151
|
Couto A, Wainwright JB, Morris BJ, Montgomery SH. Linking ecological specialisation to adaptations in butterfly brains and sensory systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:55-60. [PMID: 32979531 DOI: 10.1016/j.cois.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Butterflies display incredible ecological and behavioural diversity. As such, they have been subject to intense study since the birth of evolutionary biology. However, with some possible exceptions, they are underused models in comparative and functional neurobiology. We highlight a series of areas, spanning sensory ecology to cognition, in which butterflies are particularly promising systems for investigating the neurobiological basis for behavioural or ecological variation. These fields benefit from a history of molecular and quantitative genetics, and basic comparative neuroanatomy, but these strands of research are yet to be widely integrated. We discuss areas for potential growth and argue that new experimental techniques, growing genomic resources, and tools for functional genetics will accelerate the use of butterflies in neurobiology.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - J Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
152
|
Abbasi R, Heschuk D, Kim B, Whyard S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103492. [PMID: 33096213 DOI: 10.1016/j.ibmb.2020.103492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Daniel Heschuk
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Brandon Kim
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Steve Whyard
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
153
|
RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros. INSECTS 2020; 11:insects11120838. [PMID: 33260850 PMCID: PMC7761266 DOI: 10.3390/insects11120838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Understanding the biology of insect pests is an important step towards developing appropriate control strategies. In this study, a CRISPR/Cas9 gene knockout work flow was established for the first time and was together with RNAi used as tools to study gene functions in the Neotropical stink bug, Euschistus heros. RNAi was first employed to study the function of three genes, abnormal wing disc (awd), tyrosine hydroxylase (th) and yellow (yel). Targeting awd and th resulted in distinct malformed phenotypes such as a deformed wing or a lighter cuticle pigmentation/defects in cuticle sclerotization, respectively. However, no distinct phenotype was observed for yel. To further investigate the function of yel, a CRISPR/Cas9 gene editing protocol was developed for E. heros. A total of 719 eggs were microinjected with single-guide (sgRNA) and Cas9 and total of six insects hatched. Out of these six nymphs, one insect showed mutation in yel but no clear phenotype was visible. Although, we were unable to generate insects with a distinct phenotype for yel, a successful gene editing workflow was established to complement RNAi for future functional gene studies in E. heros. Additionally, we provided recommendations to improve the established gene editing workflow. Abstract The Neotropical brown stink bug, Euschistus heros, is one of the most important stink bug pests in leguminous plants in South America. RNAi and CRISPR/Cas9 are important and useful tools in functional genomics, as well as in the future development of new integrated pest management strategies. Here, we explore the use of these technologies as complementing functional genomic tools in E. heros. Three genes, abnormal wing disc (awd), tyrosine hydroxylase (th) and yellow (yel), known to be involved in wing development (awd) and the melanin pathway (th and yel) in other insects, were chosen to be evaluated using RNAi and CRISPR/Cas9 as tools. First, the genes were functionally characterized using RNAi knockdown technology. The expected phenotype of either deformed wing or lighter cuticle pigmentation/defects in cuticle sclerotization was observed for awd and th, respectively. However, for yel, no obvious phenotype was observed. Based on this, yel was selected as a target for the development of a CRISPR/Cas9 workflow to study gene knockout in E. heros. A total of 719 eggs were injected with the Cas9 nuclease (300 ng/µL) together with the sgRNA (300 ng/µL) targeting yel. A total of six insects successfully hatched from the injected eggs and one of the insects showed mutation in the target region, however, the phenotype was still not obvious. Overall, this study for the first time provides a useful CRISPR/Cas9 gene editing methodology to complement RNAi for functional genomic studies in one of the most important and economically relevant stink bug species.
Collapse
|
154
|
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Grynberg P, Silva MCM, Negrisoli AS, Grossi-de-Sa MF. Transcriptome Analysis and Knockdown of the Juvenile Hormone Esterase Gene Reveal Abnormal Feeding Behavior in the Sugarcane Giant Borer. Front Physiol 2020; 11:588450. [PMID: 33192604 PMCID: PMC7655874 DOI: 10.3389/fphys.2020.588450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The sugarcane giant borer (SGB), Telchin licus licus, is a pest that has strong economic relevance for sugarcane producers. Due to the endophytic behavior of the larva, current methods of management are inefficient. A promising biotechnological management option has been proposed based on RNA interference (RNAi), a process that uses molecules of double-stranded RNA (dsRNA) to specifically knock down essential genes and reduce insect survival. The selection of suitable target genes is often supported by omic sciences. Studies have shown that genes related to feeding adaptation processes are good candidates to be targeted by RNAi for pest management. Among those genes, esterases are highlighted because of their impact on insect development. In this study, the objective was to evaluate the transcriptome responses of the SGB’s gut in order to provide curated data of genes that could be used for pest management by RNAi in future studies. Further, we validated the function of an esterase-coding gene and its potential as a target for RNAi-based control. We sequenced the gut transcriptome of SGB larvae by Illumina HiSeq and evaluated its gene expression profiles in response to different diets (sugarcane stalk and artificial diet). We obtained differentially expressed genes (DEGs) involved in detoxification, digestion, and transport, which suggest a generalist mechanism of adaptation in SGB larvae. Among the DEGs, was identified and characterized a candidate juvenile hormone esterase gene (Tljhe). We knocked down the Tljhe gene by oral delivery of dsRNA molecules and evaluated gene expression in the gut. The survival and nutritional parameters of the larvae were measured along the developmental cycle of treated insects. We found that the gene Tljhe acts as a regulator of feeding behavior. The knockdown of Tljhe triggered a forced starvation state in late larval instars that significantly reduced the fitness of the larvae. However, the mechanism of action of this gene remains unclear, and the correlation between the expression of Tljhe and the levels of juvenile hormone (JH) metabolites in the hemolymph of the SGB must be assessed in future research.
Collapse
Affiliation(s)
- Daniel D Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Biotechnology Center, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Agronomy/Entomology, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | | | - Fernando C A Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | | | | | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil.,National Institute of Science and Technology (INCT) PlantStress Biotech, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Brazil
| |
Collapse
|
155
|
Gimenez S, Abdelgaffar H, Goff GL, Hilliou F, Blanco CA, Hänniger S, Bretaudeau A, Legeai F, Nègre N, Jurat-Fuentes JL, d'Alençon E, Nam K. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun Biol 2020; 3:664. [PMID: 33184418 PMCID: PMC7661717 DOI: 10.1038/s42003-020-01382-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation.
Collapse
Affiliation(s)
- Sylvie Gimenez
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 E J. Chapman Dr, Knoxville, TN, 37996, USA
| | - Gaelle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903, Sophia Antipolis, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903, Sophia Antipolis, France
| | - Carlos A Blanco
- United States Department of Agriculture, Animal and Plant Health Inspection Service, 4700 River Rd, Riverdale, 20737, MD, USA
| | - Sabine Hänniger
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745, Jena, Germany
| | - Anthony Bretaudeau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
- GenOuest Core Facility, Univ Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Univ Rennes, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
- GenOuest Core Facility, Univ Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
| | - Nicolas Nègre
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 E J. Chapman Dr, Knoxville, TN, 37996, USA
| | - Emmanuelle d'Alençon
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France.
| |
Collapse
|
156
|
Pan H, Yang X, Romeis J, Siegfried BD, Zhou X. Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles. PEST MANAGEMENT SCIENCE 2020; 76:3606-3614. [PMID: 32400940 DOI: 10.1002/ps.5894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Most recently, major federal regulatory agencies deregulated an in planta RNA interference (RNAi) trait against a devastating corn pest, the western corn rootworm Diabrotica virgifera virgifera, in the United States and Canada. The impact of double-stranded RNA (dsRNA) plant-incorporated protectants (PIPs) and dietary RNAi to non-target organisms, however, still needs further investigation. In this study, we assessed the potential risks of a Diabrotica virgifera virgifera active dsRNA to a group of predatory biological control agents, including Hippodamia convergens, Harmonia axyridis, Coleomegilla maculata, and Coccinella septempunctata. The overarching hypothesis is that the insecticidal dsRNA targeting Diabrotica virgifera virgifera has no or negligible adverse effect on lady beetles. RESULTS A 400-bp fragment with the highest sequence similarity between target and tested species was selected as the template for dsRNA synthesis. For the dietary RNAi toxicity assay, newly hatched first instar larvae were administered with v-ATPase A dsRNAs designed from Diabrotica virgifera virgifera and the four lady beetles, respectively. A dsRNA from β-glucuronidase (GUS), a plant gene, and H2 O were served as the negative controls. The endpoint included both sub-organismal (gene expression), and organismal (survival rate, development time, pupa and adult weight) measurements. The results from dietary RNAi toxicity assay demonstrate significantly impacts of Diabrotica virgifera virgifera-active dsRNAs on lady beetles under the worst-case scenario at both transcriptional and phenotypic level. Interestingly, substantial differences among the four lady beetle species were observed toward the ingested exogenous dsRNAs. CONCLUSION Such differential response to dietary RNAi may shed light on the mechanisms underlying the mode-of-action of RNAi-based biopesticides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Yang
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| | - Blair D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
157
|
Gao L, Wang Y, Fan Y, Abbas M, Ma E, Cooper AMW, Silver K, Zhu KY, Zhang J. Multiple Argonaute family genes contribute to the siRNA-mediated RNAi pathway in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104700. [PMID: 32980067 DOI: 10.1016/j.pestbp.2020.104700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Argonautes (Ago) are important core proteins in RNA interference (RNAi) pathways of eukaryotic cells. Generally, it is thought that Ago1, Ago2 and Ago3 are involved in the miRNA (microRNA), siRNA (small interfering RNA) and piRNA (Piwi-interacting RNA)-mediated RNAi pathways, respectively. As a main component of the RNA-induced silencing complex (RISC), Ago2 plays an indispensable role in using siRNA to recognize and cut target messenger RNAs resulting in suppression of transcript levels, but the contributions of Ago1 and Ago3 to the siRNA-mediated RNAi pathway remain to be explored in many insect species. In this study, we investigated the contributions of four Ago genes (named LmAgo1, LmAgo2a and LmAgo2b and LmAgo3) to RNAi efficiency in Locusta migratoria by using both in vivo and in vitro experiments. Our results showed that suppression of each of the Ago genes significantly impaired RNAi efficiency when targeting Lmβ-tubulin transcripts, resulting in recovery of 48, 43.3, 61.4 or 26% of Lmβ-tubulin transcripts following RNAi-mediated suppression of LmAgo1, LmAgo2a, LmAgo2b, and LmAgo3, respectively. Furthermore, overexpression of LmAgo1, LmAgo2a, LmAgo2b, or LmAgo3 in a PAc5.1-V5/HisB vector and co-transfection with psicheck2 fluorescence vector in S2 cells reduced luciferase fluorescence by 38.3, 58.9, 53.3 or 55.6%, respectively. Taken together, our results showed that LmAgo1, LmAgo2a, LmAgo2b, and LmAgo3 each make significant contributions to RNAi efficiency in L. migratoria and suggest that the involvement of all four enzymes could be one of the major factors supporting robust RNAi responses observed in this species.
Collapse
Affiliation(s)
- Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
158
|
Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus (Hemiptera: Pseudococcidae). INSECTS 2020; 11:insects11110739. [PMID: 33126451 PMCID: PMC7692628 DOI: 10.3390/insects11110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Simple Summary RNA interference (RNAi) is a defense mechanism that protects insects from viruses by targeting and degrading RNA. This feature has been exploited to reduce the expression of endogenous RNA for determining functions of various genes and for killing insect pests by targeting genes that are vital for insect survival. When dsRNA matching perfectly to the target RNA is administered, the RNAi machinery dices the dsRNA into ~21 bp fragments (known as siRNAs) and one strand of siRNA is employed by the RNAi machinery to target and degrade the target RNA. In this study we used a cocktail of dsRNAs targeting grape mealybug’s aquaporin and sucrase genes to kill the insect. Aquaporins and sucrases are important genes enabling these insects to maintain water relations indispensable for survival and digest complex sugars in the diet of plant sap-feeding insects, including mealybugs. In our experiments, administration of dsRNA caused a reduction in expression of the target genes and an increase in insect mortality. These results provide support for the application of RNAi to control the grape mealybug. Abstract The grape mealybug Pseudococcus maritimus (Ehrhorn, 1900) (Hemiptera: Pseudococcidae) is a significant pest of grapevines (Vitis spp.) and a vector of disease-causing grape viruses, linked to its feeding on phloem sap. The management of this pest is constrained by the lack of naturally occurring resistance traits in Vitis. Here, we obtained proof of concept that RNA interference (RNAi) using double-stranded RNA (dsRNA) molecules against essential genes for phloem sap feeding can depress insect survival. The genes of interest code for an aquaporin (AQP) and a sucrase (SUC) that are required for osmoregulation in related phloem sap-feeding hemipteran insects (aphids and whiteflies). In parallel, we investigated the grape mealybug genes coding non-specific nucleases (NUC), which reduce RNAi efficacy by degrading administered dsRNA. Homologs of AQP and SUC with experimentally validated function in aphids, together with NUC, were identified in the published transcriptome of the citrus mealybug Planococcus citri by phylogenetic analysis, and sequences of the candidate genes were obtained for Ps. maritimus by PCR with degenerate primers. Using this first sequence information for Ps. maritimus, dsRNA was prepared and administered to the insects via an artificial diet. The treatment comprising dsRNA against AQP, SUC and NUC significantly increased insect mortality over three days, relative to dsRNA-free controls. The dsRNA constructs for AQP and NUC were predicted, from sequence analysis to have some activity against other mealybugs, but none of the three dsRNA constructs have predicted activity against aphids. This study provides the basis to develop in planta RNAi strategies against Ps. maritimus and other mealybug pests of grapevines.
Collapse
|
159
|
Shakeel M, Du J, Li SW, Zhou YJ, Sarwar N, Bukhari SAH. Characterization, Knockdown and Parental Effect of Hexokinase Gene of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) Revealed by RNA Interference. Genes (Basel) 2020; 11:genes11111258. [PMID: 33114530 PMCID: PMC7693289 DOI: 10.3390/genes11111258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Hexokinase (HK) is a key enzyme in chitin biosynthesis in insects and plays an important role in development and energy regulation. It also performs a crucial role in the synthesis of Glucose-6-phosphate and its putative functions are studied via injection of dsRNA corresponding to the hexokinase gene from Cnaphalocrocis medinalis (CmHK). This study was designed to analyze the characteristics and expression patterns of HK-related genes in various tissues of C. medinalis at different developmental stages. The CmHK ORF is a 1359 bp in length, encoding a protein of 452 amino acids, with homology and cluster analysis showing that CmHK shares an 85.11% sequence similarity with hexokinase from Ostrinia furnacalis.CmHK was highly expressed in the ovary and in the fifth instar larvae. Injection of dsCmHK significantly suppressed mRNA expression (73.6%) 120 h post-dsRNA injection as compared to a control group. The results demonstrated an increased incidence of larval and pupal mortality of 80% and 78%, respectively, with significant variation in the sex ratio between males (68.33%) and females (35%), overt larval deformities, and a reduction in average weight gain observed 120 h post-dsRNA injection. In addition, dsCmHK-injected C. medinalis showed a significant reduction in ovulation per female and larval hatching rate, along with increased larval and pupal mortality and variation in male and female emergence over three generations (G1, G2, and G3). Taken together, the outcomes of the study provide a foundation to study gene function and a new dimension to control C. medinalis by transgenic RNAi technology.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Juan Du
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Shang-Wei Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
- Correspondence: ; Tel.: +86-137-6506-6957
| | - Yuan-Jin Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Naeem Sarwar
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.S.); (S.A.H.B.)
| | | |
Collapse
|
160
|
Shelby EA, Moss JB, Andreason SA, Simmons AM, Moore AJ, Moore PJ. Debugging: Strategies and Considerations for Efficient RNAi-Mediated Control of the Whitefly Bemisia tabaci. INSECTS 2020; 11:E723. [PMID: 33105847 PMCID: PMC7690610 DOI: 10.3390/insects11110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
The whitefly Bemisia tabaci is a globally important pest that is difficult to control through insecticides, transgenic crops, and natural enemies. Post-transcriptional gene silencing through RNA interference (RNAi) has shown potential as a pest management strategy against B. tabaci. While genomic data and other resources are available to create highly effective customizable pest management strategies with RNAi, current applications do not capitalize on species-specific biology. This lack of specificity has the potential to have substantial ecological impacts. Here, we discuss both short- and long-term considerations for sustainable RNAi pest management strategies for B. tabaci, focusing on the need for species specificity incorporating both life history and population genetic considerations. We provide a conceptual framework for selecting sublethal target genes based on their involvement in physiological pathways, which has the greatest potential to ameliorate unintended negative consequences. We suggest that these considerations allow an integrated pest management approach, with fewer negative ecological impacts and reduced likelihood of the evolution of resistant populations.
Collapse
Affiliation(s)
- Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| |
Collapse
|
161
|
Cooper AMW, Yu Z, Biondi M, Song H, Silver K, Zhang J, Zhu KY. Stability of double-stranded RNA in gut contents and hemolymph of Ostrinia nubilalis larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104672. [PMID: 32828377 DOI: 10.1016/j.pestbp.2020.104672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a revolutionary technique for silencing gene expression, but the success of this technique is dependent upon the stability of double-stranded RNA (dsRNA) molecules. In many insects, especially lepidopteran species, RNAi efficiency is limited by high instability of dsRNA in the gut and/or hemolymph, preventing the development of RNAi-based strategies for many serious pests. Previous attempts to perform RNAi on Ostrinia nubilalis (ECB, Lepidoptera: Crambidae) indicate low RNAi efficiency with both dsRNA injection and feeding. To investigate the contribution of dsRNA instability to low RNAi efficiency in ECB, a serious of ex vivo incubation experiments were performed where dsRNA integrity was assessed following incubation in larval gut continents and hemolymph using gel electrophoresis or RT-qPCR. DsRNA was less stable in the gut contents from ECB than in gut contents from Diabrotica virgifera virgifera, a coleopteran exhibiting high RNAi efficiency. Furthermore, characterization of dsRNA stability in ECB gut contents and hemolymph revealed that dsRNA was rapidly degraded under physiologically relevant conditions as a result of enzymatic activity that was neither size- nor sequence-dependent. These findings suggest that instability of dsRNA in ECB tissues is a contributing factor to the poor efficiency of RNAi in this pest. This work advances our understanding of mechanisms impacting RNAi efficiency in ECB and related lepidopteran insects for which novel pest management strategies are needed, and may facilitate the development of strategies for enhancing dsRNA stability in ECB tissues.
Collapse
Affiliation(s)
- Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Marie Biondi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
162
|
Cooper AMW, Song H, Shi X, Yu Z, Lorenzen M, Silver K, Zhang J, Zhu KY. Molecular Characterizations of Double-Stranded RNA Degrading Nuclease Genes from Ostrinia nubilalis. INSECTS 2020; 11:insects11100652. [PMID: 32977554 PMCID: PMC7598268 DOI: 10.3390/insects11100652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary RNA interference is a gene suppression tool that uses double-stranded RNA to prevent specific genes from producing proteins. By targeting essential genes RNA interference can be developed for control of insect pests. Unfortunately, RNA interference is not equally effective for all insects. Previous investigation suggested that RNA is rapidly digested by unidentified components of body fluids in the European corn borer caterpillar. We characterized genes encoding proteins from European corn borer that are associated with RNA digestion in other insects. Our results suggest that two proteins (RNA interference efficiency-related nuclease and double-stranded RNA-degrading endonuclease 2) may be responsible for digesting RNAs in the European corn borer gut, whereas two other proteins (double-stranded RNA-degrading endonuclease 1 and double-stranded RNA-degrading endonuclease 4) may be responsible for digesting RNA in European corn borer body fluid. These findings suggest digestion of RNA in the European corn borer is likely due to the activity of these proteins. These findings provide information about the mechanism(s) influencing RNA stability in insects. The knowledge generated by this study will facilitate the development of strategies for enhancing RNA interference in insects. Abstract Variable RNA interference (RNAi) efficiencies limit RNAi-based pest management strategies for many pests. Previous efforts to understand mechanisms contributing to low RNAi efficiency indicate that double-stranded RNA (dsRNA) is degraded in the European corn borer (ECB), Ostrinia nubilalis, due to nuclease activity. To investigate the contribution of dsRNA-degrading endonucleases (dsRNases) and lepidopteran-specific RNAi efficiency-related nucleases (REases) to dsRNA instability and low RNAi efficiency in ECB, five complementary DNAs putatively encoding four dsRNases (OndsRNase1, 2, 3, and 4) and one REase (OnREase) were sequenced. Characterization of these transcripts revealed that substrate specificity might vary among the four dsRNases due to different amino acid combinations in the substrate-binding sites. Gene expression analysis indicated that OndsRNase2 and OnREase were highly expressed in the larval gut, and OndsRNase1 showed the highest expression in hemolymph, especially in older developmental stages. Transcript level analysis after dsRNA exposure revealed that expression of OnREase rapidly increased upon dsRNA ingestion or injection, whereas OndsRNase4 expression only increased after long-term ingestion of dsRNA. While the biological function of these nucleases remains to be verified, our results suggest that OnREase and OndsRNase2, and OndsRNase1 and OndsRNase4 may be responsible for degradation of dsRNAs in the ECB gut and hemolymph, respectively, thereby contributing to low RNAi efficiency.
Collapse
Affiliation(s)
- Anastasia M. W. Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
- Correspondence: (A.M.W.C.); (K.Y.Z.)
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xuekai Shi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA;
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (H.S.); (X.S.); (Z.Y.); (K.S.); (J.Z.)
- Correspondence: (A.M.W.C.); (K.Y.Z.)
| |
Collapse
|
163
|
Bally J, Fishilevich E, Doran RL, Lee K, de Campos SB, German MA, Narva KE, Waterhouse PM. Plin-amiR, a pre-microRNA-based technology for controlling herbivorous insect pests. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1925-1932. [PMID: 32012433 PMCID: PMC7415779 DOI: 10.1111/pbi.13352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H. armigera, field-evolved resistance has occurred in multiple species. To manage resistant populations, new protection strategies must be continuously developed. Trans-kingdom RNA interference (TK-RNAi) is a promising method for controlling herbivorous pests. TK-RNAi is based on delivering dsRNA or hairpin RNA containing essential insect gene sequences to the feeding insect. The ingested molecules are processed by the insect's RNAi machinery and guide it to silence the target genes. Recently, TK-RNAi delivery has been enhanced by expressing the ds- or hpRNAs in the chloroplast. This compartmentalizes the duplexed RNA away from the plant's RNAi machinery, ensuring that it is delivered in an unprocessed form to the insect. Here, we report another alternative approach for delivering precursor anti-insect RNA in plants. Insect pre-microRNA (pre-miR) transcripts were modified to contain artificial microRNAs (amiRs), targeting insect genes, and expressed in transgenic Nicotiana benthamiana plants. These modified pre-miRs remained largely unprocessed in the plants, and H. armigera feeding on leaves from these plants had increased mortality, developmental abnormalities and delayed growth rates. This shows that plant-expressed insect pre-amiRs (plin-amiRs) are a new strategy of protecting plants against herbivorous insects.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | - Elane Fishilevich
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Rachel L. Doran
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | - Karen Lee
- Centre for Tropical Crops and BiocommoditiesQUTBrisbaneQLDAustralia
| | | | - Marcelo A. German
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
| | - Kenneth E. Narva
- Agriculture Division of DowDuPont™Corteva Agriscience™IndianapolisINUSA
| | | |
Collapse
|
164
|
Jain RG, Robinson KE, Fletcher SJ, Mitter N. RNAi-Based Functional Genomics in Hemiptera. INSECTS 2020; 11:E557. [PMID: 32825516 PMCID: PMC7564473 DOI: 10.3390/insects11090557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a powerful approach for sequence-specific gene silencing, displaying tremendous potential for functional genomics studies in hemipteran insects. Exploiting RNAi allows the biological roles of critical genes to be defined and aids the development of RNAi-based biopesticides. In this review, we provide context to the rapidly expanding field of RNAi-based functional genomics studies in hemipteran insects. We highlight the most widely used RNAi delivery strategies, including microinjection, oral ingestion and topical application. Additionally, we discuss the key variables affecting RNAi efficacy in hemipteran insects, including insect life-stage, gene selection, the presence of nucleases, and the role of core RNAi machinery. In conclusion, we summarise the application of RNAi in functional genomics studies in Hemiptera, focusing on genes involved in reproduction, behaviour, metabolism, immunity and chemical resistance across 33 species belonging to 14 families.
Collapse
Affiliation(s)
| | - Karl E. Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia; (R.G.J.); (S.J.F.); (N.M.)
| | | | | |
Collapse
|
165
|
Gurusamy D, Mogilicherla K, Shukla JN, Palli SR. Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21678. [PMID: 32297364 DOI: 10.1002/arch.21678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda cells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells and Spodoptera frugiperda larvae treated with CFII conjugated 32 P-UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.
Collapse
Affiliation(s)
- Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | | | - Jayendra Nath Shukla
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| |
Collapse
|
166
|
Gurusamy D, Mogilicherla K, Palli SR. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21677. [PMID: 32291818 DOI: 10.1002/arch.21677] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi-dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi-dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32 P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.
Collapse
Affiliation(s)
| | | | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
167
|
You L, Zhang F, Huang S, Merchant A, Zhou X, Li Z. Over-expression of RNA interference (RNAi) core machinery improves susceptibility to RNAi in silkworm larvae. INSECT MOLECULAR BIOLOGY 2020; 29:353-362. [PMID: 32086963 DOI: 10.1111/imb.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/18/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi), one of the strategies that organisms use to defend against invading viruses, is an important tool for functional genomic analysis. In insects, the efficacy of RNAi varies amongst taxa. Lepidopteran insects are, in large part, recalcitrant to RNAi. The overall goal of this study is to overcome such insensitivity in lepidopterans to RNAi. We hypothesize that over-expression of core RNAi machinery enzymes can improve RNAi efficacy in traditionally recalcitrant species. A transgenic Bombyx mori strain, Baculovirus Immediate-Early Gene, ie1, promoter driven expression of silkworm Dicer2 coding sequence (IE1-BmDicer2), which over-expresses BmDicer2, was generated by piggyBac transposon-mediated transgenesis. Two indexes, the ratio of animals that showed a silencing phenotype and the duration of silencing, were used to evaluate silencing efficiency. Significant knockdown of target gene expression was observed at 48 h postinjection at both the transcriptional and translational levels. Furthermore, we coexpressed B. mori Argonaute 2 BmAgo2)and BmDicer 2 and found that 22% of the animals (n = 18) showed an obvious silencing effect even at 72 h, suggesting that coexpression of these two RNAi core machinery enzymes further increased the susceptibility of B. mori to injected double-stranded RNAs. This study offers a new strategy for functional genomics research in RNAi-refractory insect taxa in general and for lepidopterans in particular.
Collapse
Affiliation(s)
- L You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - F Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - S Huang
- Agricultrual and Medical Biotechnology, University of Kentucky, Lexington, KY, USA
| | - A Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - X Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Z Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
168
|
Gurusamy D, Howell JL, Chereddy SCRR, Koo J, Palli SR. Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21692. [PMID: 32441400 DOI: 10.1002/arch.21692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The southern green stink bug (SGSB, Nezara viridula) is an emerging polyphagous pest in many regions of the world. RNA interference (RNAi) is a valuable method for understanding gene function and holds great potential for pest management. However, RNAi efficiency is variable among insects and the differences in transport of double-stranded RNA (dsRNA) are one of the major factors that contribute to this variability. In this study, Cy3 labeled dsRNA was used to track the transport of dsRNA in SGSB tissues. Cy3_dsRNA was detected in the hemocytes, fat body (FB), epidermis, and midgut tissues at 24-72 hr after injection. Orally delivered Cy3_dsRNA or Cypher-5E labeled dsRNA was mostly detected in the midgut and a few signals were detected in parts of the FB and epidermis. Both injected and fed Cy3_dsRNA showed stronger signals in SGSB tissues when compared to Cy3_siRNA (small interfering RNA) or Cy3_shRNA (short hairpin RNA). dsRNA targeting the gene for a vacuolar-sorting protein, SNF7, induced higher knockdown of the target gene and greater SGSB mortality compared to siRNA or shRNA targeting this gene. 32 P-labeled dsRNA injected into SGSB was processed into siRNA, but fed 32 P-labeled dsRNA was not efficiently processed into siRNA. These data suggest that transport of orally delivered dsRNA across the midgut epithelium is not efficient in SGSB which may contribute to variable RNAi efficiency. Targeting genes expressed in the midgut rather than other tissues and using dsRNA instead of siRNA or shRNA would be more effective for RNAi-mediated control of this pest.
Collapse
Affiliation(s)
- Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky
- Department of Botany, Kongunadu Arts and Science College, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeffrey L Howell
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | | | - Jinmo Koo
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
169
|
Yoon JS, Tian HG, McMullen JG, Chung SH, Douglas AE. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103408. [PMID: 32446747 DOI: 10.1016/j.ibmb.2020.103408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) plays a key role in insect defense against viruses and transposable elements, and it is being applied as an experimental tool and for insect pest control. However, RNAi efficiency is highly variable for some insects, notably the pea aphid Acyrthosiphon pisum. In this study, we used natural variation in RNAi susceptibility of pea aphids to identify genes that influence RNAi efficiency. Susceptibility to orally-delivered dsRNA against the gut aquaporin gene AQP1 (ds-AQP1) varied widely across a panel of 83 pea aphid genotypes, from zero to total mortality. Genome-wide association between aphid performance on ds-AQP1 supplemented diet and aphid genetic variants yielded 103 significantly associated single nucleotide polymorphisms (SNPs), including variants in 55 genes, at the 10-4 probability cut-off. When ds-AQP1 was co-administered with dsRNA against six candidate genes, aphid mortality was reduced for three (50%) genes: the orthologs of the Drosophila genes trachealess (CG42865), headcase (CG15532) and a gene coding a peritrophin-A domain (CG8192), indicating that these genes function to promote RNAi efficiency against AQP1 in the pea aphid. Aphid susceptibility (quantified as mortality) to ds-AQP1 was correlated with RNAi against a further gene, snakeskin with essential gut function unrelated to AQP1, for some but not all aphid genotypes tested, suggesting that the determinants of RNAi efficiency may be partly gene-specific. This study demonstrates high levels of natural variation in susceptibility to RNAi and demonstrates the value of harnessing this variation to identify genes influencing RNAi efficiency.
Collapse
Affiliation(s)
- June-Sun Yoon
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Hong-Gang Tian
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY14853, USA; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853, USA.
| |
Collapse
|
170
|
Zou MM, Wang Q, Chu LN, Vasseur L, Zhai YL, Qin YD, He WY, Yang G, Zhou YY, Peng L, You MS. CRISPR/Cas9-induced vitellogenin knockout lead to incomplete embryonic development in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103406. [PMID: 32485215 DOI: 10.1016/j.ibmb.2020.103406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Vitellogenin (Vg) is important for insect egg maturation and embryo development. In the present study, we characterized the molecular structure and expression profile of Vg gene, and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops, using CRISPR/Cas9 system. The P. xylostella Vg (PxVg) included all conserved domains and motifs that were commonly found in most insect Vgs except for the polyserine tract. PxVg gene was highly expressed in female pupae and adults. PxVg protein was detected in eggs and female adults. PxVg was mainly expressed in the fat body and its protein was detected in most tissues, except in the midgut. CRISPR/Cas9-induced PxVg knockout successfully constructed a homozygous mutant strain with a 5-base pair nucleotide deletion. No PxVg protein was found in the mutant individuals and in their ovaries. There were no significant differences between wild (WT) and mutant (Mut-5) types of P. xylostella in terms of ovariole length and the number of fully developed oocytes in newly emerged females. No significant difference was observed in the number of eggs laid within two days, but there was a lower egg hatchability (84% for WT vs. 47% for Mut-5). This is the first study presenting the functions of Vg in ovary development, egg maturation, oviposition and embryonic development of P. xylostella. Our results suggest that the reproductive functions of Vg may be species-specific in insects. It is possible that Vg may not be the major egg yolk protein precursor in P. xylostella. Other "functional Vgs" closely involved in the yolk formation and oogenesis would need to be further explored in P. xylostella.
Collapse
Affiliation(s)
- Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
171
|
Howell JL, Mogilicherla K, Gurusamy D, Palli SR. Development of RNAi methods to control the harlequin bug, Murgantia histrionica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21690. [PMID: 32394499 DOI: 10.1002/arch.21690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The harlequin bug (HB), Murgantia histrionica, is a major pest of cabbage family plants throughout its range in the United States. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism that is showing promise as a biopesticide due to the ability to target species-specific genes necessary for growth and/or survival with synthetic double-stranded RNA (dsRNA). In the present study, dsRNA stability assays revealed that nucleases present in the saliva of harlequin bugs did not rapidly degrade dsRNA. We tracked the movement and localization of radioactively labeled dsRNA in both mustard plant seedlings and harlequin bug nymphs that fed on treated host plants. Movement of 32 P-labeled-dsRNA from soil to plant and plant to insect was detected. The efficacy of RNAi in inducing mortality in harlequin bug adults and nymphs injected or fed with dsRNA targeting inhibitor of apoptosis (IAP), ATPase N2B (ATPase), serine/threonine-protein phosphatase PP1-β catalytic subunit (PP1), signal recognition particle 54 kDa protein (SRP), and G protein-coupled receptor 161-like (GPCR) genes was evaluated. Injection of dsRNA targeting candidate genes into adults caused between 40% and 75% mortality and induced significant knockdown of target gene expression. Feeding dsRNA targeting the IAP gene to nymphs by plant-mediated and droplet feeding methods induced knockdown of the target gene and caused 40-55% mortality. These findings suggest that RNAi may be a viable approach for managing this pest.
Collapse
Affiliation(s)
- Jeffrey L Howell
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | | | | | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
172
|
Peng CL, Mazo-Vargas A, Brack BJ, Reed RD. Multiple roles forlaccase2 in butterfly wing pigmentation, scale development, and cuticle tanning. Evol Dev 2020; 22:336-341. [PMID: 32720437 DOI: 10.1111/ede.12338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lepidopteran wing scales play important roles in a number of functions including color patterning and thermoregulation. Despite the importance of wing scales, however, we still have a limited understanding of the genetic mechanisms that underlie scale patterning, development, and coloration. Here, we explore the function of the phenoloxidase-encoding gene laccase2 in wing and scale development in the nymphalid butterfly Vanessa cardui. Somatic deletion mosaics of laccase2 generated by CRISPR/Cas9 genome editing presented several distinct mutant phenotypes. Consistent with the work in other nonlepidopteran insect groups, we observed reductions in melanin pigmentation and defects in cuticle formation. We were also surprised, however, to see distinct effects on scale development including complete loss of wing scales. This study highlights laccase2 as a gene that plays multiple roles in wing and scale development and provides new insight into the evolution of lepidopteran wing coloration.
Collapse
Affiliation(s)
- Ceili L Peng
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Benjamin J Brack
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| |
Collapse
|
173
|
Clathrin mediated endocytosis is involved in the uptake of exogenous double-stranded RNA in the white mold phytopathogen Sclerotinia sclerotiorum. Sci Rep 2020; 10:12773. [PMID: 32728195 PMCID: PMC7391711 DOI: 10.1038/s41598-020-69771-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) technologies have recently been developed to control a growing number of agronomically significant fungal phytopathogens, including the white mold pathogen, Sclerotinia sclerotiorum. Exposure of this fungus to exogenous double-stranded RNA (dsRNA) results in potent RNAi-mediated knockdown of target genes' transcripts, but it is unclear how the dsRNA can enter the fungal cells. In nematodes, specialized dsRNA transport proteins such as SID-1 facilitate dsRNA uptake, but for many other eukaryotes in which the dsRNA uptake mechanisms have been examined, endocytosis appears to mediate the uptake process. In this study, using live cell imaging, transgenic fungal cultures and endocytic inhibitors, we determined that the uptake mechanism in S. sclerotiorum occurs through clathrin-mediated endocytosis. RNAi-mediated knockdown of several clathrin-mediated endocytic genes' transcripts confirmed the involvement of this cellular uptake process in facilitating RNAi in this fungus. Understanding the mode of dsRNA entry into the fungus will prove useful in designing and optimizing future dsRNA-based control methods and in anticipating possible mechanisms by which phytopathogens may develop resistance to this novel category of fungicides.
Collapse
|
174
|
Edwards CH, Christie CR, Masotti A, Celluzzi A, Caporali A, Campbell EM. Dendrimer-coated carbon nanotubes deliver dsRNA and increase the efficacy of gene knockdown in the red flour beetle Tribolium castaneum. Sci Rep 2020; 10:12422. [PMID: 32709999 PMCID: PMC7381663 DOI: 10.1038/s41598-020-69068-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, the use of dendrimer-coated carbon nanotubes (CNTs) as a delivery vehicle for dsRNA was assessed in Tribolium castaneum. Exposure to low dosages of polyamidoamine dendrimer carbon nanotubes (PAMAM-CNTs) did not affect T. castaneum larval mortality. Expression of key apoptotic factors, Dronc (Tc12580), Dredd (Tcn-like, Tc014026) and Buffy, (Tcinhib apop1), which can act as toxicity indicators, were not altered in T. castaneum larvae following injection of PAMAM-CNTs. The level of knockdown of two target genes, α-tubulin and mitochondrial RNA polymerase (mtpol), were significantly increased when larvae were injected with double-stranded RNA bound to CNTs (PAMAM-CNT-dsRNA), compared to those injected with target dsRNA alone. PAMAM-CNTs were visualised in cellular vacuoles and in the cell nucleus. Increase occurrence of a blistered wing phenotype was found in a subset of PAMAM-CNT-dsRNAαtub injected larvae, relative to the level seen in larvae injected with naked dsRNAαtub alone. These results suggest that the use of functionalised CNTs for dsRNA delivery could increase the efficacy of RNA interference in insect pest species.
Collapse
Affiliation(s)
| | - Craig R Christie
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ewan M Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, 23 St. Machar Drive, Aberdeen, AB24 3RY, UK.
| |
Collapse
|
175
|
Leelesh RS, Rieske LK. Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer. INSECTS 2020; 11:E440. [PMID: 32674291 PMCID: PMC7411747 DOI: 10.3390/insects11070440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/27/2022]
Abstract
RNA interference (RNAi) is a naturally occurring process inhibiting gene expression, and recent advances in our understanding of the mechanism have allowed its development as a tool against insect pests. A major challenge for deployment in the field is the development of convenient and efficient methods for production of double stranded RNA (dsRNA). We assessed the potential for deploying bacterially produced dsRNA as a bio-pesticide against an invasive forest pest, the emerald ash borer (EAB). EAB feeds on the cambial tissue of ash trees (Fraxinus spp.), causing rapid death. EAB has killed millions of trees in North America since its discovery in 2002, prompting the need for innovative management strategies. In our study, bacterial expression and synthesis of dsRNA were performed with E. coli strain HT115 using the L4440 expression vector. EAB-specific dsRNAs (shi and hsp) over-expressed in E. coli were toxic to neonate EAB after oral administration, successfully triggering gene silencing and subsequent mortality; however, a non-specific dsRNA control was not included. Our results suggest that ingestion of transformed E. coli expressing dsRNAs can induce an RNAi response in EAB. To our knowledge, this is the first example of an effective RNAi response induced by feeding dsRNA-expressing bacteria in a forest pest.
Collapse
Affiliation(s)
- Ramya Shanivarsanthe Leelesh
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
- School of Life Sciences, University of Bedfordshire, Luton LU13JU, UK
| | - Lynne K. Rieske
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
| |
Collapse
|
176
|
Li M, Takahashi D, Kanost MR. Peptides based on the reactive center loop of Manduca sexta serpin-3 block its protease inhibitory function. Sci Rep 2020; 10:11497. [PMID: 32661389 PMCID: PMC7359039 DOI: 10.1038/s41598-020-68316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/23/2020] [Indexed: 11/11/2022] Open
Abstract
One innate immune response in insects is the proteolytic activation of hemolymph prophenoloxidase (proPO), regulated by protease inhibitors called serpins. In the inhibition reaction of serpins, a protease cleaves a peptide bond in a solvent-exposed reactive center loop (RCL) of the serpin, and the serpin undergoes a conformational change, incorporating the amino-terminal segment of the RCL into serpin β-sheet A as a new strand. This results in an irreversible inhibitory complex of the serpin with the protease. We synthesized four peptides with sequences from the hinge region in the RCL of Manduca sexta serpin-3 and found they were able to block serpin-3 inhibitory activity, resulting in suppression of inhibitory protease-serpin complex formation. An RCL-derived peptide with the sequence Ser-Val-Ala-Phe-Ser (SVAFS) displayed robust blocking activity against serpin-3. Addition of acetyl-SVAFS-amide to hemolymph led to unregulated proPO activation. Serpin-3 associated with Ac-SVAFS-COO− had an altered circular dichroism spectrum and enhanced thermal resistance to change in secondary structure, indicating that these two molecules formed a binary complex, most likely by insertion of the peptide into β-sheet A. The interference of RCL-derived peptides with serpin activity may lead to new possibilities of “silencing” arthropod serpins with unknown functions for investigation of their physiological roles.
Collapse
Affiliation(s)
- Miao Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
177
|
Ismail S, Tulsi Naik KS, Rajam MV, Mishra RK. Targeting genes involved in nucleopolyhedrovirus DNA multiplication through RNA interference technology to induce resistance against the virus in silkworms. Mol Biol Rep 2020; 47:5333-5342. [PMID: 32617957 DOI: 10.1007/s11033-020-05615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has become an efficient tool for inducing resistance to viruses in many organisms. In this study, Escherichia coli cells were engineered to produce stable double-stranded RNA (dsRNA) against the nucleopolyhedrosis virus to elicit RNAi in silkworms. The immediate-early-1 (ie-1) and late expression factor-1 (lef-1) genes of the Bombyx mori nucleopolyhedrovirus (BmNPV) involved in viral DNA multiplication were cloned in the plasmid L4440 under the influence of the double T7 promoter and transformed to E. coli HT115 DE3 host cells. On induction with isopropyl β-D-thiogalactopyranoside, these cells efficiently produced dsRNA of the cloned genes. The B. mori larvae were fed with 50 µL of E. coli cells expressing ie-1 and lef-1 dsRNAs (each approximately 25 µg) to elicit RNAi. The semi-quantitative and quantitative PCR analysis of RNA from the midgut of the dsRNA-fed larvae revealed a significant reduction in the expression of the target genes involved in BmNPV multiplication, which restricted virus copy numbers to 100 compared with 1.9 × 105 in the infected controls. Furthermore, the dsRNA-fed infected larvae showed > 50% increased survivability compared with the infected controls. The study revealed the successful use of bacteria as vectors for efficiently delivering dsRNA to elicit RNAi against BmNPV in silkworms.
Collapse
Affiliation(s)
- Sahar Ismail
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| | - K S Tulsi Naik
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India.
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi, Benito Juarez Marg, South Campus, New Delhi, 110021, India
| | - Rakesh Kumar Mishra
- Seri Biotech Research Laboratory, Central Silk Board, Kodathi, Bengaluru, Karnataka, 560035, India
| |
Collapse
|
178
|
Jin M, Cheng Y, Guo X, Li M, Chakrabarty S, Liu K, Wu K, Xiao Y. Down-regulation of lysosomal protein ABCB6 increases gossypol susceptibility in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103387. [PMID: 32360956 DOI: 10.1016/j.ibmb.2020.103387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is the major insect herbivore of cotton plants. As its larvae feed and grow on cotton, H. armigera can likely tolerate gossypol, the main defense metabolite produced by cotton plants, through detoxification and sequestration mechanisms. Recent reports have shown that various P450 monooxygenases and UDP-glycosyltransferases in H. armigera are involved in gossypol detoxification, while the roles of ABC transporters, another gene family widely associated with metabolite detoxification, remain to be elucidated. Here, we show that ingestion of gossypol-infused artificial diet and cotton leaves significantly induced the expression of HaABCB6 in H. armigera larvae. Knockdown and knockout of HaABCB6 increased sensitivity of H. armigera larvae to gossypol. Moreover, HaABCB6-GFP fusion protein was localized on lysosomes in Hi5 cells and its overexpression significantly enhanced gossypol tolerance in vitro. These experimental results strongly support that HaABCB6 plays an important role in gossypol detoxification by H. armigera.
Collapse
Affiliation(s)
- Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Cheng
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xueqin Guo
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Meizhi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
179
|
Elhaj Baddar Z, Gurusamy D, Laisney J, Tripathi P, Palli SR, Unrine JM. Polymer-Coated Hydroxyapatite Nanocarrier for Double-Stranded RNA Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6811-6818. [PMID: 32491848 DOI: 10.1021/acs.jafc.0c02182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional synthetic insecticides have limited success due to insect resistance and negative effects on off-target biota and the environment. Although RNA interference (RNAi) is a tool that is becoming more widely utilized in pest control products, naked dsRNA has limited success in most taxa. Nanocarriers have shown promising results in enhancing the efficacy of this tool. In this study, we used a layer-by-layer electrostatic assembly where we synthesized poly(acrylic acid) (PAA)-coated hydroxyapatite (HA) nanoparticles (PAA-HA NPs) as inorganic nanocarriers, which were then coated with a layer of a cationic poly(amino acid), 10 kDa poly-l-arginine (PLR10), to allow for binding of a layer of negatively charged dsRNA. Binding of PLR10-PAA-HA NPs to dsRNA was found to increase as the mass ratio of NPs to dsRNA increased. In vitro studies with transgenic SF9 cells (from Spodoptera frugiperda) expressing the firefly luciferase gene showed a significant gene silencing (35% decrease) at a 5:1 NP-to-dsRNA ratio, while naked dsRNA was ineffective at gene silencing. There was a significant concentration-response relationship in knockdown; however, cytotoxicity was observed at higher concentrations. Confocal microscopy studies showed that dsRNA from PLR10-PAA-HA NPs was not localized within endosomes, while naked dsRNA appeared to be entrapped within the endosomes. Overall, polymer-functionalized HA nanocarriers enabled dsRNA to elicit gene knockdown in cells, whereas naked dsRNA was not effective in causing gene knockdown.
Collapse
Affiliation(s)
- Zeinah Elhaj Baddar
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jérôme Laisney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Priyanka Tripathi
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| |
Collapse
|
180
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
181
|
Wang J, Zuo Y, Li L, Wang H, Liu S, Yang Y, Wu Y. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. INSECT SCIENCE 2020; 27:440-448. [PMID: 30767423 PMCID: PMC7277041 DOI: 10.1111/1744-7917.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 05/31/2023]
Abstract
Bacillus thuringiensis (Bt) insecticidal toxins have been globally utilized for control of agricultural insects through spraying or transgenic crops. Binding of Bt toxins to special receptors on midgut epithelial cells of target insects is a key step in the mode of action. Previous studies suggested aminopeptidase N1 (APN1) as a receptor or putative receptor in several lepidopteran insects including Helicoverpa armigera through evidence from RNA interefence-based gene silencing approaches. In the current study we tested the role of APNs in the mode of action of Bt toxins using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene knockout. Three APN genes (HaAPN1, HaAPN2 and HaAPN5) were individually knocked out in a susceptible strain (SCD) of H. armigera to establish three homozygous knockout strains. Qualitative in vitro binding studies indicated binding of Cry1Ac or Cry2Ab to midgut brush border membrane vesicles was not obviously affected by APN knockout. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ya‐Yun Zuo
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ling‐Li Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Hui Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Shao‐Yan Liu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yi‐Hua Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yi‐Dong Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
182
|
Guo JY, Wang YS, Chen T, Jiang XX, Wu P, Geng T, Pan ZH, Shang MK, Hou CX, Gao K, Guo XJ. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. INSECT SCIENCE 2020; 27:449-462. [PMID: 30869181 DOI: 10.1111/1744-7917.12671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus-encoded microRNAs (miRNAs) have been proven to play important roles in host-pathogen interactions. In this study we identified a BmCPV-derived miRNA-like 21 nt small RNA, BmCPV-miR-1, from the small RNA deep sequencing of BmCPV-infected silkworm larvae by stem-loop quantitative real-time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV-miR-1 at the 5' untranslated region. It was found that the expression of BmCPV-miR-1 and its target gene BmIAP were both up-regulated in BmCPV-infected larvae. At the same time, it was confirmed that BmCPV-miR-1 could up-regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV-miR-1 mimics could up-regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV-infected larvae, BmCPV-miR-1 mimics could be further up-regulated and inhibitors could lower the virus-mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV-miR-1 mimics could up-regulate and inhibitors down-regulate their replication in the infected silkworm. These results implied that BmCPV-miR-1 could inhibit cell apoptosis in the infected silkworm through up-regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.
Collapse
Affiliation(s)
- Jian-Yong Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yong-Sheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tian Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Xu Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikoou, China
| | - Zhong-Hua Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Meng-Ke Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Cheng-Xiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xi-Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
183
|
Giesbrecht D, Heschuk D, Wiens I, Boguski D, LaChance P, Whyard S. RNA Interference Is Enhanced by Knockdown of double-stranded RNases in the Yellow Fever Mosquito Aedes Aegypti. INSECTS 2020; 11:insects11060327. [PMID: 32471283 PMCID: PMC7349537 DOI: 10.3390/insects11060327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) techniques are being developed for a range of pest insect control technologies, including the sterile insect technique (SIT) and double-stranded RNA (dsRNA)-based insecticides. In SIT applications, where >99% of the released males should be sterile to meet industry standards, the efficiency of RNAi will need to be improved for many insect species if this technology is to be adopted. Endogenous dsRNases can impede dsRNA delivery in some insects, and, here, we investigated whether dsRNases in the midgut could limit RNAi efficacy in the mosquito Aedes aegypti. Ten putative dsRNases were identified in the Ae. aegypti genome, with two highly expressed in the midguts of larvae. Using an ex vivo assay, we observed that dsRNA was rapidly degraded within the mosquito larva’s gut. Double-stranded RNA targeting these two dsRNases, when fed to the larvae, effectively reduced gut dsRNase activity. When these dsRNase-specific dsRNAs were co-delivered with dsRNA targeting a cyan fluorescent protein (CFP) reporter gene, greater knockdown of CFP fluorescence was observed. These results suggest that inhibiting dsRNase activity could enable the implementation of RNAi-based mosquito control methods.
Collapse
Affiliation(s)
- David Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.G.); (D.H.); (I.W.); (P.L.)
| | - Daniel Heschuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.G.); (D.H.); (I.W.); (P.L.)
| | - Ian Wiens
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.G.); (D.H.); (I.W.); (P.L.)
| | - David Boguski
- Department of Fisheries and Oceans, Winnipeg, MB R3T 2N2, Canada;
| | - Parker LaChance
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.G.); (D.H.); (I.W.); (P.L.)
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.G.); (D.H.); (I.W.); (P.L.)
- Correspondence: ; Tel.: +1-204-474-9418
| |
Collapse
|
184
|
Wang K, Peng Y, Chen J, Peng Y, Wang X, Shen Z, Han Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104467. [PMID: 32359547 DOI: 10.1016/j.pestbp.2019.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has proven to be a very promising prospect for insect pest control. However, low RNAi efficacy limits further development of this biotechnology for use on lepidopteran insects, including the rice striped stem borer (SSB) (Chilo suppressalis), one of the major destructive rice pests. In this work, the application of various nanoparticles (NPs) by which double-stranded RNA (dsRNA) could be encapsulated was evaluated as an alternative delivery strategy to potentially increase the bioactivity of dsRNA. Three NPs, chitosan, carbon quantum dot (CQD), and lipofectamine2000, complexed with dsRNA (to target the glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH)) were tested to examine their use in controlling SSB. Relative mRNA expressions were quantified using qPCR to evaluate knockdown efficiency of NP-dsRNA treated larvae, and the correlated dsRNA-mediated SSB larval mortality was tested. Thereafter, the content dynamics of hemolymph dsRNA after ingesting different NP-dsRNA were monitored in vivo; the hemolymph dsRNA content was in ratios of 5.67, 9.43, and 1 with chitosan, CQD, and lipofectamine2000 induced samples, respectively. The results demonstrated that all three tested NPs led to efficient feeding delivery by improving both dsRNA stability and cellular uptake equally. Furthermore, there was a strong correlation (r= 0.9854) between the hemolymph dsRNA contents and the average RNAi depletions in the non-gut tissues of SSB. Overall, our results strongly suggest that due to its strong endosomal escaping ability, CQD was the most efficient carrier for inducing systemic RNAi, and thereby causing effective gene silencing and mortality in SSB.
Collapse
Affiliation(s)
- Kangxu Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, China.
| | - Yingchuan Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Jiasheng Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yue Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xuesong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zihan Shen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
185
|
Fu S, Liu Z, Chen J, Sun G, Jiang Y, Li M, Xiong L, Chen S, Zhou Y, Asad M, Yang G. Silencing arginine kinase/integrin β 1 subunit by transgenic plant expressing dsRNA inhibits the development and survival of Plutella xylostella. PEST MANAGEMENT SCIENCE 2020; 76:1761-1771. [PMID: 31785188 DOI: 10.1002/ps.5701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plutella xylostella is a devastating agricultural insect pest of cruciferous plants, including crops. Plant-mediated RNA interference (RNAi) is currently being developed for plant protection. In this study, we investigated the response of P. xylostella exposed to transgenic Arabidopsis thaliana plants that expressed double-stranded RNA (dsRNA) targeting P. xylostella genes of arginine kinase (PxAK) and integrin β1 subunit (Pxβ). RESULTS Transgenic plants producing dsRNAs of the 384-bp fragment of PxAK (dsAK plants), the 497-bp fragment of Pxβ (dsβ plants), and the 881 bp of the combination of both genes (dsAK-β plants) were generated and verified. Insect bioassay with these transgenic plants showed that the development of P. xylostella was affected, causing longer developmental time, and lower pupal weight and pupation rate. P. xylostella mortality rates were 25.0% when exposed to dsAK plants, 22.5% with dsβ plants, and 30.0% with dsAK-β plants, which were all higher than 7.5% for the wild-type plant. PxAK and Pxβ in P. xylostella were suppressed by 26.6-79.7% at the transcription level by the transgenic plants. CONCLUSION These results suggest that plant-mediated RNAi targeting single gene or both PxAK and Pxβ may have the potential to control P. xylostella. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Zhaoxia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jinzhi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Gengxiao Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Yingxia Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Miaowen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Lei Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Shaoping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Yuqing Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
186
|
Rodrigues TB, Petrick JS. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. FRONTIERS IN PLANT SCIENCE 2020; 11:407. [PMID: 32391029 PMCID: PMC7191066 DOI: 10.3389/fpls.2020.00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 05/13/2023]
Abstract
The potential of double-stranded RNAs (dsRNAs) for use as topical biopesticides in agriculture was recently discussed during an OECD (Organisation for Economic Co-operation and Development) Conference on RNA interference (RNAi)-based pesticides. Several topics were presented and these covered different aspects of RNAi technology, its application, and its potential effects on target and non-target organisms (including both mammals and non-mammals). This review presents information relating to RNAi mechanisms in vertebrates, the history of safe RNA consumption, the biological barriers that contribute to the safety of its consumption, and effects related to humans and other vertebrates as discussed during the conference. We also review literature related to vertebrates exposed to RNA molecules and further consider human health safety assessments of RNAi-based biopesticides. This includes possible routes of exposure other than the ingestion of potential residual material in food and water (such as dermal and inhalation exposures during application in the field), the implications of different types of formulations and RNA structures, and the possibility of non-specific effects such as the activation of the innate immune system or saturation of the RNAi machinery.
Collapse
|
187
|
Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. FRONTIERS IN PLANT SCIENCE 2020; 11:451. [PMID: 32373146 PMCID: PMC7187958 DOI: 10.3389/fpls.2020.00451] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control.
Collapse
Affiliation(s)
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ana M. Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
188
|
Vélez AM, Fishilevich E, Rangasamy M, Khajuria C, McCaskill DG, Pereira AE, Gandra P, Frey ML, Worden SE, Whitlock SL, Lo W, Schnelle KD, Lutz JR, Narva KE, Siegfried BD. Control of western corn rootworm via RNAi traits in maize: lethal and sublethal effects of Sec23 dsRNA. PEST MANAGEMENT SCIENCE 2020; 76:1500-1512. [PMID: 31677217 DOI: 10.1002/ps.5666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elane Fishilevich
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Chitvan Khajuria
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | - Wendy Lo
- Corteva Agriscience, Indianapolis, IN, USA
| | | | | | | | - Blair D Siegfried
- Entomology and Nematology Department, Charles Steinmetz Hall, University of Florida, Gainesville, FL, USA
| |
Collapse
|
189
|
Lyu H, Xu G, Chen P, Song Q, Feng Q, Yi Y, Zheng S. 20-Hydroxyecdysone receptor-activated Bombyx mori CCAAT/enhancer-binding protein gamma regulates the expression of BmCBP and subsequent histone H3 lysine 27 acetylation in Bo. mori. INSECT MOLECULAR BIOLOGY 2020; 29:256-270. [PMID: 31840914 DOI: 10.1111/imb.12630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) response element binding protein (CREB)-binding protein (CBP or CREBBP) plays important roles in regulating gene transcription and animal development. However, the process by which CBP is up-regulated to impact insect development is unknown. In this study, the regulatory mechanism of Bombyx mori CBP (BmCBP) expression induced by 20-hydroxyecdysone (20E) was investigated. In the Bo. mori cell line, DZNU-Bm-12, 20E enhanced BmCBP transcription and histone H3K27 acetylation. BmCBP RNA interference (RNAi) resulted in decreased histone H3K27 acetylation. Additionally, the luciferase activity analysis revealed that the transcription factor, Bo. mori CCAAT/enhancer-binding protein gamma (BmC/EBPg), activated BmCBP transcription, which was suppressed by BmC/EBPg RNAi and promoted by BmC/EBPg overexpression. Electrophoretic mobility shift assay and chromatin immunoprecipitation results demonstrated that BmC/EBPg could bind to the C/EBP cis-regulatory elements in two positions of the BmCBP promoter. Moreover, BmC/EBPg transcription was enhanced by the 20E receptor (BmEcR), which bound to the BmC/EBPg promoter. BmEcR RNAi significantly inhibited the transcriptional levels of BmC/EBPg and BmCBP in the presence of 20E. Furthermore, the BmEcR-BmC/EBPg pathway regulated the acetylation levels of histone H3K27. Altogether, these results indicate that BmEcR enhances the expression of BmC/EBPg, which binds to the BmCBP promoter, activates BmCBP expression and leads to histone H3K27 acetylation.
Collapse
Affiliation(s)
- H Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - G Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - P Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Q Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Y Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
190
|
Molecular characterization and functional analysis of the vitellogenin receptor from eri silkworm, Samia ricini. Comp Biochem Physiol B Biochem Mol Biol 2020; 242:110417. [DOI: 10.1016/j.cbpb.2020.110417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 01/07/2023]
|
191
|
Chen W, Dong Y, Saqib HSA, Vasseur L, Zhou W, Zheng L, Lai Y, Ma X, Lin L, Xu X, Bai J, He W, You M. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103316. [PMID: 31953191 DOI: 10.1016/j.ibmb.2020.103316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Evolutionary adaptations of herbivorous insects are often dictated by the necessity to withstand a corresponding evolutionary innovation in host plant defense. Glucosinolate sulfatase (GSS) enzyme activity is considered a central adaptation strategy in Plutella xylostella against glucosinolates (GS)-myrosinase defense system in the Brassicales. The high functional versatility of sulfatases suggests that they may perform other vital roles in the process of growth and development. Here, we used a CRISPR/Cas9 system to generate stable homozygous single/double mutant lines of gss1 or/and gss2 with no predicted off-target effects, to analyze the functions of the pair of duplicated genes in the development and host adaptation of P. xylostella. The bioassays showed that, when fed on their usual artificial diet, significant reduction in egg hatching rate and final larval survival rate of the single mutant line of gss2 compared with the original strain or mutant lines of gss1, revealing unexpected functions of GSS2 in embryonic and larval development. When larvae of homozygous mutant lines were transferred onto a new food, Arabidopsis thaliana, no induced effect at protein level of GSS1/2 or gene expression level of gss1/gss2 was detected. The absence of GSS1 or GSS2 reduced the survival rate of larvae and prolonged the duration of the larval stage, indicating that both GSS1 and GSS2 played an important role in adaptation to host plants. The versatile functions of duplicated GSSs in this study provide a foundation for further research to understand potential functions of other sulfatase members and support evidence of adaptation in herbivorous insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310012, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoli Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianlin Bai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
192
|
Wang Y, Wang F, Hong DK, Gao SJ, Wang R, Wang JD. Molecular characterization of DNA methyltransferase 1 and its role in temperature change of armyworm Mythimna separata Walker. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21651. [PMID: 31943343 DOI: 10.1002/arch.21651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the addition of cytosine residues in a CpG context (5'-cytosine-phosphate-guanine-3'). As one of the most common mechanisms of epigenetic modification, it plays a crucial role in regulating gene expression and in a diverse range of biological processes across all multicellular organisms. The relationship between temperature and DNA methylation and how it acts on the adaptability of migratory insects remain unknown. In the present work, a 5,496 bp full-length complementary DNA encoding 1,436 amino acids (named MsDnmt1) was cloned from the devastating migratory pest oriental armyworm, Mythimna separata Walker. The protein shares 36.8-84.4% identity with other insect Dnmt1 isoforms. Spatial and temporal expression analysis revealed that MsDnmt1 was highly expressed in adult stages and head tissue. The changing temperature decreased the expression of MsDnmt1 in both high and low temperature condition. Besides, we found that M. separata exhibited the shortest duration time from the last instar to pupae under 36°C environment when injected with DNA methylation inhibitor. Therefore, our data highlight a potential role for DNA methylation in thermal resistance, which help us to understand the biological role adaptability and colonization of migratory pest in various environments.
Collapse
Affiliation(s)
- Yaru Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Falv Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ding-Kai Hong
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| |
Collapse
|
193
|
Cagliari D, Dias NP, Dos Santos EÁ, Rickes LN, Kremer FS, Farias JR, Lenz G, Galdeano DM, Garcia FRM, Smagghe G, Zotti MJ. First transcriptome of the Neotropical pest Euschistus heros (Hemiptera: Pentatomidae) with dissection of its siRNA machinery. Sci Rep 2020; 10:4856. [PMID: 32184426 PMCID: PMC7078254 DOI: 10.1038/s41598-020-60078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response. To do this, total mRNA of all developmental stages was sequenced on an Illumina platform, followed by a de novo assembly, gene annotation and RNAi-related gene identification. Once RNAi-related genes were identified, nuclease activities in hemolymph were investigated through an ex vivo assay. To test the functionality of the siRNA machinery, E. heros adults were microinjected with ~28 ng per mg of insect of a dsRNA targeting the V-ATPase-A gene. Mortality, relative transcript levels of V-ATPase-A, and the expression of the genes involved in the siRNA machinery, Dicer-2 (DCR-2) and Argonaute 2 (AGO-2), were analyzed. Transcriptome sequencing generated more than 126 million sequenced reads, and these were annotated in approximately 80,000 contigs. The search of RNAi-related genes resulted in 47 genes involved in the three major RNAi pathways, with the absence of sid-like homologous. Although ex vivo incubation of dsRNA in E. heros hemolymph showed rapid degradation, there was 35% mortality at 4 days after treatment and a significant reduction in V-ATPase-A gene expression. These results indicated that although sid-like genes are lacking, the dsRNA uptake mechanism was very efficient. Also, 2-fold and 4-fold overexpression of DCR-2 and AGO-2, respectively, after dsRNA supply indicated the activation of the siRNA machinery. Consequently, E. heros has proven to be sensitive to RNAi upon injection of dsRNA into its hemocoel. We believe that this finding together with a publically available transcriptome and the validation of a responsive RNAi machinery provide a starting point for future field applications against one of the most important soybean pests in South America.
Collapse
Affiliation(s)
- Deise Cagliari
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil.
- Department of Plants and Crops, Ghent University, Ghent, Belgium.
| | - Naymã Pinto Dias
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Ericmar Ávila Dos Santos
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Leticia Neutzling Rickes
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Frederico Schmitt Kremer
- Center for Technological Development, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, Brazil
| | - Juliano Ricardo Farias
- Department of Crop Protection, Universidade Regional Integrada do Alto Uruguai, Santo Ângelo, Brazil
| | - Giuvan Lenz
- Agricultural Research and Development Center, UPL, Pereiras, Brazil
| | - Diogo Manzano Galdeano
- Sylvio Moreira Citrus Center, Agronomic Institute of Campinas, Cordeirópolis, São Paulo, Brazil
| | | | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium.
| | - Moisés João Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil.
| |
Collapse
|
194
|
Riga M, Denecke S, Livadaras I, Geibel S, Nauen R, Vontas J. Development of efficient RNAi in Nezara viridula for use in insecticide target discovery. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21650. [PMID: 31833096 DOI: 10.1002/arch.21650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Stink bugs are an emerging pest in many regions of the world but their molecular biology is still poorly understood. While several transcriptomes are available, the lack of validated gene manipulation tools like RNA interference (RNAi) in species such as the southern green stinkbug Nezara viridula precludes the characterization of individual genes in vivo. Such tools are particularly useful in performing high-throughput screens to search for essential genes that can be prioritized as potential insecticide targets. Here, we developed and optimized an efficient RNAi in N. viridula for use in insecticide target discovery and beyond. The visible marker Sex combs reduced and the essential gene Actin were used to verify the usability and efficiency of RNAi by microinjection at both the adult and nymphal stages, respectively, with nymphal approach presenting significant advantages. Following validation, RNAi was then used to measure lethality following the knockdown (KD) of two genes that are known insecticide targets, Chitin synthase, and Acetyl-CoA carboxylase. The KD of each gene resulted in >75% corrected mortality. These results indicate that RNAi is an effective tool in N. viridula and set a benchmark to evaluate potential targets in future RNAi screens aimed at insecticide target discovery.
Collapse
Affiliation(s)
- Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Sven Geibel
- Division Crop Science, Research and Development, Bayer AG, Monheim, Germany
| | - Ralf Nauen
- Division Crop Science, Research and Development, Bayer AG, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
195
|
Al Baki A, Jung JK, Kim Y. Alteration of insulin signaling to control insect pest by using transformed bacteria expressing dsRNA. PEST MANAGEMENT SCIENCE 2020; 76:1020-1030. [PMID: 31503391 DOI: 10.1002/ps.5612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Insulin/insulin-like growth factor signaling (IIS) is known to mediate larval growth and adult reproduction in the legume pod borer, Maruca vitrata (Lepidoptera: Crambidae). Four IIS components (InR, FOXO, Akt, and TOR) play crucial roles in the IIS pathway. RESULTS RNA interference (RNAi) against any of these four IIS component genes was effective in suppressing each target mRNA level by either hemocoelic injection or oral administration using gene-specific double-stranded RNAs (dsRNAs). These RNAi treatments interfered with larval growth, leading to small pupae or significant larval mortality. For massive production of dsRNA, transformed bacteria expressing dsRNAs of these four IIS components were prepared with L4440 expression vector and HT115 strain of Escherichia coli. The transformed bacteria killed the larvae in a dose-dependent manner by feeding administration. An ultra-sonication pretreatment was performed to impair bacterial membrane and increase dsRNA release from the bacteria in insect intestine. This pretreatment increased the insecticidal activity of these recombinant bacteria. To further increase dsRNA toxicity, its mixture with Bacillus thuringiensis (Bt) was prepared and showed significant increase of Bt insecticidal activity in the laboratory. The bacterial mixture also showed a high control efficacy (83.3%) in an adzuki bean (Vigna angularis) field infested by M. vitrata. Furthermore, such a dsRNA effect was specific for M. vitrata, but not for non-target insects. CONCLUSION The bacteria expressing dsRNA specific to IIS components can be used to develop dsRNA insecticide. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdullah Al Baki
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
196
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
197
|
Yin Y, Qiu YW, Huang J, Tobe SS, Chen SS, Kai ZP. Enzymes in the juvenile hormone biosynthetic pathway can be potential targets for pest control. PEST MANAGEMENT SCIENCE 2020; 76:1071-1077. [PMID: 31515949 DOI: 10.1002/ps.5617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Discovery of novel insecticides and targets has received global attention in recent years. Ten genes coding for enzymes involved in the juvenile hormone biosynthetic pathway of Manduca sexta were studied as potential insecticide targets. RESULTS We determined the expression of genes encoding some critical enzymes in the JH biosynthetic pathway. Farnesol dehydrogenase (FOLD), Juvenile hormone acid O-methyltransferase (JHAMT) and Juvenile hormone epoxidase (CYP15C1) were selected as the candidate targets based on gene expression results. RNAi silencing and enzyme inhibitor tests were performed to validate whether these candidate genes could be the potential insecticide targets. The down-regulation of FOLD, JHAMT and CYP15C1 resulted in a 68%, 82% and 79% reduction in the rates of JH biosynthesis in vitro, respectively. In addition, RNA interference and inhibitor studies of these enzymes following oral administration demonstrated the potential application in pest management, with respect to high mortality and effects on growth. CONCLUSION Based on our study, FOLD, JHAMT and CYP15C1 could be potential targets for pest control as a consequence of their important roles in insect development. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Science, Shanghai, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yan-Wei Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shan-Shan Chen
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
198
|
Swevers L, Feng M, Ren F, Sun J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21616. [PMID: 31502703 DOI: 10.1002/arch.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Recent years have shown a large increase in studies of infection of the silkworm (Bombyx mori) with Cypovirus 1 (previously designated as B. mori cytoplasmic polyhedrosis virus), that causes serious damage in sericulture. Cypovirus 1 has a single-layered capsid that encapsulates a segmented double-strand RNA (dsRNA) genome which are attractive features for the establishment of a biotechnological platform for the production of specialized gene silencing agents, either as recombinant viruses or as viral-like particles with nonreplicative dsRNA cargo. For both combatting viral disease and application of Cypovirus-based pest control, however, a better understanding is needed of the innate immune response caused by Cypovirus infection of the midgut of lepidopteran larvae. Studies of deep sequencing of viral small RNAs have indicated the importance of the RNA interference pathway in the control of Cypovirus infection although many functional aspects still need to be elucidated and conclusive evidence is lacking. A considerable number of transcriptome studies were carried out that revealed a complex response that hitherto remains uncharacterized because of a dearth in functional studies. Also, the uptake mechanism of Cypovirus by the midgut cells remains unclarified because of contrasting mechanisms revealed by electron microscopy and functional studies. The field will benefit from an increase in functional studies that will depend on transgenic silkworm technology and reverse genetics systems for Cypovirus 1.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
| | - Min Feng
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
199
|
Pinheiro DH, Taylor CE, Wu K, Siegfried BD. Delivery of gene-specific dsRNA by microinjection and feeding induces RNAi response in Sri Lanka weevil, Myllocerus undecimpustulatus undatus Marshall. PEST MANAGEMENT SCIENCE 2020; 76:936-943. [PMID: 31461216 DOI: 10.1002/ps.5601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) is widely used in entomological research for functional analysis of genes and is being considered as a new tool for insect pest management. Sri Lanka weevil (SLW) is a highly polyphagous pest of agronomically important plants, but currently only a few control methods are available for this insect. RESULTS In the present study, we evaluated the stability of candidate reference genes β-ACT, α-TUB, EF1-α, RPL12 and GAPDH, and identified EF1-α as the most reliable for gene expression normalization. Four target genes involved in different cellular processes, including Prosα2, RPS13, Snf7 and V-ATPase A were selected to evaluate whether RNAi response in SLW adults can be triggered by microinjection and oral feeding of their double-stranded RNAs (dsRNAs). Three days after injection of the dsRNAs for the target genes, their transcript levels were significantly reduced (up to 91.4%) when compared to the control. Additionally, weevils fed with the target dsRNAs showed significant decreases in gene transcript levels and significant mortality was observed in insects treated with Prosα2 and Snf7 dsRNAs (78.6 to 92.7%). CONCLUSION Our data demonstrate that microinjection and feeding of dsRNA produce a strong RNAi response in SLW, indicating that RNAi-based strategies could be explored to develop a selective and environmentally safe control method against SLW. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniele H Pinheiro
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Caitlin E Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
200
|
Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). CHEMOSPHERE 2020; 240:124857. [PMID: 31726599 DOI: 10.1016/j.chemosphere.2019.124857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.
Collapse
Affiliation(s)
- Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| |
Collapse
|