal endothelial cells and injured hepatocytes. Clinical studies are limited with ET receptor antagonists in cirrhotic patients with portal hypertension. Hence, studies are needed to find molecules that block ET-1 synthesis. Accumulation of extracellular matrix proteins in the perisinusoidal space, tissue contraction, and alteration in blood flow are prominent during portal hypertension. Therefore, novel matrix modulators should be tested experimentally as well as in clinical studies. Specifically, tumor necrosis factor-α, transforming growth factor-β1, Wnt, Notch, rho-associated protein kinase 1 signaling antagonists, and peroxisome proliferator-activated receptor α and γ, interferon-γ and sirtuin 1 agonists should be tested elaborately against cirrhosis patients with portal hypertension.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, 194347Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India
| |
Collapse
|
161
|
Liang H, Li Z, Ren Z, Jia Q, Guo L, Li S, Zhang H, Hu S, Zhu D, Shen D, Yu Z, Cheng K. Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis. NANO RESEARCH 2020; 13:2197-2202. [DOI: 10.1007/s12274-020-2833-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 08/02/2024]
|
162
|
Ryou M, Stylopoulos N, Baffy G. Nonalcoholic fatty liver disease and portal hypertension. EXPLORATION OF MEDICINE 2020; 1:149-169. [PMID: 32685936 DOI: 10.37349/emed.2020.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a substantial and growing problem worldwide and has become the second most common indication for liver transplantation as it may progress to cirrhosis and develop complications from portal hypertension primarily caused by advanced fibrosis and erratic tissue remodeling. However, elevated portal venous pressure has also been detected in experimental models of fatty liver and in human NAFLD when fibrosis is far less advanced and cirrhosis is absent. Early increases in intrahepatic vascular resistance may contribute to the progression of liver disease. Specific pathophenotypes linked to the development of portal hypertension in NAFLD include hepatocellular lipid accumulation and ballooning injury, capillarization of liver sinusoidal endothelial cells, enhanced contractility of hepatic stellate cells, activation of Kupffer cells and pro-inflammatory pathways, adhesion and entrapment of recruited leukocytes, microthrombosis, angiogenesis and perisinusoidal fibrosis. These pathological events are amplified in NAFLD by concomitant visceral obesity, insulin resistance, type 2 diabetes and dysbiosis, promoting aberrant interactions with adipose tissue, skeletal muscle and gut microbiota. Measurement of the hepatic venous pressure gradient by retrograde insertion of a balloon-tipped central vein catheter is the current reference method for predicting outcomes of cirrhosis associated with clinically significant portal hypertension and guiding interventions. This invasive technique is rarely considered in the absence of cirrhosis where currently available clinical, imaging and laboratory correlates of portal hypertension may not reflect early changes in liver hemodynamics. Availability of less invasive but sufficiently sensitive methods for the assessment of portal venous pressure in NAFLD remains therefore an unmet need. Recent efforts to develop new biomarkers and endoscopy-based approaches such as endoscopic ultrasound-guided measurement of portal pressure gradient may help achieve this goal. In addition, cellular and molecular targets are being identified to guide emerging therapies in the prevention and management of portal hypertension.
Collapse
Affiliation(s)
- Marvin Ryou
- Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nicholas Stylopoulos
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge MA
| | - Gyorgy Baffy
- Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA
| |
Collapse
|
163
|
Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020; 11:454. [PMID: 32532964 PMCID: PMC7293224 DOI: 10.1038/s41419-020-2597-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Inflammation and autophagy occur during hepatic fibrosis development caused by various pathogens, and effectively curbing of autophage may delay the occurrence of hepatic fibrosis. The current study aimed to unravel the inhibitory effects of Ginsenoside Rg3 (G-Rg3) on inflammation-mediated hepatic autophagy to curb hepatic fibrosis caused by thioacetamide (TAA)-induced subacute and chronic hepatic injury. TAA is mainly metabolized in the liver to cause liver dysfunction. After intraperitoneal injection of TAA for 4 or 10 weeks (TAA-chronic mouse models), severe inflammatory infiltration and fibrosis occurred in the liver. Treatment with G-Rg3 alleviated hepatic pathological changes and reversed hepatic fibrosis in the TAA-chronic models with decreased deposition of collagen fibers, reduced expression of HSCs activation marker (α-SMA), and reduced secretion of profibrogenic factors (TGF-β1). G-Rg3 decreased expressions of autophagy-related proteins in mice of TAA-chronic models. Notably, G-Rg3 inhibited the survival of activated rat hepatic stellate cells (HSC-T6), but had no cytotoxicity on human hepatocytes (L02 cell lines). G-Rg3 dose-dependently inhibited autophagy in vitro with less expression of p62 and fewer LC3a transformation into LC3b in inflammatory inducer lipopolysaccharide (LPS)-induced rat HSC-T6 cells. Furthermore, G-Rg3 enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) in vivo and in vitro. Besides, mTOR inhibitor Rapamycin and PI3K inhibitors LY294002 were employed in LPS-treated HSC-T6 cell cultures to verify that Rg3 partially reversed the increase in autophagy in hepatic fibrosis in vitro. Taken together, G-Rg3 exerted anti-fibrosis effect through the inhibition of autophagy in TAA-treated mice and LPS-stimulated HSC-T6 cells. These data collectively unravel that G-Rg3 may serve a promising anti-hepatic fibrosis drug.
Collapse
|
164
|
Tripathi DM, Hassan M, Siddiqui H, Kaur I, Rawal P, Bihari C, Kaur S, Sarin SK. Cirrhotic Endothelial Progenitor Cells Enhance Liver Angiogenesis and Fibrosis and Aggravate Portal Hypertension in Bile Duct-Ligated Cirrhotic Rats. Front Physiol 2020; 11:617. [PMID: 32595520 PMCID: PMC7300214 DOI: 10.3389/fphys.2020.00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background Circulating cirrhotic endothelial progenitor cells (EPC) interact with both liver sinusoidal endothelial cells (LSEC) and hepatic stellate cells (HSC) and promote angiogenesis in vitro. This study evaluated the effect of cirrhotic and control EPCs on hepatic angiogenesis, microcirculation, and fibrosis in vivo in rat models of cirrhosis. Methodology Animal models of cirrhosis were prepared by bile duct ligation (BDL). Circulating EPCs isolated from healthy human and cirrhotic blood were characterized by flow cytometry, cultured and administered through the tail vein in BDL rats after 2 weeks of ligation. The cells were given thrice a week for 2 weeks. The untreated group of BDL rats received only saline. Fibrosis was evaluated by Masson’s trichrome staining. Dedifferentiated LSECs were identified by the expression of CD31, and activated HSCs were marked as alpha-SMA-positive cells and were studied by immunohistochemistry and western blotting in saline-, healthy EPC-, and cirrhotic EPC-treated rats. In vivo, hepatic and systemic hemodynamic parameters were evaluated. Liver functions were evaluated. Results In comparison to controls, BDL rats revealed an increase of fibrosis and angiogenesis. Among the treated rats, cirrhotic EPC-treated rats had increased fibrosis grade as compared to healthy EPC-treated and saline-treated rats. There was an increase of both fibrosis and angiogenesis markers, alpha-SMA and CD31 in cirrhotic EPC-treated rats as compared to healthy EPC-treated and saline-treated rats in immunohistochemistry and western blot studies. Cirrhotic EPC-treated BDL rats had high portal pressure and portal blood flow with significantly elevated hepatic vascular resistance in comparison with healthy EPC- and saline-treated BDL animals, without significant differences in mean arterial pressure. Cirrhotic EPC-treated BDL rats also showed a substantial increase in the hepatic expression of angiogenic receptors, VEGFR2 and CXCR4 in comparison with saline-treated rats. Conclusion The study suggests that transplantation of cirrhotic EPCs enhances LSEC differentiation and angiogenesis, activates HSCs and worsens fibrosis, thus resulting in hepatic hemodynamic derangements in BDL-induced cirrhosis.
Collapse
Affiliation(s)
- Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Mohsin Hassan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Chaggan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
165
|
Scheiner B, Northup PG, Gruber AB, Semmler G, Leitner G, Quehenberger P, Thaler J, Ay C, Trauner M, Reiberger T, Lisman T, Mandorfer M. The impact of ABO blood type on the prevalence of portal vein thrombosis in patients with advanced chronic liver disease. Liver Int 2020; 40:1415-1426. [PMID: 32052552 PMCID: PMC7317432 DOI: 10.1111/liv.14404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Non-O blood type (BT) is a risk factor for thromboses, which has been attributed to its effects on von Willebrand factor (VWF)/factor VIII (FVIII) levels. Although high VWF/FVIII may be risk factors for portal vein thrombosis (PVT) in patients with advanced chronic liver disease (ACLD), the impact of BT on PVT is unknown. We aimed to assess (I) whether non-O-BT is a risk factor for PVT and (II) whether non-O-BT impacts VWF/factor VIII in patients with ACLD. METHODS Retrospective analysis comprising two cohorts: (I) "US" including all adult liver transplantations in the US in the MELD era and (II) "Vienna" comprising patients with a hepatic venous pressure gradient (HVPG) ≥6 mmHg. RESULTS (I) The "US cohort" included 84 947 patients (non-O: 55.43%). The prevalence of PVT at the time of listing (4.37% vs 4.56%; P = .1762) and at liver transplantation (9.56% vs 9.33%; P = .2546) was similar in patients with O- and non-O-BT. (II) 411 patients were included in the "Vienna cohort" (non-O: 64%). Mean HVPG was 18(9) mmHg and 90% had an HVPG ≥10 mmHg. Patients with non-O-BT had slightly increased VWF levels (318(164)% vs 309(176)%; P = .048; increase of 23.8%-23.9% in adjusted analyses), but this difference was driven by patients with less advanced disease. However, non-O-BT explained only 1% of the variation in VWF and had no effect on FVIII. CONCLUSIONS Although non-O-BT impacts VWF in patients with early stage ACLD, its contribution to VWF variation is considerably smaller than in the general population. Moreover, non-O-BT had no impact on FVIII. These findings may explain the absence of an association between non-O-BT and PVT in patients with advanced cirrhosis.
Collapse
Affiliation(s)
- Bernhard Scheiner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Patrick G. Northup
- Center for the Study of Hemostasis in Liver DiseaseDivision of Gastroenterology and HepatologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Anselm B. Gruber
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion MedicineMedical University of ViennaViennaAustria
| | - Peter Quehenberger
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Johannes Thaler
- Division of Hematology and HemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Cihan Ay
- Division of Hematology and HemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Mattias Mandorfer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Hemodynamic LaboratoryMedical University of ViennaViennaAustria
| |
Collapse
|
166
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
167
|
Jia Y, Gao L, Yang X, Zhang F, Chen A, Wang S, Shao J, Tan S, Zheng S. Blockade of periostin-dependent migration and adhesion by curcumol via inhibition of nuclear factor kappa B signaling in hepatic stellate cells. Toxicology 2020; 440:152475. [PMID: 32344006 DOI: 10.1016/j.tox.2020.152475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Curcumol, a guaiane-type sesquiterpenoid hemiketal extracted from the herb Rhizoma Curcumae, exhibits multiple-pharmacological activities. We previously reported that curcumol ameliorated hepatic fibrosis by inhibiting hepatic stellate cell (HSC) activation. In this study, we aimed to investigate the effect of curcumol on HSC migration and adhesion, and reveal its regulation mechanisms. MATERIALS AND METHODS Cellular viability was determined by Cell Counting Kit-8. Cell migration was detected by boyden chamber and cell scratch experiment. Recombinant human periostin (rh POSTN) and adeno-associated viral (AAV)-GFP-periostin were used to achieve POSTN overexpression in vitro and in vivo, respectively. Nuclear factor kappa B (NF-κB)-p65 overexpression was achieved by using plasmid. ELISA was conducted to detect POSTN level. Immunohistochemistry, qRT-PCR, Western blotting, and immunofluorescence were performed to assess associated factor expression. RESULTS Curcumol suppressed HSC migration and adhesion, and reduced the secretion and expression of POSTN. By gain of function POSTN in HSCs, using rh POSTN, we found that the inhibition of HSC migration and adhesion by curcumol depended on the decrease of POSTN. Besides, curcumol protection against chronic CCl4-caused hepatic fibrosis could be impaired by POSTN overexpression. Moreover, we showed that curcumol repressed NF-κB signaling and the production of pro-inflammatory factor. Importantly, curcumol down-regulation of POSTN was rescued by knock-in of NF-κB, as well as the inhibition of HSC migration and adhesion. CONCLUSION These findings reveal the molecular mechanism of curcumol-reduced HSC migration and adhesion, by which points to the possibility of using curcumol based on NF-κB dependent POSTN for the treatment of fibrogenesis.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Liyuan Gao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xiang Yang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Shijun Wang
- Shandong Co-Innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Shanzhong Tan
- Department of Hepatology, Integrated Traditional Chinese and Western Medicine, Nanjing Second Hospital, China.
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, China.
| |
Collapse
|
168
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
169
|
Lin L, Gong H, Li R, Huang J, Cai M, Lan T, Huang W, Guo Y, Zhou Z, An Y, Chen Z, Liang L, Wang Y, Shuai X, Zhu K. Nanodrug with ROS and pH Dual-Sensitivity Ameliorates Liver Fibrosis via Multicellular Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903138. [PMID: 32274310 PMCID: PMC7140994 DOI: 10.1002/advs.201903138] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Liver fibrosis currently represents a global health problem without effective pharmacotherapeutic strategies. The clinical translation of polydatin, a promising natural anti-fibrotic drug candidate with broad anti-inflammatory and antioxidant capabilities, remains a major challenge due to its limited water solubility and tissue absorption. Herein, a polydatin-loaded micelle (PD-MC) based on reactive oxygen species (ROS) and pH dual-sensitive block polymer PEG-P(PBEM-co-DPA) is developed. The micelle exerts great potential in improving the biocompatibility of polydatin and shows highly efficient liver-targeted drug release in response to the fibrotic microenvironment. Both in vitro and in vivo studies demonstrate that PD-MC can significantly suppress inflammatory response and oxidative stress, reduce hepatocyte apoptosis, and avert activation of macrophages and hepatic stellate cells. More excitingly, the blank micelle itself promotes the hepatic ROS consumption at the pathologic site to provide anti-inflammatory benefits. These favorable therapeutic virtues of targeting multiple cell types endow PD-MC with remarkable efficacy with minimal side effects in liver fibrosis treatment. Thus, PD-MC holds great potential to push forward the clinical application of polydatin in pharmacotherapeutic approaches against liver fibrosis.
Collapse
Affiliation(s)
- Liteng Lin
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Hengye Gong
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Rui Li
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Jingjun Huang
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Mingyue Cai
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Tian Lan
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Wensou Huang
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Yongjian Guo
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Zhimei Zhou
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Yongcheng An
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Zhiwei Chen
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Licong Liang
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Yong Wang
- College of Chemistry and Materials ScienceJinan UniversityGuangzhou510632China
| | - Xintao Shuai
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Kangshun Zhu
- Laboratory of Interventional RadiologyDepartment of Minimally Invasive Interventional Radiology and Department of RadiologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| |
Collapse
|
170
|
Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020; 155:104720. [PMID: 32092405 DOI: 10.1016/j.phrs.2020.104720] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a dynamic wound-healing process characterized by the net accumulation of extracellular matrix. There is no efficient antifibrotic therapy other than liver transplantation to date. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix-producing myofibroblasts, playing a central role in the initiation and progression of liver fibrosis. Paracrine signals from resident and inflammatory cells such as hepatocytes, liver sinusoidal endothelial cells, hepatic macrophages, natural killer/natural killer T cells, biliary epithelial cells, hepatic progenitor cells, and platelets can directly or indirectly regulate HSC differentiation and activation. Intercellular crosstalk between HSCs and those "responded" cells has been a critical event involved in HSC activation and fibrogenesis. This review summarizes recent advancement regarding intercellular communication between HSCs and other "responded cells" during liver fibrosis and experimental models of intercellular crosstalk systems, and provides novel ideas for potential antifibrotic therapeutic strategy.
Collapse
|
171
|
Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020; 47:2279-2288. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder characterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic therapies in this pathology.
Collapse
Affiliation(s)
- Mariia Zadorozhna
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
172
|
Dongaonkar RM, Quick CM, Laine GA, Uray K, Cox CS, Stewart RH. Adaptation of the hepatic transudation barrier to sinusoidal hypertension. Am J Physiol Regul Integr Comp Physiol 2020; 318:R722-R729. [PMID: 32023079 DOI: 10.1152/ajpregu.00178.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of the hepatic transudation barrier in determining ascites volume and protein content in chronic liver disease is poorly understood. Therefore, the purpose of the present study was to characterize how chronic sinusoidal hypertension impacts hepatic transudation barrier properties and the transudation rate. The suprahepatic inferior vena cava was surgically constricted, and animals were exposed to either short-term (SVH; 2-3 wk) or long-term venous hypertension (LVH; 5-6 wk). Compared with SVH, LVH resulted in lower peritoneal fluid pressure, ascites volume, and ascites protein concentration. The transudation barrier protein reflection coefficient was significantly higher, and the transudation barrier hydraulic conductivity, transudation rate, and transudate-to-lymph protein concentration ratio were significantly lower in LVH animals compared with SVH animals. The sensitivity of transudation rates to acute changes in interstitial fluid pressures was also significantly lower in LVH animals compared with SVH animals. In contrast, there was no detectable difference in hepatic lymph flow rate or sensitivity of lymph flow to acute changes in interstitial fluid pressures between SVH and LVH animals. Taken together, these data suggest that decreased hepatic transudation barrier permeability to fluid and protein and increased reflection coefficient led to a decrease in the hepatic contribution to ascites volume. The present work, to the best of our knowledge, is the first to quantify an anti-ascites adaptation of the hepatic transudation barrier in response to chronic hepatic sinusoidal hypertension.
Collapse
Affiliation(s)
- Ranjeet M Dongaonkar
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Christopher M Quick
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Glen A Laine
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School, Houston, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas
| |
Collapse
|
173
|
Danilova IG, Shafigullina ZA, Gette IF, Sencov VG, Medvedeva SY, Abidov MT. Accelerated liver recovery after acute CCl 4 poisoning in rats treated with sodium phthalhydrazide. Int Immunopharmacol 2020; 80:106124. [PMID: 31927508 DOI: 10.1016/j.intimp.2019.106124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Pharmacotherapy of hepatobiliary disorders is an important issue due to the high prevalence of liver failure, toxic and viral hepatitis and cirrhosis. The number of stimuli that can potentially induce or accelerate liver recovery is limited; in our study we selected sodium phthalhydrazide, which has been found to promote liver regeneration after partial hepatectomy. We examined the effects of phthalhydrazide on liver morphometric, histological and biochemical parameters in rats intoxicated with CCl4. Accelerated liver recovery after CCl4 intoxication in phthalhydrazide-treated animals was evidenced by increased number of liver sinusoidal cells, reduced focal necrosis of hepatocytes and reduced perifocal leukocyte infiltration. Decreased plasma levels of pro-inflammatory cytokines TNF-α and IL-18 and decreased concentrations of IL-6 and IFN-γ in liver homogenates were associated with reduced severity of cholestasis and normalized hepatic protein synthesis in CCl4-intoxicated rats exposed to phthalhydrazide. Anti-inflammatory and immunomodulating properties of phthahlhydrazide can be an important factor contributing to accelerated liver recovery at early stages of acute CCl4-toxic liver impairment.
Collapse
Affiliation(s)
- Irina G Danilova
- Institute of Immunology and Physiology of the Ural Branch of the RAS, Yekaterinburg, Russian Federation; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation.
| | - Zlata A Shafigullina
- Institute of Immunology and Physiology of the Ural Branch of the RAS, Yekaterinburg, Russian Federation; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation
| | - Irina F Gette
- Institute of Immunology and Physiology of the Ural Branch of the RAS, Yekaterinburg, Russian Federation; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation
| | - Valentin G Sencov
- Federal State Budget Educational Institution of Higher Education «Ural State Medical University» of the Ministry of Health of the Russian Federation, Yekaterinburg, Russian Federation
| | - Svetlana Yu Medvedeva
- Institute of Immunology and Physiology of the Ural Branch of the RAS, Yekaterinburg, Russian Federation; Ural Federal University Named After the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation
| | - Musa T Abidov
- Institute of Immunopathology and Preventive Medicine, Povsetova ulica 29, 1000 Lublana, Slovenia
| |
Collapse
|
174
|
Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020; 154-155:64-78. [PMID: 32768564 PMCID: PMC7406478 DOI: 10.1016/j.addr.2020.07.022] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Collapse
Affiliation(s)
| | | | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
175
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:E24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
176
|
Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019; 8:cells8111467. [PMID: 31752395 PMCID: PMC6912679 DOI: 10.3390/cells8111467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
TGR5 (Gpbar1) is a G protein-coupled receptor responsive to bile acids (BAs), which is expressed in different non-parenchymal cells of the liver, including biliary epithelial cells, liver-resident macrophages, sinusoidal endothelial cells (LSECs), and activated hepatic stellate cells (HSCs). Mice with targeted deletion of TGR5 are more susceptible towards cholestatic liver injury induced by cholic acid-feeding and bile duct ligation, resulting in a reduced proliferative response and increased liver injury. Conjugated lithocholic acid (LCA) represents the most potent TGR5 BA ligand and LCA-feeding has been used as a model to rapidly induce severe cholestatic liver injury in mice. Thus, TGR5 knockout (KO) mice and wildtype (WT) littermates were fed a diet supplemented with 1% LCA for 84 h. Liver injury and gene expression changes induced by the LCA diet revealed an enrichment of pathways associated with inflammation, proliferation, and matrix remodeling. Knockout of TGR5 in mice caused upregulation of endothelin-1 (ET-1) expression in the livers. Analysis of TGR5-dependent ET-1 signaling in isolated LSECs and HSCs demonstrated that TGR5 activation reduces ET-1 expression and secretion from LSECs and triggers internalization of the ET-1 receptor in HSCs, dampening ET-1 responsiveness. Thus, we identified two independent mechanisms by which TGR5 inhibits ET-1 signaling and modulates portal pressure.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany; (B.H.); (J.R.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, 44139 Dortmund, Germany;
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.K.); (M.R.); (J.S.); (D.H.)
- Correspondence:
| |
Collapse
|
177
|
Fan W, Liu T, Chen W, Hammad S, Longerich T, Hausser I, Fu Y, Li N, He Y, Liu C, Zhang Y, Lian Q, Zhao X, Yan C, Li L, Yi C, Ling Z, Ma L, Zhao X, Xu H, Wang P, Cong M, You H, Liu Z, Wang Y, Chen J, Li D, Hui L, Dooley S, Hou J, Jia J, Sun B. ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells, and Fibrogenesis in Mice. Gastroenterology 2019; 157:1352-1367.e13. [PMID: 31362006 DOI: 10.1053/j.gastro.2019.07.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Activation of TGFB (transforming growth factor β) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanisms of TGFB activation are not clear. We investigated the role of ECM1 (extracellular matrix protein 1), which interacts with extracellular and structural proteins, in TGFB activation in mouse livers. METHODS We performed studies with C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Δhep). ECM1 or soluble TGFBR2 (TGFB receptor 2) were expressed in livers of mice after injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy livers were analyzed by immunohistochemistry and in situ hybridization. RESULTS ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with αv integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Δhep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Hepatitis, Alcoholic/metabolism
- Hepatitis, Alcoholic/pathology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Alcoholic/metabolism
- Liver Cirrhosis, Alcoholic/pathology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Weiguo Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Wen Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Seddik Hammad
- Sektion Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany; Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Thomas Longerich
- Sektion Translational Gastrointestinal Pathology, Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Ingrid Hausser
- Sektion Translational Gastrointestinal Pathology, Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Yadong Fu
- Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yajing He
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoshi Lian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinhao Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Hufeng Xu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Zhihong Liu
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Wang
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Steven Dooley
- Sektion Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Jinlin Hou
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
178
|
Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY, Bailly S, Feige JJ. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019; 70:1392-1408. [PMID: 30964206 DOI: 10.1002/hep.30655] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Ricard
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarné
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Lucid Belmudes
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Yohann Couté
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Olivier Boillot
- Liver Transplant Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabine Bailly
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Jean-Jacques Feige
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
179
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
180
|
Wakasa Y, Kimura N, Yamada T, Shimizu T, Hakamada K, Tsuchida S. Delay in hepatocyte proliferation and prostaglandin D2 synthase expression for cholestasis due to endotoxin during partial hepatectomy in rats. Mol Med Rep 2019; 20:4367-4375. [PMID: 31545425 PMCID: PMC6797974 DOI: 10.3892/mmr.2019.10681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 11/05/2022] Open
Abstract
Infection is a frequent complication of liver transplantation or partial hepatectomy (PH) and sometimes results in cholestasis. We examined factors involved in infection‑induced cholestasis after PH, employing a rat PH model and lipopolysaccharide (LPS) as a bacterial toxin. Male Sprague‑Dawley rats were subjected to 70% PH and/or LPS injection, and tissues were harvested at 0, 24, 72 and 168 h. Gene expression was analyzed by microarray analysis and reverse transcription‑quantitative polymerase chain reaction, and protein levels and localization were analyzed by western blotting and immunohistochemistry, respectively. Plasma bile acid levels were significantly higher in the LPS + PH group than in the PH group. Ribonucleotide reductase regulatory subunit M2 and proliferating cell nuclear antigen peaked at 24 and 72 h in the PH group and LPS + PH group, respectively, indicating a delay in cell proliferation in the latter group. The sodium‑dependent taurocholate cotransporting polypeptide and organic‑anion‑transporting polypeptide 1a1 and 1a2 were reduced in the PH group at 24 h, and were not further decreased in the LPS + PH group. Chemokine ligand 9 (Cxcl9), a chemokine involved in M2 macrophage polarization, increased after 24 h in the LPS and the LPS + PH groups. The number and shape of Cxcl9‑positive cells were similar to CD163‑positive cells, suggesting that such cells produced the chemokine. Hematopoietic prostaglandin D2 synthase (Ptgds2) was only detected in hepatocytes of the LPS + PH group exhibiting a delay in cell proliferation. Thus, Kupffer cells activated with LPS were suggested to be responsible for a delay in hepatocyte proliferation after PH.
Collapse
Affiliation(s)
- Yusuke Wakasa
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Takeshi Shimizu
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Shigeki Tsuchida
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
181
|
Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for Liver Tissue Engineering. Bioengineering (Basel) 2019; 6:E59. [PMID: 31284412 PMCID: PMC6784004 DOI: 10.3390/bioengineering6030059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
182
|
Validation and functional analysis of the critical proteins in combination with taurine, epigallocatechin gallate and genistein against liver fibrosis in rats. Biomed Pharmacother 2019; 115:108975. [DOI: 10.1016/j.biopha.2019.108975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
|
183
|
Gracia‐Sancho J, Manicardi N, Ortega‐Ribera M, Maeso‐Díaz R, Guixé‐Muntet S, Fernández‐Iglesias A, Hide D, García‐Calderó H, Boyer‐Díaz Z, Contreras PC, Spada A, Bosch J. Emricasan Ameliorates Portal Hypertension and Liver Fibrosis in Cirrhotic Rats Through a Hepatocyte-Mediated Paracrine Mechanism. Hepatol Commun 2019; 3:987-1000. [PMID: 31304452 PMCID: PMC6601324 DOI: 10.1002/hep4.1360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
In cirrhosis, liver microvascular dysfunction is a key factor increasing hepatic vascular resistance to portal blood flow, which leads to portal hypertension. De-regulated inflammatory and pro-apoptotic processes due to chronic injury play important roles in the dysfunction of liver sinusoidal cells. The present study aimed at characterizing the effects of the pan-caspase inhibitor emricasan on systemic and hepatic hemodynamics, hepatic cells phenotype, and underlying mechanisms in preclinical models of advanced chronic liver disease. We investigated the effects of 7-day emricasan on hepatic and systemic hemodynamics, liver function, hepatic microcirculatory function, inflammation, fibrosis, hepatic cells phenotype, and paracrine interactions in rats with advanced cirrhosis due to chronic CCl4 administration. The hepato-protective effects of emricasan were additionally investigated in cells isolated from human cirrhotic livers. Cirrhotic rats receiving emricasan showed significantly lower portal pressure than vehicle-treated animals with no changes in portal blood flow, indicating improved vascular resistance. Hemodynamic improvement was associated with significantly better liver function, reduced hepatic inflammation, improved phenotype of hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells and macrophages, and reduced fibrosis. In vitro experiments demonstrated that emricasan exerted its benefits directly improving hepatocytes' expression of specific markers and synthetic capacity, and ameliorated nonparenchymal cells through a paracrine mechanism mediated by small extracellular vesicles released by hepatocytes. Conclusion: This study demonstrates that emricasan improves liver sinusoidal microvascular dysfunction in cirrhosis, which leads to marked amelioration in fibrosis, portal hypertension and liver function, and therefore encourages its clinical evaluation in the treatment of advanced chronic liver disease.
Collapse
Affiliation(s)
- Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- CIBEREHDMadridSpain
- Hepatology, Department of Biomedical ResearchInselspital – University of BernBernSwitzerland
| | - Nicolò Manicardi
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Raquel Maeso‐Díaz
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Sergi Guixé‐Muntet
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- Hepatology, Department of Biomedical ResearchInselspital – University of BernBernSwitzerland
| | - Anabel Fernández‐Iglesias
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- CIBEREHDMadridSpain
| | - Diana Hide
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- CIBEREHDMadridSpain
| | - Héctor García‐Calderó
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- CIBEREHDMadridSpain
| | | | | | | | - Jaime Bosch
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research InstituteBarcelonaSpain
- CIBEREHDMadridSpain
- Hepatology, Department of Biomedical ResearchInselspital – University of BernBernSwitzerland
| |
Collapse
|
184
|
Zhong X, Xiao Q, Liu Z, Wang W, Lai CH, Yang W, Yue P, Ye Q, Xiao J. TAK242 suppresses the TLR4 signaling pathway and ameliorates DCD liver IRI in rats. Mol Med Rep 2019; 20:2101-2110. [PMID: 31257518 PMCID: PMC6691197 DOI: 10.3892/mmr.2019.10439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a notable cause of tissue damage during surgical procedures and a major risk factor in graft dysfunction in liver transplantation. Livers obtained from donors after circulatory death (DCD) are prone to IRI and toll-like receptor 4 (TLR4) serves a prominent role in the inflammatory response associated with DCD liver IRI. The present study was designed to investigate whether TAK242, a specific TLR4 inhibitor, improves hepatic IRI following a DCD graft and to investigate its underlying protective mechanisms. Male Sprague-Dawley rats were randomized into 4 groups: Control, TAK242, DCD and DCD+TAK242 groups. Rats were pretreated with TAK242 or its vehicle for 30 min, then the livers were harvested without warm ischemia (control group and TAK242 group) or with warm ischemia in situ for 30 min. The livers were stored in cold University of Wisconsin solution for 24 h and subsequently perfused for 60 min with an isolated perfused rat liver system. Rat liver injury was evaluated thereafter. When compared with the DCD group, DCD livers with TAK242 pretreatment displayed significantly improved hepatic tissue injury and less tissue necrosis (P<0.05). Compared with DCD livers, mechanistic experiments revealed that TAK242 pretreatment alleviated mitochondrial dysfunction, reduced reactive oxygen species and malondialdehyde levels and inhibited apoptosis. Additionally, TAK242 significantly inhibited the IRI-associated inflammatory response, indicated by the decreased expression of TLR4, interleukin (IL)-1β, IL-6 and cyclooxygenase 2 at the mRNA and protein levels (P<0.05). TAK242 ameliorates DCD liver IRI via suppressing the TLR4 signaling pathway in rats. The results of the present study have revealed that TAK242 pretreatment harbors a potential benefit for liver transplantation.
Collapse
Affiliation(s)
- Xiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhongzhong Liu
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chin-Hui Lai
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wang Yang
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pengpeng Yue
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Department of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jiansheng Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
185
|
Okimoto S, Kuroda S, Tashiro H, Kobayashi T, Taogoshi T, Matsuo H, Ohdan H. Vitamin A-coupled liposomal Rho-kinase inhibitor ameliorates liver fibrosis without systemic adverse effects. Hepatol Res 2019; 49:663-675. [PMID: 30675748 DOI: 10.1111/hepr.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
AIM Rho-kinase (ROCK) inhibitor could ameliorate liver fibrosis by suppressing hepatic stellate cell (HSC) activation. However, because systemic administration of ROCK inhibitor causes serious adverse effects, we developed a drug delivery system selectively delivering ROCK inhibitor to HSCs. Here, we examined whether our developed vitamin A (VA)-coupled liposomal ROCK inhibitor reduced liver fibrosis in rats without causing systemic adverse effects. METHODS LX-2 HSCs were analyzed for morphological changes and the expression of profibrotic proteins. The inhibitory effects of VA-coupled liposomal ROCK inhibitor on liver fibrosis were confirmed in a rat model of liver fibrosis induced by i.p. injection of carbon tetrachloride. The degree of liver fibrosis, biochemical changes, and survival rates were also investigated. RESULTS Vitamin A-coupled liposomal ROCK inhibitor had an effect at approximately 1/100 the amount of the free ROCK inhibitor for inhibiting the activation of LX-2 cells and caused significant decreases in the expression levels of α-smooth muscle actin (SMA) and transforming growth factor (TGF)-β1. The degree of liver fibrosis was suppressed by treatment with VA-coupled liposomal ROCK inhibitor, and the expression of α-SMA and TGF-β1 in liver tissues was also significantly suppressed. In addition, serum levels of alanine aminotransferase and hyaluronic acid were significantly reduced, and there was no decline in kidney function, which has been noted as a systemic adverse effect of ROCK inhibitor. Furthermore, VA-coupled liposomal ROCK inhibitor improved survival rates in rats with liver fibrosis. CONCLUSION Vitamin A-coupled liposomal ROCK inhibitor efficiently suppressed liver fibrosis without causing systemic adverse effects.
Collapse
Affiliation(s)
- Sho Okimoto
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Tashiro
- Department of Surgery, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
186
|
Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int J Mol Sci 2019; 20:ijms20102516. [PMID: 31121839 PMCID: PMC6566399 DOI: 10.3390/ijms20102516] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing evidence that glucose metabolism in the liver is in part under the control of the endocannabinoid system (ECS) which is also supported by its presence in this organ. The ECS consists of its cannabinoid receptors (CBRs) and enzymes that are responsible for endocannabinoid production and metabolism. ECS is known to be differentially influenced by the hepatic glucose metabolism and insulin resistance, e.g., cannabinoid receptor type 1(CB1) antagonist can improve the glucose tolerance and insulin resistance. Interestingly, our own study shows that expression patterns of CBRs are influenced by the light/dark cycle, which is of significant physiological and clinical interest. The ECS system is highly upregulated during chronic liver disease and a growing number of studies suggest a mechanistic and therapeutic impact of ECS on the development of liver fibrosis, especially putting its receptors into focus. An opposing effect of the CBRs was exerted via the CB1 or CB2 receptor stimulation. An activation of CB1 promoted fibrogenesis, while CB2 activation improved antifibrogenic responses. However, underlying mechanisms are not yet clear. In the context of liver diseases, the ECS is considered as a possible mediator, which seems to be involved in the synthesis of fibrotic tissue, increase of intrahepatic vascular resistance and subsequently development of portal hypertension. Portal hypertension is the main event that leads to complications of the disease. The main complication is the development of variceal bleeding and ascites, which have prognostic relevance for the patients. The present review summarizes the current understanding and impact of the ECS on glucose metabolism in the liver, in association with the development of liver cirrhosis and hemodynamics in cirrhosis and its complication, to give perspectives for development of new therapeutic strategies.
Collapse
|
187
|
Soares GA, Prospero AG, Calabresi MF, Rodrigues DS, Simoes LG, Quini CC, Matos RR, Pinto LA, Sousa-Junior AA, Bakuzis AF, Mancera PA, Miranda JRA. Multichannel AC Biosusceptometry System to Map Biodistribution and Assess the Pharmacokinetic Profile of Magnetic Nanoparticles by Imaging. IEEE Trans Nanobioscience 2019; 18:456-462. [PMID: 30998477 DOI: 10.1109/tnb.2019.2912073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Collapse
|
188
|
Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16:221-234. [PMID: 30568278 DOI: 10.1038/s41575-018-0097-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain. .,Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland.
| | - Giusi Marrone
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
189
|
Baffy G. Potential mechanisms linking gut microbiota and portal hypertension. Liver Int 2019; 39:598-609. [PMID: 30312513 DOI: 10.1111/liv.13986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Gut microbiota is the largest collection of commensal micro-organisms in the human body, engaged in reciprocal cellular and molecular interactions with the liver. This mutually beneficial relationship may break down and result in dysbiosis, associated with disease phenotypes. Altered composition and function of gut microbiota has been implicated in the pathobiology of nonalcoholic fatty liver disease (NAFLD), a prevalent condition linked to obesity, insulin resistance and endothelial dysfunction. NAFLD may progress to cirrhosis and portal hypertension, which is the result of increased intrahepatic vascular resistance and altered splanchnic circulation. Gut microbiota may contribute to rising portal pressure from the earliest stages of NAFLD, although the significance of these changes remains unclear. NAFLD has been linked to lower microbial diversity and weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defence and inflammation. Moreover, disrupted host-microbial metabolic interplay alters bile acid signalling and the release of vasoregulatory gasotransmitters. These perturbations become prominent in cirrhosis, increasing the risk of clinically significant portal hypertension and leading to bacterial translocation, sepsis and acute-on-chronic liver failure. Better understanding of the gut-liver axis and identification of novel microbial molecular targets may yield specific strategies in the prevention and management of portal hypertension.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
190
|
Serra M, Marongiu M, Contini A, Miki T, Cadoni E, Laconi E, Marongiu F. Evidence of Amniotic Epithelial Cell Differentiation toward Hepatic Sinusoidal Endothelial Cells. Cell Transplant 2019; 27:23-30. [PMID: 29562778 PMCID: PMC6434484 DOI: 10.1177/0963689717727541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amniotic epithelial cells (AECs) represent a useful and noncontroversial source for liver-based regenerative medicine, as they can differentiate into hepatocytes upon transplantation into the liver. However, the possibility that AECs can differentiate into other liver cell types, such as hepatic sinusoidal endothelial cells (HSECs), has never been assessed. In order to test this hypothesis, rat- and human-derived AECs (rAECs and hAECs, respectively) were subjected to endothelial cell tube formation assay in vitro. Moreover, to evaluate differentiation in vivo, the retrorsine (RS) model of liver repopulation was used. Pyrrolizidine alkaloids (including RS) are known to target both hepatocytes and endothelial cells, inducing cell enlargement and inhibition of cell cycle progression. rAECs and hAECs were able to form capillary-like structures when cultured under proangiogenic conditions. For in vivo experiments, rAECs were obtained from dipeptidyl peptidase type IV (DPP-IV, CD26) donors and were transplanted into the liver of recipient CD26 negative animals pretreated with RS. rAEC-derived cells were engrafted in between hepatocytes and resembled HSECs as assessed by morphological analysis and the pattern of expression of CD26. Donor-derived CD26+ cells coexpressed HSEC markers RECA-1 and SE-1, while they lacked expression of typical hepatocyte markers (i.e., cytochrome P450, hepatocyte nuclear factor 4α). As such, these results provide the first evidence that AECs can respond to proangiogenic signals in vitro and differentiate into HSECs in vivo. Furthermore, they support the conclusion that AECs possesses great plasticity and represents a promising tool in the field of regenerative medicine both in the liver and in other organs.
Collapse
Affiliation(s)
- Monica Serra
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Monica Serra and Michela Marongiu equally contributed to this work
| | - Michela Marongiu
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Monica Serra and Michela Marongiu equally contributed to this work
| | - Antonella Contini
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Toshio Miki
- 2 Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Erika Cadoni
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- 1 Experimental Medicine Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
191
|
Orlicky DJ, Libby AE, Bales ES, McMahan RH, Monks J, La Rosa FG, McManaman JL. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol 2019; 597:1565-1584. [PMID: 30536914 PMCID: PMC6418763 DOI: 10.1113/jp277140] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Wild-type mice and mice with hepatocyte-specific or whole-body deletions of perilipin-2 (Plin2) were used to define hepatocyte and extra-hepatocyte effects of altered cellular lipid storage on obesity and non-alcoholic fatty liver disease (NAFLD) pathophysiology in a Western-diet (WD) model of these disorders. Extra-hepatocyte actions of Plin2 are responsible for obesity, adipose inflammation and glucose clearance abnormalities in WD-fed mice. Hepatocyte and extra-hepatic actions of Plin2 mediate fatty liver formation in WD-fed mice through distinct mechanisms. Hepatocyte-specific actions of Plin2 are primary mediators of immune cell infiltration and fibrotic injury in livers of obese mice. ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is an obesity- and insulin resistance-related metabolic disorder with progressive pathology. Perilipin-2 (Plin2), a ubiquitously expressed cytoplasmic lipid droplet scaffolding protein, is hypothesized to contribute to NAFLD in humans and rodent models through effects on cellular lipid metabolism. In this study, we delineate hepatocyte-specific and extra-hepatocyte Plin2 mechanisms regulating the effects of obesity and insulin resistance on NAFLD pathophysiology in mice fed an obesogenic Western-style diet (WD). Total Plin2 deletion (Plin2-Null) fully protected WD-fed mice from obesity, insulin resistance, adipose inflammation, steatohepatitis (NASH) and liver fibrosis found in WT animals. Hepatocyte-specific Plin2 deletion (Plin2-HepKO) largely protected against NASH and fibrosis and partially protected against steatosis in WD-fed animals, but it did not protect against obesity, insulin resistance, or adipose inflammation. Significantly, total or hepatocyte-specific Plin2 deletion impaired WD-induced monocyte recruitment and pro-inflammatory macrophage polarization found in livers of WT mice. Analyses of the molecular and cellular processes mediating steatosis, inflammation and fibrosis identified differences in total and hepatocyte-specific actions of Plin2 on the mechanisms promoting NAFLD pathophysiology. Our results demonstrate that hepatocyte-specific actions of Plin2 are central to the initiation and pathological progression of NAFLD in obese and insulin-resistant mice through effects on immune cell recruitment and fibrogenesis. Conversely, extra-hepatocyte Plin2 actions promote NAFLD pathophysiology through effects on obesity, inflammation and insulin resistance. Our findings provide new insight into hepatocyte and extra-hepatocyte mechanisms underlying NAFLD development and progression.
Collapse
Affiliation(s)
- David J. Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Andrew E. Libby
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Elise S. Bales
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Rachel H. McMahan
- Division of Gastroenterology and HepatologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Jenifer Monks
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | | | - James L. McManaman
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
- Center for Human NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
192
|
Maretti-Mira AC, Wang X, Wang L, DeLeve LD. Incomplete Differentiation of Engrafted Bone Marrow Endothelial Progenitor Cells Initiates Hepatic Fibrosis in the Rat. Hepatology 2019; 69:1259-1272. [PMID: 30141211 PMCID: PMC6387651 DOI: 10.1002/hep.30227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
Normal liver sinusoidal endothelial cells (LSECs) promote quiescence of hepatic stellate cells (HSCs). Prior to fibrosis, LSECs undergo capillarization, which is permissive for HSC activation, the proximate event in hepatic fibrosis. The aims of this study were to elucidate the nature of and mechanisms leading to capillarization and to determine how LSECs promote HSC quiescence and why "capillarized LSECs" lose control of HSC activation. The contribution of bone marrow (BM) endothelial progenitor cells to capillarization was identified using rats transplanted with transgenic enhanced green fluorescent protein-positive BM. Shotgun proteomics and informatics were used to identify the LSEC mediator that maintains HSC quiescence. The study shows that capillarization is due to repair of injured LSECs by BM endothelial progenitors that engraft but fail to fully mature. Lack of maturation of BM-derived LSECs is due to cell autonomous pathways that inhibit the nitric oxide pathway. We identify heparin binding epidermal growth factor-like growth factor (HB-EGF) as the signal that maintains HSC quiescence and show that immature LSECs are unable to shed HB-EGF from the cytosolic membrane. Conclusion: Chronic liver injury can recruit BM progenitors of LSECs that engraft and fail to fully differentiate, which creates an environment that is permissive for hepatic fibrosis; elucidation of these early events in the fibrotic process will provide targets for treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Ana C Maretti-Mira
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Xiangdong Wang
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Lei Wang
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| | - Laurie D DeLeve
- Division of Gastrointestinal and Liver Disease and the Research Center for Liver Disease, Keck Medicine of USC, Los Angeles, CA
| |
Collapse
|
193
|
Fernández‐Iglesias A, Ortega‐Ribera M, Guixé‐Muntet S, Gracia‐Sancho J. 4 in 1: Antibody-free protocol for isolating the main hepatic cells from healthy and cirrhotic single rat livers. J Cell Mol Med 2019; 23:877-886. [PMID: 30417530 PMCID: PMC6349241 DOI: 10.1111/jcmm.13988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Liver cells isolated from pre-clinical models are essential tools for studying liver (patho)physiology, and also for screening new therapeutic options. We aimed at developing a new antibody-free isolation method able to obtain the four main hepatic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macrophages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution centrifugations while non-parenchymal cells were subjected to differential centrifugation. Two different fractions were obtained: HSC and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by selective adherence time to collagen-coated substrates. Isolated cells showed high viability (80%-95%) and purity (>95%) and were characterized as functional: hepatocytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo fenestrae distribution, HMΦ increased expression of inflammatory markers in response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol allows the simultaneous isolation of highly pure and functional hepatic cell sub-populations from control or cirrhotic single livers without antibody selection.
Collapse
Affiliation(s)
- Anabel Fernández‐Iglesias
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
| | - Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
| | - Sergi Guixé‐Muntet
- HepatologyDepartment of Biomedical ResearchInselspitalBern UniversityBernSwitzerland
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic LaboratoryIDIBAPS Biomedical Research InstituteBarcelonaSpain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD)MadridSpain
- HepatologyDepartment of Biomedical ResearchInselspitalBern UniversityBernSwitzerland
| |
Collapse
|
194
|
Fc gamma RIIb expression levels in human liver sinusoidal endothelial cells during progression of non-alcoholic fatty liver disease. PLoS One 2019; 14:e0211543. [PMID: 30695042 PMCID: PMC6350999 DOI: 10.1371/journal.pone.0211543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a pivotal role in hepatic function and homeostasis. LSEC dysfunction has been recognized to be closely involved in various liver diseases, including non-alcoholic steatohepatitis (NASH), but not much is known about the fate of the scavenger receptors in LSECs during NASH. Fc gamma receptor IIb (FcγRIIb), known as a scavenger receptor, contributes to receptor-mediated endocytosis and immune complexes clearance. In this study, to elucidate the fate of FcγRIIb in the progression of non-alcoholic fatty liver disease (NAFLD), we examined FcγRIIb levels in NAFLD biopsy specimens by immunohistochemistry, and investigated their correlation with the exacerbation of biological indexes and clinicopathological scores of NASH. The FcγRIIb expression levels indicated significant negative correlations with serum levels of blood lipids (triglyceride, total cholesterol, high-density lipoprotein-cholesterol), type 4 collagen and hyaluronic acid, which are involved in hepatic lipid metabolism disorder, fibrosis, and inflammation, respectively. However, there was no significant difference of FcγRIIb expression levels among the pathological grades of NAFLD. During NAFLD progression, inflammation and fibrosis may influence the expression of FcγRIIb and their scavenger functions to maintain hepatic homeostasis.
Collapse
|
195
|
Rajapaksha IG, Angus PW, Herath CB. Current therapies and novel approaches for biliary diseases. World J Gastrointest Pathophysiol 2019; 10:1-10. [PMID: 30622832 PMCID: PMC6318481 DOI: 10.4291/wjgp.v10.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases (such as biliary atresia and cystic fibrosis), acquired diseases (such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation. As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis. We make a special emphasis on biliary fibrosis and current therapeutic options, such as angiotensin converting enzyme-2 (known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Peter W Angus
- Department of Gastroenterology and Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| |
Collapse
|
196
|
|
197
|
Tee JK, Ng LY, Koh HY, Leong DT, Ho HK. Titanium Dioxide Nanoparticles Enhance Leakiness and Drug Permeability in Primary Human Hepatic Sinusoidal Endothelial Cells. Int J Mol Sci 2018; 20:35. [PMID: 30577655 PMCID: PMC6337147 DOI: 10.3390/ijms20010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) represent the permeable interface that segregates the blood compartment from the hepatic cells, regulating hepatic vascular tone and portal pressure amidst changes in the blood flow. In the presence of pathological conditions, phenotypic changes in LSECs contribute to the progression of chronic liver diseases, including the loss of endothelial permeability. Therefore, modulating LSECs offers a possible way to restore sinusoidal permeability and thereby improve hepatic recovery. Herein, we showed that titanium dioxide nanoparticles (TiO₂ NPs) could induce transient leakiness in primary human hepatic sinusoidal endothelial cells (HHSECs). Interestingly, HHSECs exposed to these NPs exhibited reduced protein kinase B (Akt) phosphorylation, an important protein kinase which regulates cell attachment. Using a 3D co-culture system, we demonstrated that TiO₂ NPs diminished the attachment of HHSECs onto normal human hepatic cell LO2. To further illustrate the significance of leakiness in liver sinusoids, we showed that NP-induced leakiness promoted Sunitinib transport across the HHSEC layer, resulting in increased drug uptake and efficacy. Hence, TiO₂ NPs have the potential to modulate endothelial permeability within the specialized sinusoidal endothelium, especially during events of fibrosis and occlusion. This study highlighted the possible use of inorganic NPs as a novel strategy to promote drug delivery targeting the diseased liver.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
| | - Li Yang Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Hannah Yun Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - David Tai Leong
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
198
|
Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A, Hide D, Muñoz L, Hessheimer AJ, Vila S, Francés R, Fondevila C, Albillos A, Peralta C, Bosch J, Tacke F, Cogger VC, Gracia-Sancho J. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17:e12829. [PMID: 30260562 PMCID: PMC6260924 DOI: 10.1111/acel.12829] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/07/2018] [Accepted: 07/08/2018] [Indexed: 12/28/2022] Open
Abstract
The socioeconomic and medical improvements of the last decades have led to a relevant increase in the median age of worldwide population. Although numerous studies described the impact of aging in different organs and the systemic vasculature, relatively little is known about liver function and hepatic microcirculatory status in the elderly. In this study, we aimed at characterizing the phenotype of the aged liver in a rat model of healthy aging, particularly focusing on the microcirculatory function and the molecular status of each hepatic cell type in the sinusoid. Moreover, major findings of the study were validated in young and aged human livers. Our results demonstrate that healthy aging is associated with hepatic and sinusoidal dysfunction, with elevated hepatic vascular resistance and increased portal pressure. Underlying mechanisms of such hemodynamic disturbances included typical molecular changes in the cells of the hepatic sinusoid and deterioration in hepatocyte function. In a specific manner, liver sinusoidal endothelial cells presented a dysfunctional phenotype with diminished vasodilators synthesis, hepatic macrophages exhibited a proinflammatory state, while hepatic stellate cells spontaneously displayed an activated profile. In an important way, major changes in sinusoidal markers were confirmed in livers from aged humans. In conclusion, our study demonstrates for the first time that aging is accompanied by significant liver sinusoidal deregulation suggesting enhanced sinusoidal vulnerability to chronic or acute injuries.
Collapse
Affiliation(s)
- Raquel Maeso-Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
| | - Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
| | - Diana Hide
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
| | - Leticia Muñoz
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Immune System Diseases Laboratory, Department of Medicine; University of Alcalá; Alcalá de Henares Spain
| | - Amelia J. Hessheimer
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Liver Surgery and Transplantation Unit; IDIBAPS, Hospital Clínic de Barcelona; Barcelona Spain
| | - Sergi Vila
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
| | - Rubén Francés
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - Fundación FISABIO); Alicante Spain
| | - Constantino Fondevila
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Liver Surgery and Transplantation Unit; IDIBAPS, Hospital Clínic de Barcelona; Barcelona Spain
| | - Agustín Albillos
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Immune System Diseases Laboratory, Department of Medicine; University of Alcalá; Alcalá de Henares Spain
- Department of Gastroenterology and Hepatology; Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá; Madrid Spain
| | - Carmen Peralta
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Protective Strategies Against Hepatic Ischemia-Reperfusion Group; IDIBAPS; Barcelona Spain
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Hepatology, Department of Biomedical Research; Inselspital, Bern University; Bern Switzerland
| | - Frank Tacke
- Dept of Medicine III; University Hospital Aachen; Aachen Germany
| | - Victoria C. Cogger
- Centre for Education and Research on Ageing & ANZAC Research Institute; University of Sydney and Concord Hospital; Sydney Australia
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory; IDIBAPS Biomedical Research Institute, University of Barcelona Medical School; Barcelona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD); Madrid Spain
- Hepatology, Department of Biomedical Research; Inselspital, Bern University; Bern Switzerland
| |
Collapse
|
199
|
Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11:1756284818811294. [PMID: 30505350 PMCID: PMC6256317 DOI: 10.1177/1756284818811294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients' prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.
Collapse
Affiliation(s)
- Marina Vilaseca
- Hepatic Hemodynamic Laboratory, IDIBAPS
Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Department of Biomedical Research, University of
Bern, Bern, Switzerland
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona
Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute,
CIBEREHD, Rosselló 149, 4th floor, 08036 Barcelona, Spain
| |
Collapse
|
200
|
Peters KM, Wilson RB, Borradaile NM. Non-parenchymal hepatic cell lipotoxicity and the coordinated progression of non-alcoholic fatty liver disease and atherosclerosis. Curr Opin Lipidol 2018; 29:417-422. [PMID: 30015675 PMCID: PMC6125757 DOI: 10.1097/mol.0000000000000535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) appears to be independently associated with the development of atherosclerosis. The biological mechanisms underlying this association are complex, and likely involve liver-resident cell types other than hepatocytes. Thus, we review recent evidence that non-parenchymal hepatic cell responses to lipid excess contribute to the pathogenesis of both NAFLD and atherosclerosis. RECENT FINDINGS Significant independent associations between NAFLD and atherosclerosis have been identified through cross-sectional studies and meta-analyses. Mechanistic studies in cell cultures and in rodent models suggest that liver-resident macrophages, activated hepatic stellate cells (HSC) and liver sinusoidal endothelial cells (LSEC) mount lipotoxic responses under NAFLD conditions which can contribute to the progression of both NAFLD and atherosclerosis. SUMMARY Non-parenchymal hepatic cell types exhibit some similarity in their responses to lipid excess, and in their pathogenic mechanisms, which likely contribute to the coordinated progression of NAFLD and atherosclerosis. In response to lipotoxic conditions, macrophages, Kupffer cells and HSC initiate robust inflammatory responses, whereas LSEC generate excess reactive oxygen species (ROS). The extent to which inflammatory cytokines and ROS produced by non-parenchymal cells contribute to the progression of both NAFLD and atherosclerosis warrants further investigation.
Collapse
|