151
|
Sharadamma N, Harshavardhana Y, Ravishankar A, Anand P, Chandra N, Muniyappa K. Molecular dissection of Mycobacterium tuberculosis integration host factor reveals novel insights into the mode of DNA binding and nucleoid compaction. J Biol Chem 2014; 289:34325-40. [PMID: 25324543 DOI: 10.1074/jbc.m114.608596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαβ. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Collapse
Affiliation(s)
| | | | - Apoorva Ravishankar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Anand
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
152
|
van der Maarel JRC, Zhang C, van Kan JA. A Nanochannel Platform for Single DNA Studies: From Crowding, Protein DNA Interaction, to Sequencing of Genomic Information. Isr J Chem 2014. [DOI: 10.1002/ijch.201400091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
153
|
Guazzaroni ME, Silva-Rocha R. Expanding the logic of bacterial promoters using engineered overlapping operators for global regulators. ACS Synth Biol 2014; 3:666-75. [PMID: 25036188 DOI: 10.1021/sb500084f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The understanding of how the architecture of cis-regulatory elements at bacterial promoters determines their final output is of central interest in modern biology. In this work, we attempt to gain insight into this process by analyzing complex promoter architectures in the model organism Escherichia coli. By focusing on the relationship between different TFs at the genomic scale in terms of their binding site arrangement and their effect on the target promoters, we found no strong constraint limiting the combinatorial assembly of TF pairs in E. coli. More strikingly, overlapping binding sites were found equally associated with both equivalent (both TFs have the same effect on the promoter) and opposite (one TF activates while the other repress the promoter) effects on gene expression. With this information on hand, we set an in silico approach to design overlapping sites for three global regulators (GRs) of E. coli, specifically CRP, Fis, and IHF. Using random sequence assembly and an evolutionary algorithm, we were able to identify potential overlapping operators for all TF pairs. In order to validate our prediction, we constructed two lac promoter variants containing overlapping sites for CRP and IHF designed in silico. By assaying the synthetic promoters using a GFP reporter system, we demonstrated that these variants were functional and activated by CRP and IHF in vivo. Taken together, presented results add new information on the mechanisms of signal integration in bacterial promoters and provide new strategies for the engineering of synthetic regulatory circuits in bacteria.
Collapse
|
154
|
Two Fis regulators directly repress the expression of numerous effector-encoding genes in Legionella pneumophila. J Bacteriol 2014; 196:4172-83. [PMID: 25225276 DOI: 10.1128/jb.02017-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is an intracellular human pathogen that utilizes the Icm/Dot type IVB secretion system to translocate a large repertoire of effectors into host cells. For most of these effectors, there is no information regarding their regulation. Therefore, the aim of this study was to examine the involvement of the three L. pneumophila Fis homologs in the regulation of effector-encoding genes. Deletion mutants constructed in the genes encoding the three Fis regulators revealed that Fis1 (lpg0542 gene) and Fis3 (lpg1743) but not Fis2 (lpg1370) are partially required for intracellular growth of L. pneumophila in Acanthamoeba castellanii. To identify pathogenesis-related genes directly regulated by Fis, we established a novel in vivo system which resulted in the discovery of numerous effector-encoding genes directly regulated by Fis. Further examination of these genes revealed that Fis1 and Fis3 repress the level of expression of effector-encoding genes during exponential phase. Three groups of effector-encoding genes were identified: (i) effectors regulated mainly by Fis1, (ii) effectors regulated mainly by Fis3, and (iii) effectors regulated by both Fis1 and Fis3. Examination of the upstream regulatory region of all of these effector-encoding genes revealed multiple putative Fis regulatory elements, and site-directed mutagenesis confirmed that a few of these sites constitute part of a repressor binding element. Furthermore, gel mobility shift assays demonstrated the direct relation between the Fis1 and Fis3 regulators and these regulatory elements. Collectively, our results demonstrate for the first time that two of the three L. pneumophila Fis regulators directly repress the expression of Icm/Dot effector-encoding genes.
Collapse
|
155
|
Ghosh S, Mallick B, Nagaraja V. Direct regulation of topoisomerase activity by a nucleoid-associated protein. Nucleic Acids Res 2014; 42:11156-65. [PMID: 25200077 PMCID: PMC4176182 DOI: 10.1093/nar/gku804] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Bratati Mallick
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
156
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
157
|
GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site. PLoS One 2014; 9:e104811. [PMID: 25144373 PMCID: PMC4140684 DOI: 10.1371/journal.pone.0104811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT) and alanine dehydrogenase (AlaDH) in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs) of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II) were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.
Collapse
|
158
|
Ho CH, Wang HC, Ko TP, Chang YC, Wang AHJ. The T4 phage DNA mimic protein Arn inhibits the DNA binding activity of the bacterial histone-like protein H-NS. J Biol Chem 2014; 289:27046-27054. [PMID: 25118281 DOI: 10.1074/jbc.m114.590851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties.
Collapse
Affiliation(s)
- Chun-Han Ho
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,; Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Core Facilities for Protein Structural Analysis, and Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, and
| | - Andrew H-J Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,; Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Core Facilities for Protein Structural Analysis, and Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
159
|
Lim CJ, Kenney LJ, Yan J. Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res 2014; 42:8369-78. [PMID: 24990375 PMCID: PMC4117784 DOI: 10.1093/nar/gku566] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Escherichia coli H-NS protein is a major nucleoid-associated protein that is involved in chromosomal DNA packaging and gene regulatory functions. These biological processes are intimately related to the DNA supercoiling state and thus suggest a direct relationship between H-NS binding and DNA supercoiling. Here, we show that H-NS, which has two distinct DNA-binding modes, is able to differentially regulate DNA supercoiling. H-NS DNA-stiffening mode caused by nucleoprotein filament formation is able to suppress DNA plectoneme formation during DNA supercoiling. In contrast, when H-NS is in its DNA-bridging mode, it is able to promote DNA plectoneme formation during DNA supercoiling. In addition, the DNA-bridging mode is able to block twists diffusion thus trapping DNA in supercoiled domains. Overall, this work reveals the mechanical interplay between H-NS and DNA supercoiling which provides insights to H-NS organization of chromosomal DNA based on its two distinct DNA architectural properties.
Collapse
Affiliation(s)
- Ci Ji Lim
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore Centre for Bioimaging Sciences, National University of Singapore, Singapore Mechanobiology Institute, Singapore Department of Physics, National University of Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, Singapore Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, USA Department of Biological Sciences, National University of Singapore, Singapore
| | - Jie Yan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore Centre for Bioimaging Sciences, National University of Singapore, Singapore Mechanobiology Institute, Singapore Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
160
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
161
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
162
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
163
|
HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 2014; 196:2646-57. [PMID: 24816602 DOI: 10.1128/jb.01625-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing β-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.
Collapse
|
164
|
Structural change of DNA induced by nucleoid proteins: growth phase-specific Fis and stationary phase-specific Dps. Biophys J 2014; 105:1037-44. [PMID: 23972855 DOI: 10.1016/j.bpj.2013.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
The effects of nucleoid proteins Fis and Dps of Escherichia coli on the higher order structure of a giant DNA were studied, in which Fis and Dps are known to be expressed mainly in the exponential growth phase and stationary phase, respectively. Fis causes loose shrinking of the higher order structure of a genome-sized DNA, T4 DNA (166 kbp), in a cooperative manner, that is, the DNA conformational transition proceeds through the appearance of a bimodal size distribution or the coexistence of elongated coil and shrunken globular states. The effective volume of the loosely shrunken state induced by Fis is 30-60 times larger than that of the compact state induced by spermidine, suggesting that cellular enzymes can access for DNA with the shrunken state but cannot for the compact state. Interestingly, Dps tends to inhibit the Fis-induced shrinkage of DNA, but promotes DNA compaction in the presence of spermidine. These characteristic effects of nucleotide proteins on a giant DNA are discussed by adopting a simple theoretical model with a mean-field approximation.
Collapse
|
165
|
Ahmed W, Menon S, Godbole AA, Karthik PVDNB, Nagaraja V. Conditional silencing of topoisomerase I gene of Mycobacterium tuberculosis validates its essentiality for cell survival. FEMS Microbiol Lett 2014; 353:116-23. [PMID: 24593153 DOI: 10.1111/1574-6968.12412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022] Open
Abstract
Topoisomerases are an important class of enzymes for regulating the DNA transaction processes. Mycobacterium tuberculosis (Mtb) is one of the most formidable pathogens also posing serious challenges for therapeutic interventions. The organism contains only one type IA topoisomerase (Rv3646c), offering an opportunity to test its potential as a candidate drug target. To validate the essentiality of M. tuberculosis topoisomerase I (TopoI(Mt) ) for bacterial growth and survival, we have generated a conditionally regulated strain of topoI in Mtb. The conditional knockdown mutant exhibited delayed growth on agar plate. In liquid culture, the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the M. tuberculosis growth and open up new avenues for targeting the enzyme.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
166
|
Bracha D, Bar-Ziv RH. Dendritic and Nanowire Assemblies of Condensed DNA Polymer Brushes. J Am Chem Soc 2014; 136:4945-53. [DOI: 10.1021/ja410960w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dan Bracha
- Department
of Materials and
Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roy H. Bar-Ziv
- Department
of Materials and
Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
167
|
Tong H, Mrázek J. Investigating the interplay between nucleoid-associated proteins, DNA curvature, and CRISPR elements using comparative genomics. PLoS One 2014; 9:e90940. [PMID: 24595272 PMCID: PMC3940949 DOI: 10.1371/journal.pone.0090940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/06/2014] [Indexed: 02/03/2023] Open
Abstract
Many prokaryotic and eukaryotic genomes feature a characteristic periodic signal in distribution of short runs of A or T (A-tracts) phased with the DNA helical period of ∼10-11 bp. Such periodic spacing of A-tracts has been associated with intrinsic DNA curvature. In eukaryotes, this periodicity is a major component of the nucleosome positioning signal but its physiological role in prokaryotes is not clear. One hypothesis centers on possible role of intrinsic DNA bends in nucleoid compaction. We use comparative genomics to investigate possible relationship between the A-tract periodicity and nucleoid-associated proteins in prokaryotes. We found that genomes with DNA-bridging proteins tend to exhibit stronger A-tract periodicity, presumably indicative of more prevalent intrinsic DNA curvature. A weaker relationship was detected for nucleoid-associated proteins that do not form DNA bridges. We consider these results an indication that intrinsic DNA curvature acts collaboratively with DNA-bridging proteins in maintaining the compact structure of the nucleoid, and that previously observed differences among prokaryotic genomes in terms DNA curvature-related sequence periodicity may reflect differences in nucleoid organization. We subsequently investigated the relationship between A-tract periodicity and presence of CRISPR elements and we found that genomes with CRISPR tend to have stronger A-tract periodicity. This result is consistent with our earlier hypothesis that extensive A-tract periodicity could help protect the chromosome against integration of prophages, possibly due to its role in compaction of the nucleoid.
Collapse
Affiliation(s)
- Hao Tong
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
168
|
Spahn C, Endesfelder U, Heilemann M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J Struct Biol 2014; 185:243-9. [DOI: 10.1016/j.jsb.2014.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 11/25/2022]
|
169
|
Abellón-Ruiz J, Bernal-Bernal D, Abellán M, Fontes M, Padmanabhan S, Murillo FJ, Elías-Arnanz M. The CarD/CarG regulatory complex is required for the action of several members of the large set of Myxococcus xanthus extracytoplasmic function σ factors. Environ Microbiol 2014; 16:2475-90. [PMID: 24428729 DOI: 10.1111/1462-2920.12386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022]
Abstract
Extracytoplasmic function (ECF) σ factors are critical players in signal transduction networks involved in bacterial response to environmental changes. The Myxococcus xanthus genome reveals ∼45 putative ECF-σ factors, but for the overwhelming majority, the specific signals or mechanisms for selective activation and regulation remain unknown. One well-studied ECF-σ, CarQ, binds to its anti-σ, CarR, and is inactive in the dark but drives its own expression from promoter P(QRS) on illumination. This requires the CarD/CarG complex, the integration host factor (IHF) and a specific CarD-binding site upstream of P(QRS). Here, we show that DdvS, a previously uncharacterized ECF-σ, activates its own expression in a CarD/CarG-dependent manner but is inhibited when specifically bound to the N-terminal zinc-binding anti-σ domain of its cognate anti-σ, DdvA. Interestingly, we find that the autoregulatory action of 11 other ECF-σ factors studied here depends totally or partially on CarD/CarG but not IHF. In silico analysis revealed possible CarD-binding sites that may be involved in direct regulation by CarD/CarG of target promoter activity. CarD/CarG-linked ECF-σ regulation likely recurs in other myxobacteria with CarD/CarG orthologous pairs and could underlie, at least in part, the global regulatory effect of the complex on M. xanthus gene expression.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
170
|
Powikrowska M, Oetke S, Jensen PE, Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. FRONTIERS IN PLANT SCIENCE 2014; 5:424. [PMID: 25237313 PMCID: PMC4154389 DOI: 10.3389/fpls.2014.00424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.
Collapse
Affiliation(s)
- Marta Powikrowska
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Svenja Oetke
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Poul E. Jensen
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Karin Krupinska
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany e-mail:
| |
Collapse
|
171
|
Thacker VV, Bromek K, Meijer B, Kotar J, Sclavi B, Lagomarsino MC, Keyser UF, Cicuta P. Bacterial nucleoid structure probed by active drag and resistive pulse sensing. Integr Biol (Camb) 2014; 6:184-91. [DOI: 10.1039/c3ib40147b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine steerable optical trap and microcapillary Coulter counter experiments to detect global changes in bacterial nucleoid organization.
Collapse
Affiliation(s)
- Vivek V. Thacker
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Krystyna Bromek
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Benoit Meijer
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Jurij Kotar
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Bianca Sclavi
- CNRS/Ecole Normale Supérieure de Cachan
- Cachan, France
| | | | - Ulrich F. Keyser
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| | - Pietro Cicuta
- Cavendish Laboratory
- University of Cambridge
- Cambridge CB3 0HE, UK
| |
Collapse
|
172
|
Flåtten I, Skarstad K. The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One 2013; 8:e83562. [PMID: 24358293 PMCID: PMC3865182 DOI: 10.1371/journal.pone.0083562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
173
|
Mechanosensing of DNA bending in a single specific protein-DNA complex. Sci Rep 2013; 3:3508. [PMID: 24336435 PMCID: PMC3863814 DOI: 10.1038/srep03508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/29/2013] [Indexed: 01/10/2023] Open
Abstract
Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.
Collapse
|
174
|
Muskhelishvili G, Travers A. Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. Cell Mol Life Sci 2013; 70:4555-67. [PMID: 23771629 PMCID: PMC11113758 DOI: 10.1007/s00018-013-1394-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
Abstract
Understanding genetic regulation is a problem of fundamental importance. Recent studies have made it increasingly evident that, whereas the cellular genetic regulation system embodies multiple disparate elements engaged in numerous interactions, the central issue is the genuine function of the DNA molecule as information carrier. Compelling evidence suggests that the DNA, in addition to the digital information of the linear genetic code (the semantics), encodes equally important continuous, or analog, information that specifies the structural dynamics and configuration (the syntax) of the polymer. These two DNA information types are intrinsically coupled in the primary sequence organisation, and this coupling is directly relevant to regulation of the genetic function. In this review, we emphasise the critical need of holistic integration of the DNA information as a prerequisite for understanding the organisational complexity of the genetic regulation system.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | |
Collapse
|
175
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
176
|
Zhang C, Guttula D, Liu F, Malar PP, Ng SY, Dai L, Doyle PS, van Kan JA, van der Maarel JRC. Effect of H-NS on the elongation and compaction of single DNA molecules in a nanospace. SOFT MATTER 2013; 9:9593-601. [PMID: 26029766 DOI: 10.1039/c3sm51214b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of the bacterial heat-stable nucleoid-structuring protein (H-NS) on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. With increasing concentration of H-NS, the DNA molecules either elongate or contract. The conformational response is related to filamentation of H-NS on DNA through oligomerization and H-NS mediated bridging of distal DNA segments and is controlled by the concentration and ionic composition of the buffer. Confinement in a nanochannel also facilitates compaction of DNA into a condensed form for over-threshold concentrations of H-NS. Divalent ions such as magnesium facilitate but are not required for bridging nor condensation. The time scale of the collapse after exposure to H-NS was determined to be on the order of minutes, which is much shorter than the measured time required for filamentation of around one hour. We found that the effect of H-NS is not only related to its binding properties but also the confinement is of paramount importance. The interplay between confinement, H-NS-mediated attraction, and filamentation controls the conformation and compaction of DNA. This finding might have implications for gene silencing and chromosome organisation, because the cross-sectional dimensions of the channels are comparable to those of the bacterial nucleoid.
Collapse
Affiliation(s)
- Ce Zhang
- Department of Physics, National University of Singapore, Singapore 117542
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Mahdavi J, Royer PJ, Sjölinder HS, Azimi S, Self T, Stoof J, Wheldon LM, Brännström K, Wilson R, Moreton J, Moir JWB, Sihlbom C, Borén T, Jonsson AB, Soultanas P, Ala'Aldeen DAA. Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence. Open Biol 2013; 3:130048. [PMID: 24107297 PMCID: PMC3814720 DOI: 10.1098/rsob.130048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state.
Collapse
Affiliation(s)
- Jafar Mahdavi
- School of Life Sciences, Molecular Bacteriology and Immunology Group, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Joyeux M, Vreede J. A model of H-NS mediated compaction of bacterial DNA. Biophys J 2013; 104:1615-22. [PMID: 23561538 DOI: 10.1016/j.bpj.2013.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. To get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e., dangling configurations, cis- and trans-binding. In particular, the degree of compaction is extremely sensitive to the difference in binding energies of the cis and trans configurations. Our simulations also point out that the conformations of the DNA-protein complexes are significantly different in bulk and in planar conditions, suggesting that conformations observed on mica surfaces may differ significantly from those that prevail in living cells.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique UMR5588, Université Joseph Fourier Grenoble 1, St. Martin d'Hères, France.
| | | |
Collapse
|
179
|
Abstract
How much information is encoded in the DNA sequence of an organism? We argue that the informational, mechanical and topological properties of DNA are interdependent and act together to specify the primary characteristics of genetic organization and chromatin structures. Superhelicity generated in vivo, in part by the action of DNA translocases, can be transmitted to topologically sensitive regions encoded by less stable DNA sequences.
Collapse
|
180
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 2013; 97:8649-62. [PMID: 23812332 DOI: 10.1007/s00253-013-5047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
The ZIP family of metal transporters is involved in the transport of Zn(2+) and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using (65)Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in (65)Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP's may be part of a larger metal uptake system with shared regulatory elements.
Collapse
Affiliation(s)
- L Hudek
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | | | | | | | | |
Collapse
|
181
|
Singh SS, Grainger DC. H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLoS Genet 2013; 9:e1003589. [PMID: 23818873 PMCID: PMC3688479 DOI: 10.1371/journal.pgen.1003589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Extremely AT-rich DNA sequences present a challenging template for specific recognition by RNA polymerase. In bacteria, this is because the promoter -10 hexamer, the major DNA element recognised by RNA polymerase, is itself AT-rich. We show that Histone-like Nucleoid Structuring (H-NS) protein can facilitate correct recognition of a promoter by RNA polymerase in AT-rich gene regulatory regions. Thus, at the Escherichia coli ehxCABD operon, RNA polymerase is unable to distinguish between the promoter -10 element and similar overlapping sequences. This problem is resolved in native nucleoprotein because the overlapping sequences are masked by H-NS. Our work provides mechanistic insight into nucleoprotein structure and its effect on protein-DNA interactions in prokaryotic cells.
Collapse
Affiliation(s)
- Shivani S. Singh
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
182
|
Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keleş S, Landick R, Kiley PJ. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 2013; 9:e1003565. [PMID: 23818864 PMCID: PMC3688515 DOI: 10.1371/journal.pgen.1003565] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/29/2013] [Indexed: 01/05/2023] Open
Abstract
FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut. Regulation of gene expression by transcription factors (TFs) is key to adaptation to environmental changes. Our comprehensive, genome-scale analysis of a prototypical global TF, the anaerobic regulator FNR from Escherichia coli, leads to several novel and unanticipated insights into the influences on FNR binding genome-wide and the complex structure of bacterial regulons. We found that binding of NAPs restricts FNR binding at a subset of sites, suggesting that the bacterial genome is not freely accessible for FNR binding. Our finding that less than half of the predicted FNR binding sites were occupied in vivo further challenges the utility of using bioinformatic searches alone to predict regulon structure, reinforcing the need for experimental determination of TF binding. By correlating the occupancy data with transcriptomic data, we confirm that FNR serves as a global signal of anaerobiosis but expression of some operons in the FNR regulon require other regulators sensitive to alternative environmental stimuli. Thus, FNR binding and regulation appear to depend on both the nucleoprotein structure of the chromosome and on combinatorial binding of FNR with other regulators. Both of these phenomena are typical of TF binding in eukaryotes; our results establish that they are also features of bacterial TF binding.
Collapse
Affiliation(s)
- Kevin S. Myers
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Huihuang Yan
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dongjun Chung
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kun Liang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Frances Tran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| |
Collapse
|
183
|
Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 2013; 8:e67629. [PMID: 23799151 PMCID: PMC3682984 DOI: 10.1371/journal.pone.0067629] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF) resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.
Collapse
Affiliation(s)
- Laura A. Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology and the Department of Internal Medicine, College of Medicine, and the Ohio State University, Columbus, Ohio, United States of America
| | - M. Elizabeth Brockson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, and The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
184
|
Solano-Collado V, Lurz R, Espinosa M, Bravo A. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA. Nucleic Acids Res 2013; 41:6975-91. [PMID: 23723245 PMCID: PMC3737547 DOI: 10.1093/nar/gkt445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The MgaSpn transcriptional regulator contributes to the virulence of Streptococcus pneumoniae. It is thought to be a member of the Mga/AtxA family of global regulators. MgaSpn was shown to activate in vivo the P1623B promoter, which is divergent from the promoter (Pmga) of its own gene. This activation required a 70-bp region (PB activation region) located between both promoters. In this work, we purified an untagged form of the MgaSpn protein, which formed dimers in solution. By gel retardation and footprinting assays, we analysed the binding of MgaSpn to linear double-stranded DNAs. MgaSpn interacted with the PB activation region when it was placed at internal position on the DNA. However, when it was positioned at one DNA end, MgaSpn recognized preferentially the Pmga promoter placed at internal position. In both cases, and on binding to the primary site, MgaSpn spread along the adjacent DNA regions generating multimeric protein–DNA complexes. When both MgaSpn-binding sites were located at internal positions on longer DNAs, electron microscopy experiments demonstrated that the PB activation region was the preferred target. DNA molecules totally or partially covered by MgaSpn were also visualized. Our results suggest that MgaSpn might recognize particular DNA conformations to achieve DNA-binding specificity.
Collapse
Affiliation(s)
- Virtu Solano-Collado
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
185
|
Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF. Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol Microbiol 2013; 86:1318-33. [PMID: 23078205 DOI: 10.1111/mmi.12071] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/30/2022]
Abstract
We examine whether the Escherichia coli chromosome is folded into a self-adherent nucleoprotein complex, or alternately is a confined but otherwise unconstrained self-avoiding polymer. We address this through in vivo visualization, using an inducible GFP fusion to the nucleoid-associated protein Fis to non-specifically decorate the entire chromosome. For a range of different growth conditions, the chromosome is a compact structure that does not fill the volume of the cell, and which moves from the new pole to the cell centre. During rapid growth, chromosome segregation occurs well before cell division, with daughter chromosomes coupled by a thin inter-daughter filament before complete segregation, whereas during slow growth chromosomes stay adjacent until cell division occurs. Image correlation analysis indicates that sub-nucleoid structure is stable on a 1 min timescale, comparable to the timescale for redistribution time measured for GFP-Fis after photobleaching. Optical deconvolution and writhe calculation analysis indicate that the nucleoid has a large-scale coiled organization rather than being an amorphous mass. Our observations are consistent with the chromosome having a self-adherent filament organization.
Collapse
|
186
|
Wang H, Liu B, Wang Q, Wang L. Genome-wide analysis of the salmonella Fis regulon and its regulatory mechanism on pathogenicity islands. PLoS One 2013; 8:e64688. [PMID: 23717649 PMCID: PMC3662779 DOI: 10.1371/journal.pone.0064688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromatin immunoprecipitation (ChIP)-seq technologies, we first identified 1646 Fis-regulated genes and 885 Fis-binding targets in the S. enterica serovar Typhimurium, and found a Fis regulon different from that in E. coli. Fis has been reported to contribute to the invasion ability of S. enterica. By using cell infection assays, we found it also enhances the intracellular replication ability of S. enterica within macrophage cell, which is of central importance for the pathogenesis of infections. Salmonella pathogenicity islands (SPI)-1 and SPI-2 are crucial for the invasion and survival of S. enterica in host cells. Using mutation and overexpression experiments, real-time PCR analysis, and electrophoretic mobility shift assays, we demonstrated that Fis regulates 63 of the 94 Salmonella pathogenicity island (SPI)-1 and SPI-2 genes, by three regulatory modes: i) binds to SPI regulators in the gene body or in upstream regions; ii) binds to SPI genes directly to mediate transcriptional activation of themselves and downstream genes; iii) binds to gene encoding OmpR which affects SPI gene expression by controlling SPI regulators SsrA and HilD. Our results provide new insights into the impact of Fis on SPI genes and the pathogenicity of S. enterica.
Collapse
Affiliation(s)
- Hui Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
187
|
Kleine Borgmann LAK, Ries J, Ewers H, Ulbrich MH, Graumann PL. The bacterial SMC complex displays two distinct modes of interaction with the chromosome. Cell Rep 2013; 3:1483-92. [PMID: 23665219 DOI: 10.1016/j.celrep.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/26/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial SMC (structural maintenance of chromosomes) complex binds nonspecifically to DNA in vitro and forms two discrete subcellular centers in vivo, one in each cell half. How this distribution is maintained is unclear. We show by time-lapse imaging of single molecules that the localization is achieved through limited, yet rapid movement of the SMC subunits through the nucleoid. Accessory ScpAB subunits mediate the arrest of 20% of SMC molecules at the center of a cell half and do not move together with the 80% mobile SMC molecules. Only free SMC, but not the preformed SMC/ScpAB complex, was able to bind to DNA in vitro, revealing distinct functions of SMC fractions. Thus, whereas SMC alone dynamically interacts with many sites on the chromosome, it forms static assemblies together with ScpAB complex partners. Our findings reveal two distinct modes of interaction of SMC with the chromosome and indicate that limited diffusion within a confined space and transient arrest may be a general mechanism for positioning proteins within a chromosome and within a noncompartmentalized cell.
Collapse
Affiliation(s)
- Luise A K Kleine Borgmann
- Microbiology, Faculty for Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
188
|
Ma Q, Yin Y, Schell MA, Zhang H, Li G, Xu Y. Computational analyses of transcriptomic data reveal the dynamic organization of the Escherichia coli chromosome under different conditions. Nucleic Acids Res 2013; 41:5594-603. [PMID: 23599001 PMCID: PMC3675479 DOI: 10.1093/nar/gkt261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The circular chromosome of Escherichia coli has been suggested to fold into a collection of sequentially consecutive domains, genes in each of which tend to be co-expressed. It has also been suggested that such domains, forming a partition of the genome, are dynamic with respect to the physiological conditions. However, little is known about which DNA segments of the E. coli genome form these domains and what determines the boundaries of these domain segments. We present a computational model here to partition the circular genome into consecutive segments, theoretically suggestive of the physically folded supercoiled domains, along with a method for predicting such domains under specified conditions. Our model is based on a hypothesis that the genome of E. coli is partitioned into a set of folding domains so that the total number of unfoldings of these domains in the folded chromosome is minimized, where a domain is unfolded when a biological pathway, consisting of genes encoded in this DNA segment, is being activated transcriptionally. Based on this hypothesis, we have predicted seven distinct sets of such domains along the E. coli genome for seven physiological conditions, namely exponential growth, stationary growth, anaerobiosis, heat shock, oxidative stress, nitrogen limitation and SOS responses. These predicted folding domains are highly stable statistically and are generally consistent with the experimental data of DNA binding sites of the nucleoid-associated proteins that assist the folding of these domains, as well as genome-scale protein occupancy profiles, hence supporting our proposed model. Our study established for the first time a strong link between a folded E. coli chromosomal structure and the encoded biological pathways and their activation frequencies.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
189
|
Qu Y, Lim CJ, Whang YR, Liu J, Yan J. Mechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2. Nucleic Acids Res 2013; 41:5263-72. [PMID: 23580555 PMCID: PMC3664827 DOI: 10.1093/nar/gkt249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial nucleoid-associated proteins, such as H-NS-like proteins in Enterobacteriaceae, are abundant DNA-binding proteins that function in chromosomal DNA organization and gene transcription regulation. The Mycobacterium tuberculosis Lsr2 protein has been proposed to be the first identified H-NS analogue in Gram-positive bacteria based on its capability to complement numerous in vivo functions of H-NS. Here, we report that Lsr2 cooperatively binds to DNA forming a rigid Lsr2 nucleoprotein complex that restricts DNA accessibility, similar to H-NS. On large DNA, the rigid Lsr2 nucleoprotein complexes can mediate DNA condensation into highly compact DNA conformations. In addition, the responses of Lsr2 nucleoprotein complex to environmental factors (salt concentration, temperature and pH) were studied over physiological ranges. These results provide mechanistic insights into how Lsr2 may mediate its gene silencing, genomic DNA protection and organization functions in vivo. Finally, our results strongly support that Lsr2 is an H-NS-like protein in Gram-positive bacteria from a structural perspective.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | | | | | | | | |
Collapse
|
190
|
Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 2013; 11:349-55. [DOI: 10.1038/nrmicro3007] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
191
|
Abstract
The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.
Collapse
Affiliation(s)
- Alvaro Sanchez
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
192
|
Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. MOLECULAR BIOSYSTEMS 2013; 9:1643-51. [PMID: 23493878 DOI: 10.1039/c3mb25515h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.
Collapse
Affiliation(s)
- Patrick Sobetzko
- Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
193
|
Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Res 2013; 41:4171-84. [PMID: 23427309 PMCID: PMC3627587 DOI: 10.1093/nar/gkt095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF–DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules.
Collapse
Affiliation(s)
- Julia P Swiercz
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
194
|
Ma Q, Xu Y. Global genomic arrangement of bacterial genes is closely tied with the total transcriptional efficiency. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:66-71. [PMID: 23434046 PMCID: PMC4357662 DOI: 10.1016/j.gpb.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
The availability of a large number of sequenced bacterial genomes allows researchers not only to derive functional and regulation information about specific organisms but also to study the fundamental properties of the organization of a genome. Here we address an important and challenging question regarding the global arrangement of operons in a bacterial genome: why operons in a bacterial genome are arranged in the way they are. We have previously studied this question and found that operons of more frequently activated pathways tend to be more clustered together in a genome. Specifically, we have developed a simple sequential distance-based pseudo energy function and found that the arrangement of operons in a bacterial genome tend to minimize the clusteredness function (C value) in comparison with artificially-generated alternatives, for a variety of bacterial genomes. Here we extend our previous work, and report a number of new observations: (a) operons of the same pathways tend to group into a few clusters rather than one; and (b) the global arrangement of these operon clusters tend to minimize a new “energy” function (C+ value) that reflects the efficiency of the transcriptional activation of the encoded pathways. These observations provide insights into further study of the genomic organization of genes in bacteria.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
195
|
Zarei M, Sclavi B, Cosentino Lagomarsino M. Gene silencing and large-scale domain structure of the E. coli genome. MOLECULAR BIOSYSTEMS 2013; 9:758-67. [DOI: 10.1039/c3mb25364c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
196
|
Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 2012; 11:45-57. [DOI: 10.1038/nrmicro2930] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
197
|
Predicting the effect of ions on the conformation of the H-NS dimerization domain. Biophys J 2012; 103:89-98. [PMID: 22828335 DOI: 10.1016/j.bpj.2012.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/11/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a DNA-organizing protein in bacteria. It contains a DNA-binding domain and a dimerization domain, connected by a flexible linker region. Dimerization occurs through the formation of a helical bundle, including a coiled-coil interaction motif. Two conformations have been resolved, for different sequences of Escherichia coli H-NS, resulting in an antiparallel coiled-coil for the shorter wild-type sequence, and a parallel coiled-coil for the longer C21S mutant. Because H-NS functions as a thermo- and osmosensor, these conformations may both be functionally relevant. Molecular simulation can complement experiments by modeling the dynamical time evolution of biomolecular systems in atomistic detail. We performed a molecular-dynamics study of the H-NS dimerization domain, showing that the parallel complex is sensitive to changes in salt conditions: it is unstable in absence of NaCl, but stable at physiological salt concentrations. In contrast, the stability of the antiparallel complex is not salt-dependent. The stability of the parallel complex also appears to be affected by mutation of the critical but nonconserved cysteine residue at position 21, whereas the antiparallel complex is not. Together, our simulations suggest that osmoregulation could be mediated by changes in the ratio of parallel- and antiparallel-oriented H-NS dimers.
Collapse
|
198
|
Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2012. [PMID: 23203884 PMCID: PMC3531196 DOI: 10.1093/nar/gks1201] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental knowledge, and we have implemented criteria for the quality of our computational predictions. Regulatory phrases now provide high-level descriptions of regulatory regions. We expanded the assignment of quality to various sources of evidence, particularly for knowledge generated through high-throughput (HT) technology. Based on our analysis of most relevant methods, we defined rules for determining the quality of evidence when multiple independent sources support an entry. With this latest release of RegulonDB, we present a new highly reliable larger collection of transcription start sites, a result of our experimental HT genome-wide efforts. These improvements, together with several novel enhancements (the tracks display, uploading format and curational guidelines), address the challenges of incorporating HT-generated knowledge into RegulonDB. Information on the evolutionary conservation of regulatory elements is also available now. Altogether, RegulonDB version 8.0 is a much better home for integrating knowledge on gene regulation from the sources of information currently available.
Collapse
Affiliation(s)
- Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Ptacin JL, Shapiro L. Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 2012; 15:45-52. [PMID: 23078580 DOI: 10.1111/cmi.12049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
The bacterial chromosome encodes information at multiple levels. Beyond direct protein coding, genomes encode regulatory information required to orchestrate the proper timing and levels of gene expression and protein synthesis, and contain binding sites and regulatory sequences to co-ordinate the activities of proteins involved in chromosome repair and maintenance. In addition, it is becoming increasingly clear that yet another level of information is encoded by the bacterial chromosome - the three-dimensional packaging of the chromosomal DNA molecule itself and its positioning relative to the cell. This vast structural blueprint of specific positional information is manifested in various ways, directing chromosome compaction, accessibility, attachment to the cell envelope, supercoiling, and general architecture and arrangement of the chromosome relative to the cell body. Recent studies have begun to identify and characterize novel systems that utilize the three-dimensional spatial information encoded by chromosomal architecture to co-ordinate and direct fundamental cellular processes within the cytoplasm, providing large-scale order within the complex clutter of the cytoplasmic compartment.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
200
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|