151
|
Nakayama H, Nishida K, Otsu K. Macromolecular Degradation Systems and Cardiovascular Aging. Circ Res 2016; 118:1577-92. [DOI: 10.1161/circresaha.115.307495] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.
Collapse
Affiliation(s)
- Hiroyuki Nakayama
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kazuhiko Nishida
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kinya Otsu
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| |
Collapse
|
152
|
Nouvenne A, Ticinesi A, Lauretani F, Maggio M, Lippi G, Prati B, Borghi L, Meschi T. The Prognostic Value of High-sensitivity C-reactive Protein and Prealbumin for Short-term Mortality in Acutely Hospitalized Multimorbid Elderly Patients: A Prospective Cohort Study. J Nutr Health Aging 2016; 20:462-8. [PMID: 26999249 DOI: 10.1007/s12603-015-0626-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To establish the predictive value on mortality after 2 months from hospital admission of two laboratory markers of nutritional and inflammatory status, high-sensitivity C-reactive protein (hs-CRP) and prealbumin, in a cohort of frail multimorbid elderly without terminal illness. DESIGN Prospective cohort study. SETTING Internal medicine ward of a large teaching hospital in Italy. PARTICIPANTS 544 Caucasian patients with acute disease consecutively admitted from January to June 2013. 102 were excluded for being younger than 65 years old, having life expectancy <30 days or not having frailty syndrome. Further 42 patients were excluded for missing data or withdrawn at follow-up. Final analysis was performed on 400 subjects (179 M, 221 F, mean age 79±10). MEASUREMENTS Serum prealbumin and hs-CRP were measured at admission. Death within 2 months from hospital admission was assessed through a telephonic interview with the caregiver for each patient discharged alive. Inhospital mortality was also recorded. Survival was calculated from date of admission to our unit. RESULTS Mean prealbumin at admission was 17.3±7.7 mg/dl, while hs-CRP median was 24.2 mg/L (IQR 8.7 to 51.8). 108 patients (27%) died within two months from admission. In an age- and sex-adjusted analysis, log(hs-CRP) levels at admission, but not prealbumin, were independently associated with an increased risk for mortality (HR 1.40, 95% CI 1.18 to 1.66, p<0.001). After multiple adjustments for covariates, including comorbidity burden measured through Charlson score, log(hs-CRP) remained significantly associated with mortality (HR 1.38, 95% CI 1.08 to 1.76, p=0.01). A Receiver Operating Characteristic (ROC) curve was performed to test the predictive value of hs-CRP at admission on two-month mortality (AUC 0.68, 95% CI 0.63 to 0.72, p<0.001). Cut-off value was set at 38.4 mg/L. After dichotomization of hs-CRP values according to this cut-off, hs-CRP≥38.4 mg/L at admission proved to be a significant risk factor for mortality (HR 2.10, 95% CI 1.23 to 3.58, p=0.006). CONCLUSION Serum hs-CRP, but not prealbumin, values at admission are predictors of short-term mortality at hospital admission in elderly multimorbid patients. Inflammation seems to affect prognosis more than malnutrition in this setting and may therefore guide clinicians' attitude towards therapeutic choices.
Collapse
Affiliation(s)
- A Nouvenne
- Antonio Nouvenne M.D., Ph. D. University of Parma, Department of Clinical and Experimental Medicine, Via A. Gramsci 14, 43126 Parma, Italy, Phone: +39 0521 703626, Mobile: +39 3492258317, Fax: +39 0521 702383, e-mail:
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Volt H, García JA, Doerrier C, Díaz-Casado ME, Guerra-Librero A, López LC, Escames G, Tresguerres JA, Acuña-Castroviejo D. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res 2016; 60:193-205. [PMID: 26681113 DOI: 10.1111/jpi.12303] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
The connection between the innate immune system, clock genes, and mitochondrial bioenergetics was analyzed during aging and sepsis in mouse heart. Our results suggest that the sole NF-κB activation does not explain the inflammatory process underlying aging; the former also triggers the NLRP3 inflammasome that enhances caspase-1-dependent maturation of IL-1β. In this way, aged mice enter into a vicious cycle as IL-1β further activates the NF-κB/NLRP3 inflammasome link. The origin of NF-κB activation was related to the age-dependent Bmal1/Clock/RORα/Rev-Erbα loop disruption, which lowers NAD(+) levels, reducing the SIRT1 deacetylase ability to inactivate NF-κB. Consequently, NF-κB binding to DNA increases, raising the formation of proinflammatory mediators and inducing mitochondrial impairment. The cycle is then closed with the subsequent NLRP3 inflammasome activation. This paired contribution of the innate immune pathways serves as a catalyst to magnify the response to sepsis in aged compared with young mice. Melatonin administration blunted the septic response, reducing inflammation and oxidative stress, and enhancing mitochondrial function at the levels of nonseptic aged mice, but it did not counteract the age-related inflammation. Together, our results suggest that, although with different strengths, chronoinflammaging constitutes the biochemical substrate of aging and sepsis, and identifies the NLRP3 inflammasome as a new molecular target for melatonin, providing a rationale for its use in NLRP3-dependent diseases.
Collapse
Affiliation(s)
- Huayqui Volt
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - José A García
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Carolina Doerrier
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - María E Díaz-Casado
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Luis C López
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Jesús A Tresguerres
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
154
|
Clement CC, Moncrieffe H, Lele A, Janow G, Becerra A, Bauli F, Saad FA, Perino G, Montagna C, Cobelli N, Hardin J, Stern LJ, Ilowite N, Porcelli SA, Santambrogio L. Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight 2016; 1:85633. [PMID: 26973882 DOI: 10.1172/jci.insight.85633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatological condition. Although it has been proposed that JIA has an autoimmune component, the autoantigens are still unknown. Using biochemical and proteomic approaches, we identified the molecular chaperone transthyretin (TTR) as an antigenic target for B and T cell immune responses. TTR was eluted from IgG complexes and affinity purified from 3 JIA patients, and a statistically significant increase in TTR autoantibodies was observed in a group of 43 JIA patients. Three cryptic, HLA-DR1-restricted TTR peptides, which induced CD4+ T cell expansion and IFN-γ and TNF-α production in 3 out of 17 analyzed patients, were also identified. Misfolding, aggregation and oxidation of TTR, as observed in the synovial fluid of all JIA patients, enhanced its immunogenicity in HLA-DR1 transgenic mice. Our data point to TTR as an autoantigen potentially involved in the pathogenesis of JIA and to oxidation and aggregation as a mechanism facilitating TTR autoimmunity.
Collapse
Affiliation(s)
- Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Halima Moncrieffe
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aditi Lele
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ginger Janow
- Department of Pediatric Rheumatology, Montefiore Medical Center, New York, New York, USA
| | - Aniuska Becerra
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Francesco Bauli
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Fawzy A Saad
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Giorgio Perino
- Department of Pathology, Hospital for Special Surgery, New York, New York, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Neil Cobelli
- Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA
| | - John Hardin
- Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Norman Ilowite
- Department of Pediatric Rheumatology, Montefiore Medical Center, New York, New York, USA
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Orthopedic Surgery, Montefiore Medical Center, New York, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
155
|
Role of Carbonyl Modifications on Aging-Associated Protein Aggregation. Sci Rep 2016; 6:19311. [PMID: 26776680 PMCID: PMC4726109 DOI: 10.1038/srep19311] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.
Collapse
|
156
|
Abstract
All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Alberto Valencia-Hipólito
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
157
|
Yoo SJ, Go E, Kim YE, Lee S, Kwon J. Roles of Reactive Oxygen Species in Rheumatoid Arthritis Pathogenesis. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.6.340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eunbyeol Go
- Department of Medical Education, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ye-Eun Kim
- Department of Medical Education, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sunyoung Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jaeyul Kwon
- Department of Medical Education, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
158
|
Perkisas S, Vandewoude M. Where frailty meets diabetes. Diabetes Metab Res Rev 2016; 32 Suppl 1:261-7. [PMID: 26453435 DOI: 10.1002/dmrr.2743] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/13/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022]
Abstract
Diabetes is a chronic illness that has an effect on multiple organ systems. Frailty is a state of increased vulnerability to stressors and a limited capacity to maintain homeostasis. It is a multidimensional concept and a dynamic condition that can improve or worsen over time. Frailty is either physical or psychological or a combination of these two components. Sarcopenia, which is the age-related loss of skeletal muscle mass and strength, is the main attributor to the physical form of frailty. Although the pathophysiology of diabetes is commonly focused on impaired insulin secretion, overload of gluconeogenesis and insulin resistance, newer insights broaden this etiologic horizon. Immunologic factors that create a chronic state of low-grade inflammation--'inflammaging'--have an influence on both the ageing process and diabetes. Persons with diabetes mellitus already tend to have an accelerated ageing process that places them at greater risk for developing frailty at an earlier age. The development of frailty--and sarcopenia--is multifactorial and includes nutritional, physical and hormonal elements; these elements are interlinked with those of diabetes. A lower muscle mass will lead to poorer glycaemic control through lower muscle glucose uptake. This leads to higher insulin secretion and insulin resistance, which is the stepping stone for diabetes itself.
Collapse
Affiliation(s)
- Stany Perkisas
- Department of Geriatrics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
159
|
Martelli S, Pender SLF, Larbi A. Compartmentalization of immunosenescence: a deeper look at the mucosa. Biogerontology 2015; 17:159-76. [PMID: 26689202 DOI: 10.1007/s10522-015-9628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.
Collapse
Affiliation(s)
- Serena Martelli
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
160
|
Lee J, Kwon G, Lim YH. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans. Sci Rep 2015; 5:17128. [PMID: 26601690 PMCID: PMC4658530 DOI: 10.1038/srep17128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction.
Collapse
Affiliation(s)
- Jiyun Lee
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Gayeung Kwon
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Young-Hee Lim
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea.,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
161
|
Gunawardene P, Bermeo S, Vidal C, Al-Saedi A, Chung P, Boersma D, Phu S, Pokorski I, Suriyaarachchi P, Demontiero O, Duque G. Association Between Circulating Osteogenic Progenitor Cells and Disability and Frailty in Older Persons: The Nepean Osteoporosis and Frailty Study. J Gerontol A Biol Sci Med Sci 2015; 71:1124-30. [DOI: 10.1093/gerona/glv190] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
|
162
|
Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 2015; 24:29-39. [PMID: 25641058 DOI: 10.1016/j.arr.2015.01.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/29/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies.
Collapse
Affiliation(s)
- Noa Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Aviva Rotter-Maskowitz
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
163
|
Curtis E, Litwic A, Cooper C, Dennison E. Determinants of Muscle and Bone Aging. J Cell Physiol 2015; 230:2618-25. [PMID: 25820482 DOI: 10.1002/jcp.25001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age.
Collapse
Affiliation(s)
- Elizabeth Curtis
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Tremona Road, Southampton, England
| | - Anna Litwic
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Tremona Road, Southampton, England
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Tremona Road, Southampton, England
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Tremona Road, Southampton, England
| |
Collapse
|
164
|
Mendel OI, Luchihina LV, Mendel W. Aging and osteoarthritis. Chronic nonspecific inflammation as a link between aging and osteoarthritis (a review). ADVANCES IN GERONTOLOGY 2015. [DOI: 10.1134/s2079057015040165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
165
|
Vijay R, Hua X, Meyerholz DK, Miki Y, Yamamoto K, Gelb M, Murakami M, Perlman S. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection. ACTA ACUST UNITED AC 2015; 212:1851-68. [PMID: 26392224 PMCID: PMC4612096 DOI: 10.1084/jem.20150632] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022]
Abstract
Vijay et al. show that an age-dependent increase of phospholipase A2 group IID (PLA2G2D) in the lung contributes to worse outcomes in mice infected with SARS-CoV. Mice lacking (PLA2G2D) had increased survival to lethal infection with enhanced DC migration to the dLN and augmented T cell responses. The results suggest that targeting (PLA2G2D) in elderly patients with respiratory infections could represent an attractive therapeutic strategy. Oxidative stress and chronic low-grade inflammation in the lungs are associated with aging and may contribute to age-related immune dysfunction. To maintain lung homeostasis, chronic inflammation is countered by enhanced expression of proresolving/antiinflammatory factors. Here, we show that age-dependent increases of one such factor in the lungs, a phospholipase A2 (PLA2) group IID (PLA2G2D) with antiinflammatory properties, contributed to worse outcomes in mice infected with severe acute respiratory syndrome-coronavirus (SARS-CoV). Strikingly, infection of mice lacking PLA2G2D expression (Pla2g2d−/− mice) converted a uniformly lethal infection to a nonlethal one (>80% survival), subsequent to development of enhanced respiratory DC migration to the draining lymph nodes, augmented antivirus T cell responses, and diminished lung damage. We also observed similar effects in influenza A virus–infected middle-aged Pla2g2d−/− mice. Furthermore, oxidative stress, probably via lipid peroxidation, was found to induce PLA2G2D expression in mice and in human monocyte–derived macrophages. Thus, our results suggest that directed inhibition of a single inducible phospholipase, PLA2G2D, in the lungs of older patients with severe respiratory infections is potentially an attractive therapeutic intervention to restore immune function.
Collapse
Affiliation(s)
- Rahul Vijay
- Interdisciplinary Program in Immunology and Department of Otolaryngology, Department of Pathology, and Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Xiaoyang Hua
- Interdisciplinary Program in Immunology and Department of Otolaryngology, Department of Pathology, and Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - David K Meyerholz
- Interdisciplinary Program in Immunology and Department of Otolaryngology, Department of Pathology, and Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michael Gelb
- Department of Chemistry and Department of Biochemistry, University of Washington, Seattle, WA 98195 Department of Chemistry and Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Stanley Perlman
- Interdisciplinary Program in Immunology and Department of Otolaryngology, Department of Pathology, and Department of Microbiology, University of Iowa, Iowa City, IA 52242 Interdisciplinary Program in Immunology and Department of Otolaryngology, Department of Pathology, and Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
166
|
Septic Shock in Advanced Age: Transcriptome Analysis Reveals Altered Molecular Signatures in Neutrophil Granulocytes. PLoS One 2015; 10:e0128341. [PMID: 26047321 PMCID: PMC4457834 DOI: 10.1371/journal.pone.0128341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/26/2015] [Indexed: 01/08/2023] Open
Abstract
Sepsis is one of the highest causes of mortality in hospitalized people and a common complication in both surgical and clinical patients admitted to hospital for non-infectious reasons. Sepsis is especially common in older people and its incidence is likely to increase substantially as a population ages. Despite its increased prevalence and mortality in older people, immune responses in the elderly during septic shock appear similar to that in younger patients. The purpose of this study was to conduct a genome-wide gene expression analysis of circulating neutrophils from old and young septic patients to better understand how aged individuals respond to severe infectious insult. We detected several genes whose expression could be used to differentiate immune responses of the elderly from those of young people, including genes related to oxidative phosphorylation, mitochondrial dysfunction and TGF-β signaling, among others. Our results identify major molecular pathways that are particularly affected in the elderly during sepsis, which might have a pivotal role in worsening clinical outcomes compared with young people with sepsis.
Collapse
|
167
|
The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol 2015; 26:416-22. [PMID: 25907245 DOI: 10.1016/j.intimp.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/20/2015] [Accepted: 04/04/2015] [Indexed: 01/20/2023]
Abstract
To investigate the anti-inflammatory effect of probiotics, we orally administered IRT5 (1×10(9)CFU/rat) for 8 weeks to aged (16 months-old) Fischer 344 rats, and measured parameters of colitis. The expression levels of the inflammatory markers' inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were higher in the colons of normal aged rats (18 months-old) than in the colons of normal young rats (6 months-old). Treatment with IRT5 suppressed the age-associated increased expression of iNOS, COX2, TNF-α, and IL-1β, and activation of NF-κB and mitogen-activated protein kinases. In a similar manner, the expression of tight junction proteins in the colon of normal aged rats was suppressed more potently than in normal young rats, and treatment of aged rats with IRT5 decreased the age-dependent suppression of tight junction proteins ZO-1, occludin, and claudin-1. Treatment with IRT5 suppressed age-associated increases in expressions of senescence markers p16 and p53 in the colon of aged rats, but increased age-suppressed expression of SIRT1. However, treatment with IRT5 inhibited age-associated increased myeloperoxidase activity in the colon. In addition, treatment with IRT5 lowered the levels of LPS in intestinal fluid and blood of aged rats, as well as the reduced concentrations of reactive oxygen species, malondialdehyde, and C-reactive protein in the blood. These findings suggest that IRT5 treatment may suppress age-dependent colitis by inhibiting gut microbiota LPS production.
Collapse
|
168
|
Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJP, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK. Autophagy Controls Acquisition of Aging Features in Macrophages. J Innate Immun 2015; 7:375-91. [PMID: 25764971 PMCID: PMC4386145 DOI: 10.1159/000370112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022] Open
Abstract
Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging.
Collapse
Affiliation(s)
- Amanda J Stranks
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Morrison VA, Hamlin P, Soubeyran P, Stauder R, Wadhwa P, Aapro M, Lichtman S. Diffuse large B-cell lymphoma in the elderly: Impact of prognosis, comorbidities, geriatric assessment, and supportive care on clinical practice. An International Society of Geriatric Oncology (SIOG) Expert Position Paper. J Geriatr Oncol 2015; 6:141-52. [DOI: 10.1016/j.jgo.2014.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
|
170
|
Yang/Qi invigoration: an herbal therapy for chronic fatigue syndrome with yang deficiency? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945901. [PMID: 25763095 PMCID: PMC4339790 DOI: 10.1155/2015/945901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
According to traditional Chinese medicine (TCM) theory, Yang and Qi are driving forces of biological activities in the human body. Based on the crucial role of the mitochondrion in energy metabolism, we propose an extended view of Yang and Qi in the context of mitochondrion-driven cellular and body function. It is of interest that the clinical manifestations of Yang/Qi deficiencies in TCM resemble those of chronic fatigue syndrome in Western medicine, which is pathologically associated with mitochondrial dysfunction. By virtue of their ability to enhance mitochondrial function and its regulation, Yang- and Qi-invigorating tonic herbs, such as Cistanches Herba and Schisandrae Fructus, may therefore prove to be beneficial in the treatment of chronic fatigue syndrome with Yang deficiency.
Collapse
|
171
|
Cabrera ÁJR. Zinc, aging, and immunosenescence: an overview. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:25592. [PMID: 25661703 PMCID: PMC4321209 DOI: 10.3402/pba.v5.25592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/22/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Zinc plays an essential role in many biochemical pathways and participates in several cell functions, including the immune response. This review describes the role of zinc in human health, aging, and immunosenescence. Zinc deficiency is frequent in the elderly and leads to changes similar to those that occur in oxidative inflammatory aging (oxi-inflamm-aging) and immunosenescence. The possible benefits of zinc supplementation to enhance immune function are discussed.
Collapse
Affiliation(s)
- Ángel Julio Romero Cabrera
- Department of Internal Medicine and Geriatrics, Academic Hospital "Dr. Gustavo Aldereguía Lima", Cienfuegos, Cuba;
| |
Collapse
|
172
|
Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, Garcia GG. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 2015; 156:565-75. [PMID: 25456069 PMCID: PMC4298324 DOI: 10.1210/en.2014-1690] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The involvement of mammalian target of rapamycin (mTOR) in lifespan control in invertebrates, calorie-restricted rodents, and extension of mouse lifespan by rapamycin have prompted speculation that diminished mTOR function may contribute to mammalian longevity in several settings. We show here that mTOR complex-1 (mTORC1) activity is indeed lower in liver, muscle, heart, and kidney tissue of Snell dwarf and global GH receptor (GHR) gene-disrupted mice (GHR-/-), consistent with previous studies. Surprisingly, activity of mTORC2 is higher in fasted Snell and GHR-/- than in littermate controls in all 4 tissues tested. Resupply of food enhanced mTORC1 activity in both controls and long-lived mutant mice but diminished mTORC2 activity only in the long-lived mice. Mice in which GHR has been disrupted only in the liver do not show extended lifespan and also fail to show the decline in mTORC1 and increase in mTORC2 seen in mice with global loss of GHR. The data suggest that the antiaging effects in the Snell dwarf and GHR-/- mice are accompanied by both a decline in mTORC1 in multiple organs and an increase in fasting levels of mTORC2. Neither the lifespan nor mTOR effects appear to be mediated by direct GH effects on liver or by the decline in plasma IGF-I, a shared trait in both global and liver-specific GHR-/- mice. Our data suggest that a more complex pattern of hormonal effects and intertissue interactions may be responsible for regulating both lifespan and mTORC2 function in these mouse models of delayed aging.
Collapse
Affiliation(s)
- Graham Dominick
- Department of Molecular, Cellular, and Developmental Biology (G.D.), University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109; Edison Biotechnology Institute (D.E.B., E.O.L., J.J.K.), Ohio University, Athens, Ohio 45701; Department of Pathology (X.L., R.A.M., G.G.G.), University of Michigan School of Medicine Ann Arbor, Michigan 48109; and University of Michigan Geriatrics Center (R.A.M.), Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
173
|
McElhaney JE, Garneau H, Camous X, Dupuis G, Pawelec G, Baehl S, Tessier D, Frost EH, Frasca D, Larbi A, Fulop T. Predictors of the antibody response to influenza vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res Care 2015; 3:e000140. [PMID: 26504526 PMCID: PMC4611872 DOI: 10.1136/bmjdrc-2015-000140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic inflammatory diseases of the elderly. Its development is related to the alteration of the immune system with aging characterized by immunosenescence and inflamm-aging. In turn, T2DM also alters the immune response. As a consequence, older people with T2DM are more susceptible to influenza and to its complications as compared with healthy controls. Vaccination against influenza has shown poor efficacy in the older population and even less efficacy in patients with diabetes. We studied here the antibody response to vaccination in healthy and diabetic elderly participants. RESEARCH DESIGN AND METHODS In 2 groups of elderly participants (healthy N=119 and T2DM N=102), we measured the immunogenicity of influenza vaccine by hemagglutination inhibition assays. We assessed several blood and functional parameters as potential predictors of the vaccine efficacy. RESULTS We found no difference between antibody responses in diabetic elderly compared with healthy elderly. Among the biological and functional determinants, the cytomegalovirus (CMV) serostatus played a more prominent role in determining the magnitude of response. We concluded that in addition to age and diabetic status, immunological history such as CMV status should be taken into account. None of the other biological or functional parameters studied could be reliably linked to the vaccine antibody response in older adults who are not frail including those with well-controlled diabetes. CONCLUSIONS Our data strongly suggest that influenza vaccine should be administered to elderly patients with T2DM; however, the immune determinants of the antibody response to influenza vaccination should be further investigated.
Collapse
Affiliation(s)
- Janet E McElhaney
- Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada
| | - Hugo Garneau
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Xavier Camous
- Singapore Immunology Network (SIgN), Biopolis, Agency for Science Technology and Research (A*STAR), Singapore
| | - Gilles Dupuis
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Graham Pawelec
- Center for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - Sarra Baehl
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniel Tessier
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Biopolis, Agency for Science Technology and Research (A*STAR), Singapore
| | - Tamas Fulop
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
174
|
Leite MR, Cechella JL, Mantovani AC, Duarte MM, Nogueira CW, Zeni G. Swimming exercise and diphenyl diselenide-supplemented diet affect the serum levels of pro- and anti-inflammatory cytokines differently depending on the age of rats. Cytokine 2015; 71:119-23. [DOI: 10.1016/j.cyto.2014.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023]
|
175
|
Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates. Nat Protoc 2014; 10:134-48. [PMID: 25521790 DOI: 10.1038/nprot.2015.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions.
Collapse
|
176
|
Ribeiro AB, Chisté RC, Freitas M, da Silva AF, Visentainer JV, Fernandes E. Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species. Food Chem 2014; 165:140-8. [DOI: 10.1016/j.foodchem.2014.05.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 11/16/2022]
|
177
|
Cosyns SMR, Huyghe L, Thoonen R, Stasch JP, Brouckaert P, Lefebvre RA. Influence of cinaciguat on gastrointestinal motility in apo-sGC mice. Neurogastroenterol Motil 2014; 26:1573-85. [PMID: 25200007 DOI: 10.1111/nmo.12424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cinaciguat (BAY 58-2667), an NO- and heme-independent sGC activator, was shown to be more effective when the heme-group of sGC is oxidized in vascular tissue. In apo-sGC mice (sGCβ1 (His105Phe) knockin) both sGC isoforms (sGCα1 β1 and sGCα2 β1 ) are heme-deficient and can no longer be activated by NO; these mice, showing decreased gastrointestinal nitrergic relaxation and decreased gastric emptying, can be considered as a model to study the consequence of heme-oxidation in sGC. Our aim was to compare the influence of cinaciguat, on in vitro muscle tone of gastrointestinal tissues, and on gastric emptying in WT and apo-sGC mice. METHODS Gastrointestinal smooth muscle strips were mounted in organ baths for isometric force recording and cGMP levels were determined by enzyme immunoassay. Protein levels of sGC subunits were assessed by immunoblotting. Gastric emptying was determined by phenol red recovery. KEY RESULTS Although protein levels of the sGC subunits were lower in gastrointestinal tissues of apo-sGC mice, cinaciguat induced concentration-dependent relaxations and increased cGMP levels in apo-sGC fundus and colon to a similar or greater extent than in WT mice. The sGC inhibitor ODQ increased cinaciguat-induced relaxations and cGMP levels in WT fundus and colon. In apo-sGC antrum, pylorus and jejunum, cinaciguat was not able to induce relaxations. Cinaciguat did not improve delayed gastric emptying in apo-sGC mice. CONCLUSIONS & INFERENCES Cinaciguat relaxes the fundus and colon efficiently when sGC is in the heme-free condition; the non-effect of cinaciguat in pylorus explains its inability to improve the delayed gastric emptying in apo-sGC mice.
Collapse
Affiliation(s)
- Sarah M R Cosyns
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
Most human phenotypes are influenced by a combination of genomic and environmental factors. Engaging in regular physical exercise prevents many chronic diseases, decreases mortality risk and increases longevity. However, the mechanisms involved are poorly understood. The modulating effect of physical (aerobic and resistance) exercise on gene expression has been known for some time now and has provided us with an understanding of the biological responses to physical exercise. Emerging research data suggest that epigenetic modifications are extremely important for both development and disease in humans. In the current review, we summarise findings on the effect of exercise on epigenetic modifications and their effects on gene expression. Current research data suggest epigenetic modifications (DNA methylation and histone acetylation) and microRNAs (miRNAs) are responsive to acute aerobic and resistance exercise in brain, blood, skeletal and cardiac muscle, adipose tissue and even buccal cells. Six months of aerobic exercise alters whole-genome DNA methylation in skeletal muscle and adipose tissue and directly influences lipogenesis. Some miRNAs are related to maximal oxygen consumption (VO(2max)) and VO(2max) trainability, and are differentially expressed amongst individuals with high and low VO(2max). Remarkably, miRNA expression profiles discriminate between low and high responders to resistance exercise (miR-378, -26a, -29a and -451) and correlate to gains in lean body mass (miR-378). The emerging field of exercise epigenomics is expected to prosper and additional studies may elucidate the clinical relevance of miRNAs and epigenetic modifications, and delineate mechanisms by which exercise confers a healthier phenotype and improves performance.
Collapse
|
179
|
Sharon G, Nath PR, Isakov N, Zilberg D. Evaluation of guppy (Poecilia reticulata Peters) immunization against Tetrahymena sp. by enzyme-linked immunosorbent assay (ELISA). Vet Parasitol 2014; 205:28-37. [PMID: 25085773 DOI: 10.1016/j.vetpar.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022]
Abstract
Analysis of the effectiveness of guppy (Poecilia reticulata Peters) immunization based on measurements of antibody (Ab) titers suffers from a shortage of reagents that can detect guppy antibodies (Abs). To overcome this problem, we immunized mice with different preparations of guppy immunoglobulins (Igs) and used the mouse antisera to develop a quantitative enzyme-linked immunosorbent assay (ELISA). The most efficient immunogen for mouse immunization was guppy Igs adsorbed on protein A/G beads. Antisera from mice boosted with this immunoglobulin (Ig) preparation were highly specific and contained high Ab titers. They immunoreacted in a Western blot with Ig heavy and light chains from guppy serum, and Ig heavy chain from guppy whole-body homogenate. The mouse anti-guppy Ig was applied in an ELISA aimed at comparing the efficiency of different routes of guppy immunization against Tetrahymena: (i) anal intubation with sonicated Tetrahymena (40,000 Tetrahymena/fish in a total volume of 10 μL) mixed with domperidon, deoxycholic acid and free amino acids (valine, leucine, isoleucine, phenylalanine and tryptophan), or (ii) intraperitoneal (i.p.) injection of sonicated Tetrahymena in complete Freund's adjuvant (15,000 Tetrahymena/fish in total a volume of 20 μL). Negative control fish were anally intubated with the intubation mixture without Tetrahymena, or untreated. ELISA measurement of anti-Tetrahymena Ab titer revealed a significantly higher level of Abs in i.p.-immunized guppies, compared to the anally intubated and control fish. In addition, the efficiency of immunization was tested by monitoring guppy mortality following (i) i.p. challenge with Tetrahymena (900 Tetrahymena/fish) or (ii) cold stress followed by immersion in water containing 10,000 Tetrahymena/mL. Fish mortality on day 14 post-Tetrahymena infection by i.p. injection exceeded 50% in the control and anally intubated fish, compared to 31% in i.p.-immunized fish. Immunization did not protect from pathogen challenge by immersion. The results suggest a direct correlation between the anti-Tetrahymena Ab response and fish resistance to i.p.-injected Tetrahymena, but not to infection by immersion preceded by cold stress.
Collapse
Affiliation(s)
- Galit Sharon
- The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Pulak R Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Dina Zilberg
- The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel.
| |
Collapse
|
180
|
Molecular analysis of chromium and cobalt-related toxicity. Sci Rep 2014; 4:5729. [PMID: 25034144 PMCID: PMC4103093 DOI: 10.1038/srep05729] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Occupational and environmental exposure to Co and Cr has been previously linked to a wide array of inflammatory and degenerative conditions and cancer. Recently, significant health concerns have been raised by the high levels of Cr and Co ions and corrosion products released by biomedical implants. Herein, we set to analyze the biological responses associated with Co and Cr toxicity. Histological, ultrastructural, and elemental analysis, performed on Cr and Co exposed patients reveal the presence of corrosion products, metallic wear debris and metal ions at varying concentrations. Metallic ions and corrosion products were also generated in vitro following macrophage phagocytosis of metal alloys. Ex vivo redox proteomic mapped several oxidatively damaged proteins by Cr(III) and Co(II)-induced Fenton reaction. Importantly, a positive correlation between the tissue amounts of Cr(III) and Co(II) ions and tissue oxidative damage was observed. Immobilized- Cr(III) and Co(II) affinity chromatography indicated that metal ions can also directly bind to several metallo and non-metalloproteins and, as demonstrated for aldolase and catalase, induce loss of their biological function. Altogether, our analysis reveals several biological mechanisms leading to tissue damage, necrosis, and inflammation in patients with Cr and Co-associated adverse local tissue reactions.
Collapse
|
181
|
Babu D, Motterlini R, Lefebvre RA. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation. Br J Pharmacol 2014; 172:1557-73. [PMID: 24641722 DOI: 10.1111/bph.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation.
Collapse
Affiliation(s)
- D Babu
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
182
|
Scharf B, Clement CC, Yodmuang S, Urbanska AM, Suadicani SO, Aphkhazava D, Thi MM, Perino G, Hardin JA, Cobelli N, Vunjak-Novakovic G, Santambrogio L. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. ACTA ACUST UNITED AC 2014; 20:922-34. [PMID: 23890010 DOI: 10.1016/j.chembiol.2013.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 01/07/2023]
Abstract
Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes.
Collapse
Affiliation(s)
- Brian Scharf
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, Yung R. Aging is associated with increased regulatory T-cell function. Aging Cell 2014; 13:441-8. [PMID: 24325345 PMCID: PMC4032602 DOI: 10.1111/acel.12191] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 12/13/2022] Open
Abstract
Regulatory T-cell (Treg, CD4(+) CD25(+)) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T-cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3-4 months) and aged (18-20 months) C57BL/6 mice. DNA from CD4(+) T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T-cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling-mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL-10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T-cell activity. Taken together, these results reveal a potential mechanism of higher Treg-mediated activity that may contribute to increased immune suppression with age.
Collapse
Affiliation(s)
- Sanjay K Garg
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Colin Delaney
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Amiya Ghosh
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI-48109, USA
| | - Raymond Yung
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
- Geriatrics Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Healthcare System, 2215 Fuller RoadAnn Arbor, MI-48105, USA
| |
Collapse
|
184
|
Tai Chi exercise increases SOD activity and total antioxidant status in saliva and is linked to an improvement of periodontal disease in the elderly. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:603853. [PMID: 24790703 PMCID: PMC3984794 DOI: 10.1155/2014/603853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults.
Collapse
|
185
|
Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 2014; 2014:975872. [PMID: 24771986 PMCID: PMC3977495 DOI: 10.1155/2014/975872] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a major public health burden that is expected to further increase as the global population ages. In the last twenty years, advanced glycation end products (AGEs) have been shown to be critical mediators both in the pathogenesis and development of osteoporosis and other chronic degenerative diseases related to aging. The accumulation of AGEs within the bone induces the formation of covalent cross-links with collagen and other bone proteins which affects the mechanical properties of tissue and disturbs bone remodelling and deterioration, underlying osteoporosis. On the other hand, the gradual deterioration of the immune system during aging (defined as immunosenescence) is also characterized by the generation of a high level of oxidants and AGEs. The synthesis and accumulation of AGEs (both localized within the bone or in the systemic circulation) might trigger a vicious circle (in which inflammation and aging merged in the word "Inflammaging") which can establish and sustain the development of osteoporosis. This narrative review will update the molecular mechanisms/pathways by which AGEs induce the functional and structural bone impairment typical of osteoporosis.
Collapse
Affiliation(s)
- Roberta Sanguineti
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Alessandra Puddu
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospitals, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospitals, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland ; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16132 Genoa, Italy ; Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Giorgio Luciano Viviani
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
186
|
Yaguchi Y, Komura T, Kashima N, Tamura M, Kage-Nakadai E, Saeki S, Terao K, Nishikawa Y. Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense. Eur J Nutr 2014; 53:1659-68. [PMID: 24549958 DOI: 10.1007/s00394-014-0671-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/12/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Nutritional control has been proposed as a potential therapy for slowing the senescence of immune function and decreasing mortality. This study investigated whether sesamin could modify host defense systems and extend the lifespan of the nematode Caenorhabditis elegans. METHODS Nematodes were fed standard food (the bacterium Escherichia coli strain OP50) supplemented with various doses of sesamin/γ-cyclodextrin inclusion compounds starting from young adulthood. The mean lifespan, muscle function, lipofuscin accumulation, protein carbonyl content, and stress resistance of the worms were examined. Then, C. elegans mutants harboring loss-of-function lesions in longevity- and host defense-related signaling pathways were supplemented with sesamin to identify the genes involved in the longevity effects. RESULTS Worms supplemented with sesamin displayed higher locomotion and prolongevity and produced offspring at levels similar to unsupplemented control animals. The growth curves of nematodes were similar to those of controls, suggesting that sesamin did not induce prolongevity effects through dietary restriction. Notably, sesamin made the worms more resistant to infection by Legionella pneumophila and more resistant to oxidative stressors such as paraquat and hydrogen peroxide and prolonged the lifespan of a mev-1 mutant that produces abundant superoxide anions. However, the accumulation of protein carbonyls and lipofuscin was similar in sesamin-exposed and control worms, suggesting that sesamin is unlikely to work simply as an antioxidant. Sesamin supplementation failed to extend the lifespan of loss-of-function mutants of daf-2, daf-16, pmk-1, and skn-1. CONCLUSIONS Sesamin enhances the host defense of C. elegans and increases the average lifespan via activation of both skn-1 (encoding a component of the p38 MAPK pathway) and daf-16 (encoding a component of the IGF-1 pathway).
Collapse
Affiliation(s)
- Yukie Yaguchi
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Berghella AM, Contasta I, Marulli G, D'Innocenzo C, Garofalo F, Gizzi F, Bartolomucci M, Laglia G, Valeri M, Gizzi M, Friscioni M, Barone M, Del Beato T, Secinaro E, Pellegrini P. Ageing gender-specific "Biomarkers of Homeostasis", to protect ourselves against the diseases of the old age. IMMUNITY & AGEING 2014; 11:3. [PMID: 24498974 PMCID: PMC3923003 DOI: 10.1186/1742-4933-11-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Low-grade inflammatory state causes the development of the principal chronic-degenerative pathologies related with ageing. Consequently, it is required a better comprehension of the physiologic origins and the consequences of the low-grade inflammatory state for the identification of 1) the basic mechanisms that lead to the chronic inflammatory state and, after that, to the progression toward the pathologies and 2) the parallel identification of the prognostic biomarkers typical of these passages. These biomarkers could bring to several improvements in the health quality, allowing an early diagnosis and more effective treatments for: a) the prevention strategies on the healthy population, to assure a healthy longevity and b) the identification of personalized treatment in patients, to assure the benefit of the therapy. For the identification of these biomarkers it is necessary to consider that the ageing processes produce alterations of the physiologic systems and that these modifications compromise the communications between these networks: this state constitutes an obstacle for an appropriate physiologic homeostasis, that plays a fundamental role for the safeguard of the health. It is also to be considered that immune senescence affects both men and women, but it does it in different ways: a sexual dimorphism of immune pathways in the setting of immune response homeostasis is normally present, as we previously underlined. Therefore we hypothesize that, in order to prevent the development of the chronic-degenerative pathologies related with ageing, it is important to identify "Biomarkers of Homeostasis " specific for each gender: these are biologic molecules that should be measurable in a practical and no-invasive way and whose variations can quantify the male and female risk of losing the physiologic system homeostatic capacity. This competence is not only critical in the control of inflammation, but it is also prognostic for the passages from low-grade inflammatory state to the chronic inflammation and to the progression toward the degenerative pathologies. Beginning from the actual results, our intent is 1) to discuss and underline the importance of these new research perspectives in the definition of ageing gender-specific clinical "Biomarkers of Homeostasis" and 2) to propose homeostasis biomarkers, already present in the research results.
Collapse
Affiliation(s)
- Anna Maria Berghella
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche (CNR), Unità Operativa di Supporto (UOS), via G, Carducci, 32 - Rotilio Center, 67100 L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Hajishengallis G. Aging and its Impact on Innate Immunity and Inflammation: Implications for Periodontitis. J Oral Biosci 2014; 56:30-37. [PMID: 24707191 DOI: 10.1016/j.job.2013.09.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The elderly exhibit increased susceptibility to a number of inflammatory or degenerative pathologies. Aging is similarly thought to be associated with increased prevalence and severity of periodontitis, although the underlying causes are poorly understood. Among the plausible mechanisms whereby aging could contribute to increased susceptibility to periodontitis are age-dependent alterations in the innate immune and inflammatory status of the host. This hypothesis is supported by studies in humans and animal models outlined in this Review. Indeed, innate immune cells isolated from elderly subjects exhibit age-related cell-intrinsic defects that could predispose the elderly to deregulated immune and inflammatory responses. Moreover, the investigation of age-related alterations in the tissue environment where recruited inflammatory cells ultimately function could provide complementary, if not better, insights into the impact of aging on periodontitis. Integrative approaches combining in vitro and in vivo mechanistic models are underway and can potentially contribute to targeted molecular therapies that can reverse or mitigate the effects of aging on periodontitis and other inflammatory diseases.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
189
|
Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, Kong D, Bao Z, Yu Z. The Neurovascular Protective Effects of Huperzine A on D-Galactose-Induced Inflammatory Damage in the Rat Hippocampus. Gerontology 2014; 60:424-39. [DOI: 10.1159/000358235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
|
190
|
Willis EL, Eberle R, Wolf RF, White GL, McFarlane D. The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS One 2014; 9:e107167. [PMID: 25244034 PMCID: PMC4170980 DOI: 10.1371/journal.pone.0107167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/04/2014] [Indexed: 12/29/2022] Open
Abstract
The human immune system undergoes age-related changes that can lead to increased disease susceptibility. Using the baboon as a model for human immune system aging, we examined age-related changes in relative and absolute numbers of T cell subpopulations, cytomegalovirus (CMV) titer and markers of inflammation. In addition, the effect of gender, social status and peer group on lymphocyte subpopulations was determined. Relative and absolute numbers of total lymphocytes (CD3+), T helper cells (CD4+), and cytotoxic T cells (CD8+) increased with age. The proportion of naïve T cells (CD45RA+) decreased, while the total number of cells negative for the co-stimulatory receptor, CD28 (CD28-) increased in an age-dependent manner. Furthermore, CMV titers were negatively correlated with the number of naive CD4+ cells. IL-6 and cortisol concentration were also negatively associated with T cell subpopulations. Additionally, socially dominant baboons exhibited decreases in naïve CD4+ and CD8+ cells (by 65% and 52%, respectively) compared to subordinate animals. These results suggest that factors such as CMV exposure and inflammation may contribute to the age-related decline in immune health and indicate that factors like social status should be considered when studying immunosenescence in animal models.
Collapse
Affiliation(s)
- Erin L. Willis
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Richard Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Roman F. Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Gary L. White
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dianne McFarlane
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
191
|
Salminen LE, Paul RH. Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci 2014; 25:805-19. [PMID: 25153586 PMCID: PMC6378111 DOI: 10.1515/revneuro-2014-0046] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Normal aging involves a gradual breakdown of physiological processes that leads to a decline in cognitive functions and brain integrity, yet the onset and progression of decline are variable among older individuals. While many biological changes may contribute to this degree of variability, oxidative stress is a key mechanism of the aging process that can cause direct damage to cellular architecture within the brain. Oligodendrocytes are at a high risk for oxidative damage due to their role in myelin maintenance and production and limited repair mechanisms, suggesting that white matter may be particularly vulnerable to oxidative activity. Antioxidant defense enzymes within the brain, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), are crucial for breaking down the harmful end products of oxidative phosphorylation. Previous studies have revealed that allele variations of polymorphisms that encode these antioxidants are associated with abnormalities in SOD, CAT, GPx, and GST activity in the central nervous system. This review will focus on the role of oxidative stress in the aging brain and the impact of decreased antioxidant defense on brain integrity and cognitive function. Directions for future research investigations of antioxidant defense genes will also be discussed.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO 63121, USA
| | - Robert H Paul
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO 63121, USA
| |
Collapse
|
192
|
Abstract
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed.
Collapse
Affiliation(s)
- Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
193
|
Nutrition, diet and immunosenescence. Mech Ageing Dev 2013; 136-137:116-28. [PMID: 24373813 DOI: 10.1016/j.mad.2013.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/10/2023]
Abstract
Ageing is characterized by immunosenescence and the progressive decline in immunity in association with an increased frequency of infections and chronic disease. This complex process affects both the innate and adaptive immune systems with a progressive decline in most immune cell populations and defects in activation resulting in loss of function. Although host genetics and environmental factors, such as stress, exercise and diet can impact on the onset or course of immunosenescence, the mechanisms involved are largely unknown. This review focusses on identifying the most significant aspects of immunosenescence and on the evidence that nutritional intervention might delay this process, and consequently improve the quality of life of the elderly.
Collapse
|
194
|
Gaur S, Agnihotri R. Green tea: A novel functional food for the oral health of older adults. Geriatr Gerontol Int 2013; 14:238-50. [DOI: 10.1111/ggi.12194] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry; Manipal College of Dental Sciences, Manipal University; Manipal India
| | - Rupali Agnihotri
- Department of Periodontology; Manipal College of Dental Sciences, Manipal University; Manipal India
| |
Collapse
|
195
|
Bravo R, Matito S, Cubero J, Paredes SD, Franco L, Rivero M, Rodríguez AB, Barriga C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1277-85. [PMID: 22622709 PMCID: PMC3705114 DOI: 10.1007/s11357-012-9419-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/20/2012] [Indexed: 05/23/2023]
Abstract
Melatonin and serotonin rhythms, which exhibit a close association with the endogenous circadian component of sleep, are attenuated with increasing age. This decrease seems to be linked to sleep alterations in the elderly. Chrononutrition is a field of chronobiology that establishes the principle of consuming foodstuffs at times of the day when they are more useful for health, improving, therefore, biorhythms and physical performance. Our aim was to analyze whether the consumption of cereals enriched with tryptophan, the precursor of both serotonin and melatonin, may help in the reconsolidation of the sleep/wake cycle and counteract depression and anxiety in 35 middle-aged/elderly (aged 55-75 year) volunteers in a simple blind assay. Data were collected for 3 weeks according to the following schedule: The control week participants consumed standard cereals (22.5 mg tryptophan in 30 g cereals per dose) at breakfast and dinner; for the treatment week, cereals enriched with a higher dose of tryptophan (60 mg tryptophan in 30 g cereals per dose) were eaten at both breakfast and dinner; the posttreatment week volunteers consumed their usual diet. Each participant wore a wrist actimeter that logged activity during the whole experiment. Urine was collected to analyze melatonin and serotonin urinary metabolites and to measure total antioxidant capacity. The consumption of cereals containing the higher dose in tryptophan increased sleep efficiency, actual sleep time, immobile time, and decreased total nocturnal activity, sleep fragmentation index, and sleep latency. Urinary 6-sulfatoxymelatonin, 5-hydroxyindoleacetic acid levels, and urinary total antioxidant capacity also increased respectively after tryptophan-enriched cereal ingestion as well as improving anxiety and depression symptoms. Cereals enriched with tryptophan may be useful as a chrononutrition tool for alterations in the sleep/wake cycle due to age.
Collapse
Affiliation(s)
- R Bravo
- Department of Physiology Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura (UEx), Badajoz, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Scheurmann J, Treiber N, Weber C, Renkl AC, Frenzel D, Trenz-Buback F, Ruess A, Schulz G, Scharffetter-Kochanek K, Weiss JM. Mice with heterozygous deficiency of manganese superoxide dismutase (SOD2) have a skin immune system with features of "inflamm-aging". Arch Dermatol Res 2013; 306:143-55. [PMID: 23856836 DOI: 10.1007/s00403-013-1389-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DC) are central in regulating skin immunity. Immunosenescence is associated with a chronic inflammatory state. Little is known about the contribution of DC to "inflamm-aging". When determining langerhans cell (LC) numbers, we found a 60 % reduction of LC in aged epidermis. Reactive oxygen species(ROS) are linked with aging. The mitochondrial manganese superoxide dismutase (SOD2) is in the first line of antioxidant defense. We investigated the function of DC from SOD2 heterozygous mice (SOD2+/-) and found that at 4 months of age LC numbers are not altered, but activated LC have impaired expression of MHC-II and CD44. Immature SOD2+/- DC produced increased proinflammatory IL-6 and chemokines CXCL1 and CXCL2. Upon challenge SOD2+/- DC accumulated ROS. When activating SOD2+/- DC by LPS they less efficiently upregulated MHC-II, CD86 and CD44. Surprisingly, in vivo contact hypersensitivity (CHS) was enhanced in SOD2+/- mice although SOD2+/- DC were less potent in stimulating wt T cells. However, SOD2+/- T cells showed increased proliferation, even when stimulated with SOD2+/- DC, possibly explaining the increased CHS. Our findings suggest that SOD2 is a molecular candidate in the regulation of "inflamm-aging" conveying both immunosuppressive and proinflammatory signals through alteration of DC and T cell functions.
Collapse
Affiliation(s)
- J Scheurmann
- Department of Dermatology and Allergology, University of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
From suboptimal to optimal treatment in older patients with cancer. J Geriatr Oncol 2013; 4:291-3. [DOI: 10.1016/j.jgo.2013.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022]
|
198
|
Abstract
Chronic inflammation and oxidative stress have been implicated in the pathophysiology of Major Depressive Disorder (MDD), as well as in a number of chronic medical conditions. The aim of this study was to examine the relationship between peripheral inflammatory and oxidative stress markers in un-medicated subjects with MDD compared to non-depressed healthy controls and compared to subjects with MDD after antidepressant treatment. We examined the relationships between IL-6, IL-10, and the IL-6/IL-10 inflammatory ratio vs. F2-isoprostanes (F2-IsoP), a marker of oxidative stress, in un-medicated MDD patients (n=20) before and after 8 weeks of open-label sertraline treatment (n=17), compared to healthy non-depressed controls (n=20). Among the un-medicated MDD subjects, F2-IsoP concentrations were positively correlated with IL-6 concentrations (p<0.05) and were negatively correlated with IL-10 concentrations (p<0.01). Accordingly, F2-IsoP concentrations were positively correlated with the ratio of IL-6/IL-10 (p<0.01). In contrast, in the control group, there were no significant correlations between F2-IsoPs and either cytokine or their ratio. After MDD subjects were treated with sertraline for 8 weeks, F2-IsoPs were no longer significantly correlated with IL-6, IL-10 or the IL-6/IL-10 ratio. These data suggest oxidative stress and inflammatory processes are positively associated in untreated MDD. Our findings are consistent with the hypothesis that the homeostatic buffering mechanisms regulating oxidation and inflammation in healthy individuals become dysregulated in untreated MDD, and may be improved with antidepressant treatment. These findings may help explain the increased risk of comorbid medical illnesses in MDD.
Collapse
|
199
|
Garrido M, Terrón MP, Rodríguez AB. Chrononutrition against oxidative stress in aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:729804. [PMID: 23861994 PMCID: PMC3703798 DOI: 10.1155/2013/729804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 01/27/2023]
Abstract
Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.
Collapse
Affiliation(s)
- M Garrido
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain.
| | | | | |
Collapse
|
200
|
Saluk J, Bijak M, Ponczek MB, Nowak P, Wachowicz B. (1→3)-β-D-Glucan reduces the damages caused by reactive oxygen species induced in human platelets by lipopolysaccharides. Carbohydr Polym 2013; 97:716-24. [PMID: 23911506 DOI: 10.1016/j.carbpol.2013.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 05/20/2013] [Indexed: 02/01/2023]
Abstract
LPS (lipopolysaccharide) induces platelet activation and is a well-known fundamental agent of septic shock and disseminated intravascular coagulation (DIC). Biological activity of (1→3)-β-D-glucan is related due to its anti-inflammatory, antioxidant, and antitumor properties. We focus our attention on the (1→3)-β-D-glucan (antiplatelet) properties. The main purpose of our study was to evaluate the influence of (1→3)-β-D-glucan from Saccharomyces cerevisiae on destructive activity of LPS (from Escherichia coli and Pseudomonas aeruginosa) on human blood platelets. We assess biochemically in vitro if (1→3)-β-D-glucan might combat the oxidative stress caused by LPS stroke associated with nitrative and oxidative damages of human platelet biomolecules. We also make an attempt by in silico molecular docking to determine the interactions between the molecules of (1→3)-β-D-glucan and LPS. Our conclusion is that protective mechanism of (1→3)-β-D-glucan against LPS action on blood platelets is due to as well: its antioxidant properties, as to its interaction with LPS-binding region of TLR4-MD-2 complex.
Collapse
Affiliation(s)
- Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | | | | | | |
Collapse
|