151
|
Liu C. The Role of Mesenchymal Stem Cells in Regulating Astrocytes-Related Synapse Dysfunction in Early Alzheimer’s Disease. Front Neurosci 2022; 16:927256. [PMID: 35801178 PMCID: PMC9253587 DOI: 10.3389/fnins.2022.927256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is characterized by the presence of extracellular amyloid-β (Aβ) aggregates and intracellular neurofibrillary tangles formed by hyperphosphorylated tau as pathological features and the cognitive decline as main clinical features. An important cellular correlation of cognitive decline in AD is synapse loss. Soluble Aβ oligomer has been proposed to be a crucial early event leading to synapse dysfunction in AD. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function have been suggested in the pathogenesis of AD. Astrocytes may contribute to synapse dysfunction at an early stage of AD by participating in Aβ metabolism, brain inflammatory response, and synaptic regulation. While mesenchymal stem cells can inhibit astrogliosis, and promote non-reactive astrocytes. They can also induce direct regeneration of neurons and synapses. This review describes the role of mesenchymal stem cells and underlying mechanisms in regulating astrocytes-related Aβ metabolism, neuroinflammation, and synapse dysfunction in early AD, exploring the open questions in this field.
Collapse
|
152
|
Xu J, Su Y, Fu J, Wang X, Nguchu BA, Qiu B, Dong Q, Cheng X. Glymphatic dysfunction correlates with severity of small vessel disease and cognitive impairment in cerebral amyloid angiopathy. Eur J Neurol 2022; 29:2895-2904. [PMID: 35712978 DOI: 10.1111/ene.15450] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by β-amyloid deposition in cortical and leptomeningeal arterioles, which might result from glymphatic dysfunction. We aimed to explore glymphatic function in CAA using the non-invasive diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. METHODS We prospectively recruited 63 patients with CAA, and 70 age- and sex-matched normal controls. We applied Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) to screen global cognitive status. We conducted MRI scans to calculate the index for diffusivity along the perivascular space (ALPS-index), and linear regression models to assess its relationships with cerebral small vessel disease (CSVD) markers, cognitive status, and blood biomarkers. We applied Cox proportional hazard models to explore the role of baseline ALPS-index in disease recurrence. RESULTS Patients with CAA exhibited a lower ALPS-index than controls globally (p < 0.001). Besides, the lower ALPS-index was related to more enlarged perivascular space in basal ganglia (p = 0.026), more lacunes (p < 0.001), higher white matter hyperintensities Fazekas score (p = 0.049), elevated total MRI burden of CSVD (p = 0.034), and lower MMSE (p = 0.001) as well as MoCA (p < 0.001) in CAA. During a median follow-up of 4.1 years, higher ALPS-index was associated with lower disease recurrence (p=0.022). ALPS-index was also negatively correlated with serum soluble intercellular adhesion molecule-1, neurofilament light and chitinase-3-like protein 1 in CAA. CONCLUSIONS Patients with CAA showed impaired glymphatic function. ALPS-index was significantly related to CSVD severity, cognitive impairment, and disease recurrence in CAA.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxiao Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Benedictor Alexander Nguchu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
153
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
154
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
155
|
Folate Related Pathway Gene Analysis Reveals a Novel Metabolic Variant Associated with Alzheimer’s Disease with a Change in Metabolic Profile. Metabolites 2022; 12:metabo12060475. [PMID: 35736408 PMCID: PMC9230919 DOI: 10.3390/metabo12060475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic disorders may be important potential causative pathways to Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) decreasing output, raised intracranial pressure, and ventricular enlargement have all been linked to AD. Cerebral folate metabolism may be a key player since this is significantly affected by such changes in CSF, and genetic susceptibilities may exist in this pathway. In the current study, we aimed to identify whether any single nucleotide polymorphism (SNPs) affecting folate and the associated metabolic pathways were significantly associated with AD. We took a functional nutrigenomics approach to look for SNPs in genes for the linked folate, methylation, and biogenic amine neurotransmitter pathways. Changes in metabolism were found with the SNPs identified. An abnormal SNP in methylene tetrahydrofolate dehydrogenase 1 (MTHFD1) was significantly predictive of AD and associated with an increase in tissue glutathione. Individuals without these SNPs had normal levels of glutathione but significantly raised MTHFD1. Both changes would serve to decrease potentially neurotoxic levels of homocysteine. Seven additional genes were associated with Alzheimer’s and five with normal ageing. MTHFD1 presents a strong prediction of susceptibility and disease among the SNPs associated with AD. Associated physiological changes present potential biomarkers for identifying at-risk individuals.
Collapse
|
156
|
Skauli N, Savchenko E, Ottersen OP, Roybon L, Amiry-Moghaddam M. Canonical Bone Morphogenetic Protein Signaling Regulates Expression of Aquaporin-4 and Its Anchoring Complex in Mouse Astrocytes. Front Cell Neurosci 2022; 16:878154. [PMID: 35518645 PMCID: PMC9067306 DOI: 10.3389/fncel.2022.878154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin-4 (AQP4) is the predominant water channel in the brain; it is enriched in astrocytic foot processes abutting vessels where it is anchored through an interaction with the dystrophin-associated protein (DAP) complex. Enhanced expression with concomitant mislocalization of AQP4 along astrocyte plasma membranes is a hallmark of several neurological conditions. Thus, there is an urgent need to identify which signaling pathways dictate AQP4 microdistribution. Here we show that canonical bone morphogenetic proteins (BMPs), particularly BMP2 and 4, upregulate AQP4 expression in astrocytes and dysregulate the associated DAP complex by differentially affecting its individual members. We further demonstrate the presence of BMP receptors and Smad1/5/9 pathway activation in BMP treated astrocytes. Our analysis of adult mouse brain reveals BMP2 and 4 in neurons and in a subclass of endothelial cells and activated Smad1/5/9 in astrocytes. We conclude that the canonical BMP-signaling pathway might be responsible for regulating the expression of AQP4 and of DAP complex proteins that govern the subcellular compartmentation of this aquaporin.
Collapse
Affiliation(s)
- Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Karolinska Institutet, Stockholm, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
157
|
Bonney PA, Briggs RG, Wu K, Choi W, Khahera A, Ojogho B, Shao X, Zhao Z, Borzage M, Wang DJJ, Liu C, Lee DJ. Pathophysiological Mechanisms Underlying Idiopathic Normal Pressure Hydrocephalus: A Review of Recent Insights. Front Aging Neurosci 2022; 14:866313. [PMID: 35572128 PMCID: PMC9096647 DOI: 10.3389/fnagi.2022.866313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The pathophysiologic mechanisms underpinning idiopathic normal pressure hydrocephalus (iNPH), a clinically diagnosed dementia-causing disorder, continue to be explored. An increasing body of evidence implicates multiple systems in the pathogenesis of this condition, though a unifying causative etiology remains elusive. Increased knowledge of the aberrations involved has shed light on the iNPH phenotype and has helped to guide prognostication for treatment with cerebrospinal fluid diversion. In this review, we highlight the central role of the cerebrovasculature in pathogenesis, from hydrocephalus formation to cerebral blood flow derangements, blood-brain barrier breakdown, and glymphatic pathway dysfunction. We offer potential avenues for increasing our understanding of how this disease occurs.
Collapse
Affiliation(s)
- Phillip A. Bonney
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Phillip A. Bonney
| | - Robert G. Briggs
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wooseong Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anadjeet Khahera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Ojogho
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Department of Physiology & Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew Borzage
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
158
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
159
|
Reduced cerebral blood flow of lingual gyrus associated with both cognitive impairment and gait disturbance in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2022; 437:120266. [DOI: 10.1016/j.jns.2022.120266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
|
160
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
161
|
Hou C, Liu Q, Zhang H, Wang W, Wang B, Cui X, Li J, Ren W, Yang X. Nimodipine Attenuates Early Brain Injury by Protecting the Glymphatic System After Subarachnoid Hemorrhage in Mice. Neurochem Res 2022; 47:701-712. [PMID: 34792752 DOI: 10.1007/s11064-021-03478-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
The glymphatic system (GS) plays an important role in subarachnoid hemorrhage (SAH). Nimodipine treatment provides SAH patients with short-term neurological benefits. However, no trials have been conducted to quantify the relationship between nimodipine and GS. We hypothesized that nimodipine could attenuate early brain injury (EBI) after SAH by affecting the function of the GS. In this study, we assessed the effects of nimodipine, a dihydropyridine calcium channel antagonist, on mice 3 days after SAH. The functions of GS were assessed by immunofluorescence and western blot. The effects of nimodipine were assessed behaviorally. Concurrently, correlation analysis was performed for the functions of GS, immunofluorescence and behavioral function. Our results indicated that nimodipine improved GS function and attenuated neurological deficits and brain edema in mice with SAH. Activation of the cAMP/PKA pathway was involved in this process. GS function was closely associated with perivascular AQP4 polarization, cortical GFAP/AQP4 expression, brain edema and neurobehavioral function. In conclusion, this study shows for the first time that nimodipine plays a neuroprotective role in the period of EBI after SAH in mice through the GS.
Collapse
Affiliation(s)
- Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Xiaopeng Cui
- Department of Neurosurgery, Tianjin Fifth Central Hospital, 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, People's Republic of China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Wen Ren
- The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
162
|
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol 2022; 13:814285. [PMID: 35222082 PMCID: PMC8864228 DOI: 10.3389/fphys.2022.814285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Kaige Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
163
|
Liu Y, Hu PP, Zhai S, Feng WX, Zhang R, Li Q, Marshall C, Xiao M, Wu T. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res 2022; 17:2079-2088. [PMID: 35142700 PMCID: PMC8848602 DOI: 10.4103/1673-5374.335169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Regular exercise has been shown to reduce the risk of Alzheimer's disease (AD). Our previous study showed that the protein aquaporin 4 (AQP4), which is specifically expressed on the paravascular processes of astrocytes, is necessary for glymphatic clearance of extracellular amyloid beta (Aβ) from the brain, which can delay the progression of Alzheimer's disease. However, it is not known whether AQP4-regulated glymphatic clearance of extracellular Aβ is involved in beneficial effects of exercise in AD patients. Our results showed that after 2 months of voluntary wheel exercise, APP/PS1 mice that were 3 months old at the start of the intervention exhibited a decrease in Aβ burden, glial activation, perivascular AQP4 mislocalization, impaired glymphatic transport, synapse protein loss, and learning and memory defects compared with mice not subjected to the exercise intervention. In contrast, APP/PS1 mice that were 7 months old at the start of the intervention exhibited impaired AQP4 polarity and reduced glymphatic clearance of extracellular Aβ, and the above-mentioned impairments were not alleviated after the 2-month exercise intervention. Compared with age-matched APP/PS1 mice, AQP4 knockout APP/PS1 mice had more serious defects in glymphatic function, Aβ plaque deposition, and cognitive impairment, which could not be alleviated after the exercise intervention. These findings suggest that AQP4-dependent glymphatic transport is the neurobiological basis for the beneficial effects of voluntary exercises that protect against the onset of AD.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Pan-Pan Hu
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University; Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuang Zhai
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei-Xi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University; Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Charles Marshall
- College of Health Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University; Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ting Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
164
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
165
|
Wang Y, Huang C, Guo Q, Chu H. Aquaporin-4 and Cognitive Disorders. Aging Dis 2022; 13:61-72. [PMID: 35111362 PMCID: PMC8782559 DOI: 10.14336/ad.2021.0731] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral part of the glymphatic system that cannot be ignored. The CNS has the glymphatic system instead of the conventional lymphatic system. The glymphatic system plays an essential role in the pathophysiological processes of many cognitive disorders. AQP4 shows noteworthy changes in various cognitive disorders and is part of the pathogenesis of these diseases. For this reason, AQP4 has attracted attention as a potential and promising target for regulating and even reversing cognitive dysfunction. This review will summarize the role of AQP4 in the pathophysiological processes of several cognitive disorders as reported in recent studies.
Collapse
Affiliation(s)
- Yifan Wang
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chuyi Huang
- 2Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai China
| | - Qihao Guo
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Heling Chu
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
166
|
Tatulian SA. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022; 27:1027-1043. [PMID: 35121174 DOI: 10.1016/j.drudis.2022.01.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Recent drug development efforts targeting Alzheimer's disease (AD) have failed to produce effective disease-modifying agents for many reasons, including the substantial presymptomatic neuronal damage that is caused by the accumulation of the amyloid β (Aβ) peptide and tau protein abnormalities, deleterious adverse effects of drug candidates, and inadequate design of clinical trials. New molecular targets, biomarkers, and diagnostic techniques, as well as alternative nonpharmacological approaches, are sorely needed to detect and treat early pathological events. This article analyzes the successes and debacles of pharmaceutical endeavors to date, and highlights new technologies that may lead to the more effective diagnosis and treatment of the pathologies that underlie AD. The use of focused ultrasound, deep brain stimulation, stem cell therapy, and gene therapy, in parallel with pharmaceuticals and judicious lifestyle adjustments, holds promise for the deceleration, prevention, or cure of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, College of Sciences, and Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
167
|
Liu J, Guo Y, Zhang C, Zeng Y, Luo Y, Wang G. Clearance Systems in the Brain, From Structure to Function. Front Cell Neurosci 2022; 15:729706. [PMID: 35173581 PMCID: PMC8841422 DOI: 10.3389/fncel.2021.729706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
As the most metabolically active organ in the body, there is a recognized need for pathways that remove waste proteins and neurotoxins from the brain. Previous research has indicated potential associations between the clearance system in the brain and the pathological conditions of the central nervous system (CNS), due to its importance, which has attracted considerable attention recently. In the last decade, studies of the clearance system have been restricted to the glymphatic system. However, removal of toxic and catabolic waste by-products cannot be completed independently by the glymphatic system, while no known research or article has focused on a comprehensive overview of the structure and function of the clearance system. This thesis addresses a neglected aspect of linkage between the structural composition and main components as well as the role of neural cells throughout the clearance system, which found evidence that the components of CNS including the glymphatic system and the meningeal lymphatic system interact with a neural cell, such as astrocytes and microglia, to carry out vital clearance functions. As a result of this evidence that can contribute to a better understanding of the clearance system, suggestions were identified for further clinical intervention development of severe conditions caused by the accumulation of metabolic waste products and neurotoxins in the brain, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Yunzhi Guo
- Xiangya Medical College of Central South University, Changsha, China
| | - Chengyue Zhang
- Xiangya Medical College of Central South University, Changsha, China
| | - Yang Zeng
- Xiangya Medical College of Central South University, Changsha, China
| | - Yongqi Luo
- Xiangya Medical College of Central South University, Changsha, China
| | - Gaiqing Wang
- Shanxi Medical University, Taiyuan, China
- Department of Neurology, Affiliated Sanya Central Hospital of Hainan Medical University, Sanya, China
- *Correspondence: Gaiqing Wang, ,
| |
Collapse
|
168
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
169
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
170
|
Kumaria A, Tolias CM. Post-traumatic hydrocephalus: unknown knowns and known unknowns. Br J Neurosurg 2022; 36:295-297. [DOI: 10.1080/02688697.2022.2028723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham, UK
| | | |
Collapse
|
171
|
Wichmann TO, Damkier HH, Pedersen M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases. Front Hum Neurosci 2022; 15:737217. [PMID: 35126070 PMCID: PMC8813779 DOI: 10.3389/fnhum.2021.737217] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
A comprehensive understanding of the cerebrospinal fluid (CSF) system is essential for our understanding of health and disease within the central nervous system (CNS). The system of CSF refers to all components involved in CSF production, movement, and absorption. In recent years, extensive research has resulted in vastly improved understanding of the CSF system in health and disease. Yet, several aspects remain to be fully clarified, notably along the spinal cord as the preponderance of research has focused on the brain. This review briefly summarizes the CSF system and its implications for CNS diseases and highlights the knowledge gaps that require further research.
Collapse
Affiliation(s)
- Thea Overgaard Wichmann
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Thea Overgaard Wichmann
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
172
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
173
|
Wang T, Chen Y, Zou Y, Pang Y, He X, Chen Y, Liu Y, Feng W, Zhang Y, Li Q, Shi J, Ding F, Marshall C, Gao J, Xiao M. Locomotor Hyperactivity in the Early-Stage Alzheimer’s Disease-like Pathology of APP/PS1 Mice: Associated with Impaired Polarization of Astrocyte Aquaporin 4. Aging Dis 2022; 13:1504-1522. [PMID: 36186142 PMCID: PMC9466968 DOI: 10.14336/ad.2022.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Non-cognitive behavioral and psychological symptoms often occur in Alzheimer's disease (AD) patients and mouse models, although the exact neuropathological mechanism remains elusive. Here, we report hyperactivity with significant inter-individual variability in 4-month-old APP/PS1 mice. Pathological analysis revealed that intraneuronal accumulation of amyloid-β (Aβ), c-Fos expression in glutamatergic neurons and activation of astrocytes were more evident in the frontal motor cortex of hyperactive APP/PS1 mice, compared to those with normal activity. Moreover, the hyperactive phenotype was associated with mislocalization of perivascular aquaporin 4 (AQP4) and glymphatic transport impairment. Deletion of the AQP4 gene increased hyperactivity, intraneuronal Aβ load and glutamatergic neuron activation, but did not influence working memory or anxiety-like behaviors of 4-month-old APP/PS1 mice. Together, these results demonstrate that AQP4 mislocalization or deficiency leads to increased intraneuronal Aβ load and neuronal hyperactivity in the motor cortex, which in turn causes locomotor over-activity during the early pathophysiology of APP/PS1 mice. Therefore, improving AQP4 mediated glymphatic clearance may offer a new strategy for early intervention of hyperactivity in the prodromal phase of AD.
Collapse
Affiliation(s)
- Tianqi Wang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ying Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yali Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Liu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yanli Zhang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Li
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Charles Marshall
- College of Health Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY 41701, USA
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
174
|
Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS. Sleep Med 2021; 89:176-181. [PMID: 35030357 DOI: 10.1016/j.sleep.2021.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to evaluate the glymphatic system function in patients with obstructive sleep apnea (OSA) compared to healthy controls using diffusion tensor imaging (DTI) with the perivascular space (DTI-ALPS) method. Our hypothesis is that patients with OSA may have glymphatic system dysfunction, which is correlated with OSA severity. METHODS We enrolled 24 patients with OSA and 24 healthy controls. All participants underwent DTI magnetic resonance imaging (MRI) using the same 3T MRI scanner, and we calculated the DTI-ALPS index from the DTI. We evaluated the differences in the DTI-ALPS index between patients with OSA and healthy controls. In addition, we conducted a correlation analysis between the DTI-ALPS index and clinical characteristics. RESULTS The DTI-ALPS index was significantly different between the groups. The DTI-ALPS in patients with OSA was significantly lower than in healthy controls (1.30450 vs. 1.61600, p = 0.0006). Furthermore, the DTI-ALPS index was significantly negatively correlated with the apnea-hypopnea index in sleep stage N (r = -0.427, p = 0.042) and oxygen desaturation index during sleep N (r = -0.497, p = 0.036). CONCLUSION We successfully demonstrated glymphatic system dysfunction in patients with OSA. In addition, glymphatic system dysfunction is well correlated with OSA severity, especially during sleep stage N. Thus, these findings can explain the effects of OSA on increased risk of developing dementia and highlight the importance of OSA treatment.
Collapse
|
175
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
176
|
Kuroda T, Honma M, Mori Y, Futamura A, Sugimoto A, Kasai H, Yano S, Hieda S, Kasuga K, Ikeuchi T, Ono K. White Matter Lesions May Aid in Differentiating Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease. J Alzheimers Dis 2021; 85:851-862. [PMID: 34864676 DOI: 10.3233/jad-215187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is often misdiagnosed as Alzheimer's disease (AD) due to overlapping pathophysiology and similar imaging characteristics, including ventricular enlargement and increased white matter lesions (WMLs). OBJECTIVE To compare the extent and distribution of WMLs directly between iNPH and AD and examine the association with underlying pathophysiology. METHODS Twelve patients with iNPH (mean age: 78.08 years; 5 females), 20 with AD (mean age: 75.40 years; 13 females), and 10 normal cognition (NC) participants (mean age: 76.60 years; 7 females) were recruited. The extent and distribution of WMLs and the lateral ventricular volume (LV-V) were evaluated on MRI using voxel-based morphometry analysis. Concentrations of cerebrospinal fluid biomarkers, such as amyloid-β protein (Aβ)42, Aβ 40, Aβ 38, and tau species, were also measured. Risk factors for small vessel disease (SVD) were assessed by blood examination and medical records. RESULTS The periventricular WML volume (PWML-V) and deep WML volume (DWML-V) were significantly larger in iNPH than in AD and NC. The DWML-V was dominant in iNPH, while the PWML-V was dominant in AD and NC. GM-V was significantly smaller in AD than in iNPH and NC. The LV-V positively correlated with WML-V in all participants. There was a significant negative correlation between LV-V and Aβ 38 in iNPH. Furthermore, there was no significant difference in SVD risk factors between the groups. CONCLUSION The differences in the extent and distribution of WMLs between iNPH and AD, especially predominance of DWML-V over PWML-V in iNPH, may reflect decreased fluid and Aβ clearance.
Collapse
Affiliation(s)
- Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yukiko Mori
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Azusa Sugimoto
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hideyo Kasai
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Yano
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sotaro Hieda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.,Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
177
|
Interplay between vascular hemodynamics and the glymphatic system in the pathogenesis of idiopathic normal pressure hydrocephalus, exploring novel neuroimaging diagnostics. Neurosurg Rev 2021; 45:1255-1261. [PMID: 34773535 DOI: 10.1007/s10143-021-01690-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
As the aging population continues to grow, so will the incidence of age-related conditions, including idiopathic normal pressure hydrocephalus (iNPH). The pathogenesis of iNPH remains elusive, and this is due in part to the poor characterization of cerebral spinal fluid (CSF) dynamics within the brain. Advancements in technology and imaging techniques have enabled new breakthroughs in understanding CSF physiology, and therefore iNPH pathogenesis. This includes understanding the hemodynamic and microvascular components involved in CSF influx and flow. Namely, the glymphatic system appears to be the great mediator, facilitating perivascular CSF flow via astrocytic aquaporin channels located along the endothelium of the pial vasculature. The interplay between glymphatics and both arterial pulsatilty and venous compliance has also been recently demonstrated. It appears then that CSF flow, and therefore glymphatic function, are highly dependent on cardiocirculatory and vascular factors. Impairment in any one component, whether it be related to arterial pulsatility, microvascular changes, reduced venous drainage, or astrogliosis, contributes greatly to iNPH, although it is likely a combination thereof. The strong interplay between vascular hemodynamics and CSF flow suggests perfusion imaging and cerebral blood flow quantification may be a useful diagnostic tool in characterizing iNPH. In addition, studies detecting glymphatic flow with magnetic resonance imaging have also emerged. These imaging tools may serve to both diagnose iNPH and help delineate it from other similarly presenting disease processes. With a better understanding of the vascular and glymphatic factors related to iNPH pathogenesis, physicians are better able to select the best candidates for treatment.
Collapse
|
178
|
Parodi-Rullán RM, Javadov S, Fossati S. Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells 2021; 10:cells10112903. [PMID: 34831125 PMCID: PMC8616424 DOI: 10.3390/cells10112903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia and is pathologically characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA is associated with neurovascular dysfunction, blood–brain barrier (BBB) leakage, and persistent vascular- and neuro-inflammation, eventually leading to neurodegeneration. Although pathologically AD and CAA are well characterized diseases, the chronology of molecular changes that lead to their development is still unclear. Substantial evidence demonstrates defects in mitochondrial function in various cells of the neurovascular unit as well as in the brain parenchyma during the early stages of AD and CAA. Dysfunctional mitochondria release danger-associated molecular patterns (DAMPs) that activate a wide range of inflammatory pathways. In this review, we gather evidence to postulate a crucial role of the mitochondria, specifically of cerebral endothelial cells, as sensors and initiators of Aβ-induced vascular inflammation. The activated vasculature recruits circulating immune cells into the brain parenchyma, leading to the development of neuroinflammation and neurodegeneration in AD and CAA.
Collapse
Affiliation(s)
- Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00921, USA;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-6046
| |
Collapse
|
179
|
Hiraldo-González L, Trillo-Contreras JL, García-Miranda P, Pineda-Sánchez R, Ramírez-Lorca R, Rodrigo-Herrero S, Blanco MO, Oliver M, Bernal M, Franco-Macías E, Villadiego J, Echevarría M. Evaluation of aquaporins in the cerebrospinal fluid in patients with idiopathic normal pressure hydrocephalus. PLoS One 2021; 16:e0258165. [PMID: 34597351 PMCID: PMC8486078 DOI: 10.1371/journal.pone.0258165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Brain aquaporin 1 (AQP1) and AQP4 are involved in cerebrospinal fluid (CSF) homeostasis and might participate in the origin of hydrocephalus. Studies have shown alterations of perivascular AQP4 expression in idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer's disease (AD). Due to the overlapping of clinical signs between iNPH and certain neurological conditions, mainly AD, specific biomarkers might improve the diagnostic accuracy for iNPH. The goal of the present study was to analyze and quantify the presence of AQP1 and AQP4 in the CSF of patients with iNPH and AD to determine whether these proteins can be used as biomarkers of iNPH. We examined AQP1 and AQP4 protein levels in the CSF of 179 participants (88 women) classified into 5 groups: possible iNPH (81 participants), hydrocephalus associated with other neurological disorders (13 participants), AD (41 participants), non-AD dementia (32 participants) and healthy controls (12 participants). We recorded each participant's demographic and clinical variables and indicated, when available in the clinical history, the record of cardiovascular and respiratory complications. An ELISA showed virtually no AQP content in the CSF. Information on the vascular risk factors (available for 61 patients) confirmed some type of vascular risk factor in 86% of the patients with possible iNPH and 58% of the patients with AD. In conclusion, the ELISA analysis showed insufficient sensitivity to detect the presence of AQP1 and AQP4 in CSF, ruling out the possible use of these proteins as biomarkers for diagnosing iNPH.
Collapse
Affiliation(s)
- Laura Hiraldo-González
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - José Luis Trillo-Contreras
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Pablo García-Miranda
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Rocío Pineda-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
| | - Silvia Rodrigo-Herrero
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Magdalena Olivares Blanco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurosurgery Service, University Hospital Virgen del Rocío, Seville, Spain
| | - María Oliver
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurosurgery Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Maria Bernal
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Emilio Franco-Macías
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Seville, Spain
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
180
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 693] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
181
|
Tsay HJ, Liu HK, Kuo YH, Chiu CS, Liang CC, Chung CW, Chen CC, Chen YP, Shiao YJ. EK100 and Antrodin C Improve Brain Amyloid Pathology in APP/PS1 Transgenic Mice by Promoting Microglial and Perivascular Clearance Pathways. Int J Mol Sci 2021; 22:ijms221910413. [PMID: 34638752 PMCID: PMC8508921 DOI: 10.3390/ijms221910413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of β-amyloid peptide (Aβ). There are currently no drugs that can successfully treat this disease. This study first explored the anti-inflammatory activity of seven components isolated from Antrodia cinnamonmea in BV2 cells and selected EK100 and antrodin C for in vivo research. APPswe/PS1dE9 mice were treated with EK100 and antrodin C for one month to evaluate the effect of these reagents on AD-like pathology by nesting behavior, immunohistochemistry, and immunoblotting. Ergosterol and ibuprofen were used as control. EK100 and antrodin C improved the nesting behavior of mice, reduced the number and burden of amyloid plaques, reduced the activation of glial cells, and promoted the perivascular deposition of Aβ in the brain of mice. EK100 and antrodin C are significantly different in activating astrocytes, regulating microglia morphology, and promoting plaque-associated microglia to express oxidative enzymes. In contrast, the effects of ibuprofen and ergosterol are relatively small. In addition, EK100 significantly improved hippocampal neurogenesis in APPswe/PS1dE9 mice. Our data indicate that EK100 and antrodin C reduce the pathology of AD by reducing amyloid deposits and promoting nesting behavior in APPswe/PS1dE9 mice through microglia and perivascular clearance, indicating that EK100 and antrodin C have the potential to be used in AD treatment.
Collapse
Affiliation(s)
- Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
- Program in Clinical Drug Development of Chinese Medicine, Taipei Medical University, Taipei 112, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan;
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Chuan-Sheng Chiu
- Institute of Biopharmaceutical Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Chiang Liang
- Institute of Anatomy and Cell Biology, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chen-Wei Chung
- Institute of Traditional Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 320, Taiwan; (C.-C.C.); (Y.-P.C.)
| | - Yen-Po Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 320, Taiwan; (C.-C.C.); (Y.-P.C.)
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
- Program in Clinical Drug Development of Chinese Medicine, Taipei Medical University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
- Correspondence: ; Tel.: +886-2-28201999 (ext. 4171)
| |
Collapse
|
182
|
Trillo-Contreras JL, Toledo-Aral JJ, Villadiego J, Echevarría M. Aquaporin-4 Mediates Permanent Brain Alterations in a Mouse Model of Hypoxia-Aged Hydrocephalus. Int J Mol Sci 2021; 22:ijms22189745. [PMID: 34575909 PMCID: PMC8471142 DOI: 10.3390/ijms22189745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Aquaporin-4 (AQP4) is the principal water channel in the brain being expressed in astrocytes and ependymal cells. AQP4 plays an important role in cerebrospinal fluid (CSF) homeostasis, and alterations in its expression have been associated with hydrocephalus. AQP4 contributes to the development of hydrocephalus by hypoxia in aged mice, reproducing such principal characteristics of the disease. Here, we explore whether these alterations associated with the hydrocephalic state are permanent or can be reverted by reexposure to normoxia. Alterations such as ventriculomegaly, elevated intracranial pressure, and cognitive deficits were reversed, whereas deficits in CSF outflow and ventricular distensibility were not recovered, remaining impaired even one month after reestablishment of normoxia. Interestingly, in AQP4−/− mice, the impairment in CSF drainage and ventricular distensibility was completely reverted by re-normoxia, indicating that AQP4 has a structural role in the chronification of those alterations. Finally, we show that aged mice subjected to two hypoxic episodes experience permanent ventriculomegaly. These data reveal that repetitive hypoxic events in aged cerebral tissue promote the permanent alterations involved in hydrocephalic pathophysiology, which are dependent on AQP4 expression.
Collapse
Affiliation(s)
- José Luis Trillo-Contreras
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| | - Miriam Echevarría
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| |
Collapse
|
183
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
184
|
Bommarito G, Van De Ville D, Frisoni GB, Garibotto V, Ribaldi F, Stampacchia S, Assal F, Allali G, Griffa A. Alzheimer's Disease Biomarkers in Idiopathic Normal Pressure Hydrocephalus: Linking Functional Connectivity and Clinical Outcome. J Alzheimers Dis 2021; 83:1717-1728. [PMID: 34459399 DOI: 10.3233/jad-210534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impacts the response to treatment in patients with idiopathic normal pressure hydrocephalus (iNPH), possibly through changes in resting-state functional connectivity (rs-FC). OBJECTIVE To explore the relationship between cerebrospinal fluid biomarkers of AD and the default mode network (DMN)/hippocampal rs-FC in iNPH patients, based on their outcome after cerebrospinal fluid tap test (CSFTT), and in patients with AD. METHODS Twenty-six iNPH patients (mean age: 79.9±5.9 years; 12 females) underwent MRI and clinical assessment before and after CSFTT and were classified as responders (Resp) or not (NResp), based on the improvement at the timed up and go test and walking speed. Eleven AD patients (mean age: 70.91±5.2 years; 5 females), matched to iNPH for cognitive status, were also included. DMN and hippocampal rs-FC was related to amyloid-β42 and phosphorylated tau (pTau) levels. RESULTS Lower amyloid-β42 levels were associated with reduced inter- and intra-network rs-FC in NResp, and the interaction between amyloid-β42 and rs-FC was a predictor of outcome after CSFTT. The rs-FC between DMN and salience networks positively correlated to amyloid-β42 levels in both NResp and AD patients. The increase in the inter-network rs-FC after CSFTT was associated with higher pTau and lower amyloid-β42 levels in NResp, and to lower pTau levels in Resp. CONCLUSION Amyloid-β42 and pTau impact on rs-FC and its changes after CSFTT in iNPH patients. The interaction between AD biomarkers and rs-FC might explain the responder status in iNPH.
Collapse
Affiliation(s)
- Giulia Bommarito
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Federica Ribaldi
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Frédéric Assal
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
185
|
Sakurai K, Kaneda D, Uchida Y, Inui S, Bundo M, Akagi A, Nihashi T, Kimura Y, Kato T, Ito K, Ohashi W, Hashizume Y. Can Medial Temporal Impairment Be an Imaging Red Flag for Neurodegeneration in Disproportionately Enlarged Subarachnoid Space Hydrocephalus? J Alzheimers Dis 2021; 83:1199-1209. [PMID: 34420966 DOI: 10.3233/jad-210535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The differentiation of idiopathic normal pressure hydrocephalus (iNPH) from neurodegenerative diseases such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) is often challenging because of their non-specific symptoms. Therefore, various neuroradiological markers other than ventriculomegaly have been proposed. Despite the utility of disproportionately enlarged subarachnoid-space hydrocephalus (DESH) for the appropriate selection of shunt surgery candidates, the specificity and neuropathology of this finding have not been sufficiently evaluated. OBJECTIVE Investigation of the clinicopathological features and comparison of the neuroradiological findings between DESH with postmortem neuropathological diagnoses (pDESH) and clinically-diagnosed iNPH (ciNPH) patients are the main purposes of this study. METHOD In addition to the retrospective evaluation of clinicopathological information, quantitative, semiquantitative, and qualitative magnetic resonance imaging (MRI) indices were compared between pathologically-investigated 10 patients with pDESH and 10 patients with ciNPHResults:Excluding one patient with multiple cerebral infarctions, the postmortem neuropathological diagnoses of the pathologically-investigated patients were mainly neurodegenerative diseases (five AD, one DLB with AD pathologies, one DLB, one argyrophilic grain disease, and one Huntington's disease). In addition to the common neuroradiological featuresConclusion:Hippocampal atrophy and deformation with temporal horn enlargement seem to be characteristic neuroradiological findings of long-standing severely demented patients with DESH and neurodegenerative diseases, mainly advanced-stage AD.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiko Bundo
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Wataru Ohashi
- Division of Biostatistics, Clinical Research Center, Aichi Medical University Hospital, Aichi, Japan
| | | |
Collapse
|
186
|
Tang YM, Yao Y, Xu S, Li X, Hu F, Wang H, Ding J, Wang X. White Matter Microstructural Damage Associated With Gait Abnormalities in Idiopathic Normal Pressure Hydrocephalus. Front Aging Neurosci 2021; 13:660621. [PMID: 34434100 PMCID: PMC8382089 DOI: 10.3389/fnagi.2021.660621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Idiopathic normal pressure hydrocephalus (iNPH) is a common disease in elderly adults. Patients with iNPH are generally characterized by progressive gait impairment, cognitive deficits, and urinary urgency and/or incontinence. A number of radiographic studies have shown that iNPH patients have enlarged ventricles and altered brain morphology; however, few studies have focused on the relationships between altered brain structure and gait dysfunction due to iNPH. Thus, this study aimed to evaluate the abnormalities of white matter (WM) correlated with gait impairment in iNPH patients and to gain a better understanding of its underlying pathology. Methods: Fifteen iNPH patients (five women, 10 men) were enrolled in this study, and each patient's demographic and gait indices were collected. First, we performed a correlation analysis between the demographic and gait indices. Then, all gait indices were grouped according to the number of WM hyperintensities (WMH) among each WM tract (JHU WM tractography atlas), to perform comparative analysis. Results: Considering sex and illness duration as covariates, correlation analysis showed a significantly negative correlation between step length (r = -0.80, p = 0.001), pace (r = -0.84, p = 2.96e-4), and age. After removing the effects of age, sex, and illness duration, correlation analysis showed negative correlation between step length (r = -0.73, p = 0.007), pace (r = -0.74, p = 0.005), and clinical-grade score and positive correlation between 3-m round trip time (r = 0.66, p = 0.021), rising time (r = 0.76, p = 0.004), and clinical-grade score. Based on WMH of each white matter tract, gait indices showed significant differences (p < 0.05/48, corrected by Bonferroni) between fewer WMH patients and more WMH in the middle cerebellar peduncle, left medial lemniscus, left posterior limb of the internal capsule (IC), and right posterior limb of the IC. Conclusions: Our results indicated that iNPH patients exhibited gait-related WM abnormalities located in motor and sensory pathways around the ventricle, which is beneficial to understand the underlying pathology of iNPH.
Collapse
Affiliation(s)
- Yan-min Tang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Hu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
187
|
Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021; 15:665803. [PMID: 34305538 PMCID: PMC8292771 DOI: 10.3389/fnana.2021.665803] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Lara M. Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
188
|
Turner DA. Contrasting Metabolic Insufficiency in Aging and Dementia. Aging Dis 2021; 12:1081-1096. [PMID: 34221551 PMCID: PMC8219502 DOI: 10.14336/ad.2021.0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic insufficiency and neuronal dysfunction occur in normal aging but is exaggerated in dementia and Alzheimer's disease (AD). Metabolic insufficiency includes factors important for both substrate supply and utilization in the brain. Metabolic insufficiency occurs through a number of serial mechanisms, particularly changes in cerebrovascular supply through blood vessel abnormalities (ie, small and large vessel vasculopathy, stroke), alterations in neurovascular coupling providing dynamic blood flow supply in relation to neuronal demand, abnormalities in blood brain barrier including decreased glucose and amino acid transport, altered glymphatic flow in terms of substrate supply across the extracellular space to cells and drainage into CSF of metabolites, impaired transport into cells, and abnormal intracellular metabolism with more reliance on glycolysis and less on mitochondrial function. Recent studies have confirmed abnormal neurovascular coupling in a mouse model of AD in response to metabolic challenges, but the supply chain from the vascular system into neurons is disrupted much earlier in dementia than in equivalently aged individuals, contributing to the progressive neuronal degeneration and cognitive dysfunction associated with dementia. We discuss several metabolic treatment approaches, but these depend on characterizing patients as to who would benefit the most. Surrogate biomarkers of metabolism are being developed to include dynamic estimates of neuronal demand, sufficiency of neurovascular coupling, and glymphatic flow to supplement traditional static measurements. These surrogate biomarkers could be used to gauge efficacy of metabolic treatments in slowing down or modifying dementia time course.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.
- Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
189
|
Rustenhoven J, Tanumihardja C, Kipnis J. Cerebrovascular Anomalies: Perspectives From Immunology and Cerebrospinal Fluid Flow. Circ Res 2021; 129:174-194. [PMID: 34166075 DOI: 10.1161/circresaha.121.318173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate vascular function is essential for the maintenance of central nervous system homeostasis and is achieved through virtue of the blood-brain barrier; a specialized structure consisting of endothelial, mural, and astrocytic interactions. While appropriate blood-brain barrier function is typically achieved, the central nervous system vasculature is not infallible and cerebrovascular anomalies, a collective terminology for diverse vascular lesions, are present in meningeal and cerebral vasculature supplying and draining the brain. These conditions, including aneurysmal formation and rupture, arteriovenous malformations, dural arteriovenous fistulas, and cerebral cavernous malformations, and their associated neurological sequelae, are typically managed with neurosurgical or pharmacological approaches. However, increasing evidence implicates interacting roles for inflammatory responses and disrupted central nervous system fluid flow with respect to vascular perturbations. Here, we discuss cerebrovascular anomalies from an immunologic angle and fluid flow perspective. We describe immune contributions, both common and distinct, to the formation and progression of diverse cerebrovascular anomalies. Next, we summarize how cerebrovascular anomalies precipitate diverse neurological sequelae, including seizures, hydrocephalus, and cognitive effects and possible contributions through the recently identified lymphatic and glymphatic systems. Finally, we speculate on and provide testable hypotheses for novel nonsurgical therapeutic approaches for alleviating neurological impairments arising from cerebrovascular anomalies, with a particular emphasis on the normalization of fluid flow and alleviation of inflammation through manipulations of the lymphatic and glymphatic central nervous system clearance pathways.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| | | | - Jonathan Kipnis
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| |
Collapse
|
190
|
Roblot P, Mollier O, Ollivier M, Gallice T, Planchon C, Gimbert E, Danet M, Renault S, Auzou N, Laurens B, Jecko V. Communicating chronic hydrocephalus: A review. Rev Med Interne 2021; 42:781-788. [PMID: 34144842 DOI: 10.1016/j.revmed.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Formerly called normal pressure hydrocephalus, communicating chronic hydrocephalus (CCH) is a condition affecting 0.1 to 0.5% of patients over 60years of age. The pathophysiology of this disease is poorly understood, but a defect in cerebrospinal fluid (CSF) resorption appears to be commonly defined as the cause of the neurological disorders. The last important discovery is the description of the glymphatic system and its implication in CCH and CSF resorption. Comorbidities (Alzheimer's disease, microangiopathy, parkinsonism) are very frequent, and involve a diagnostic challenge. The clinical presentation is based on the Hakim and Adams triad, comprising gait disorders, mainly impairing walking, cognitive disorders, affecting executive functions, episodic memory, visuospatial cognition, and sphincter disorders as urinary incontinence (detrusor hyperactivity). The diagnosis is suspected through a set of arguments, combining the clinical presentation, the radiological data of the magnetic resonance imaging (MRI) showing a ventriculomegaly associated with signs of transependymomous resorption of the CSF and disappearance of the cortical sulci, and the clinical response to the depletion of CSF. In the presence of all these elements, or a strong clinical suspicion, the standard treatment will be of a permanent CSF shunt, using a ventriculoatrial or ventriculoperitoneal shunt. The effectiveness of this treatment defines the diagnosis. The clinical improvement is better when treatment occurs early after the onset of the disorders, reaching 75 to 90% of motor improvement.
Collapse
Affiliation(s)
- P Roblot
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Laboratory of anatomy, university of Bordeaux, Bordeaux, France.
| | - O Mollier
- Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - M Ollivier
- Department of diagnostic and therapeutic neuroimaging, Pellegrin hospital, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - T Gallice
- Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Department of critical care, Bordeaux university hospital, 33076 Bordeaux, France
| | - C Planchon
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - E Gimbert
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - M Danet
- Department of geriatric medicine, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - S Renault
- Department of neurology, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - N Auzou
- Institute for neurodegenerative diseases, CNRS UMR 5293, university Bordeaux, Bordeaux, France
| | - B Laurens
- Department of neurology, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Institute for neurodegenerative diseases, CNRS UMR 5293, university Bordeaux, Bordeaux, France
| | - V Jecko
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146, rue Léo-Saignat, 33076 Bordeaux cedex, France
| |
Collapse
|
191
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
192
|
Minta K, Jeppsson A, Brinkmalm G, Portelius E, Zetterberg H, Blennow K, Tullberg M, Andreasson U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2021; 18:23. [PMID: 33985551 PMCID: PMC8120927 DOI: 10.1186/s12987-021-00256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a reversible CNS disease characterized by disturbed cerebrospinal fluid (CSF) dynamics. Changes in the extracellular matrix (ECM) composition might be involved in the pathophysiology of iNPH. The aim of this study was to explore possible differences between lumbar and ventricular CSF concentrations of the ECM markers brevican and neurocan, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) and their relation to clinical symptoms in iNPH patients before and after shunt surgery. Methods Paired lumbar and ventricular CSF was collected from 31 iNPH patients, before and four months after shunt surgery. CSF was analysed for concentrations of tryptic peptides originating from brevican and neurocan using a mass spectrometry-based panel, and for MMP-1, -2, -9, -10 and TIMP-1 using fluorescent or electrochemiluminescent immunoassays. Results Brevican and neurocan peptide levels were not influenced by CSF origin, but MMP-1, -2, -10 and TIMP-1 were increased (p ≤ 0.0005), and MMP-9 decreased (p ≤ 0.0003) in lumbar CSF compared with ventricular CSF. There was a general trend of ECM proteins to increase following shunt surgery. Ventricular TIMP-1 was inversely correlated with overall symptoms (rho = − 0.62, p < 0.0001). CSF concentrations of the majority of brevican and neurocan peptides were increased in iNPH patients with a history of cardiovascular disease (p ≤ 0.001, AUC = 0.84–0.94) compared with those without. Conclusion Levels of the CNS-specific proteins brevican and neurocan did not differ between the lumbar and ventricular CSF, whereas the increase of several CNS-unspecific MMPs and TIMP-1 in lumbar CSF suggests contribution from peripheral tissues. The increase of ECM proteins in CSF following shunt surgery could indicate disturbed ECM dynamics in iNPH that are restored by restitution of CSF dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00256-1.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.
| | - Anna Jeppsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute At UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mats Tullberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
193
|
Eide PK, Mariussen E, Uggerud H, Pripp AH, Lashkarivand A, Hassel B, Christensen H, Hovd MH, Ringstad G. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 2021; 6:147063. [PMID: 33822769 PMCID: PMC8262318 DOI: 10.1172/jci.insight.147063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDMethodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances.METHODSThe MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours.RESULTSIn a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4).CONCLUSIONAssessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity.FUNDINGThe work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.
Collapse
Affiliation(s)
- Per K Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Are H Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurohabilitation, and
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
194
|
Mulica P, Grünewald A, Pereira SL. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Front Endocrinol (Lausanne) 2021; 12:668517. [PMID: 34025580 PMCID: PMC8138625 DOI: 10.3389/fendo.2021.668517] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Converging evidence made clear that declining brain energetics contribute to aging and are implicated in the initiation and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Indeed, both pathologies involve instances of hypometabolism of glucose and oxygen in the brain causing mitochondrial dysfunction, energetic failure and oxidative stress. Importantly, recent evidence suggests that astrocytes, which play a key role in supporting neuronal function and metabolism, might contribute to the development of neurodegenerative diseases. Therefore, exploring how the neuro-supportive role of astrocytes may be impaired in the context of these disorders has great therapeutic potential. In the following, we will discuss some of the so far identified features underlining the astrocyte-neuron metabolic crosstalk. Thereby, special focus will be given to the role of mitochondria. Furthermore, we will report on recent advancements concerning iPSC-derived models used to unravel the metabolic contribution of astrocytes to neuronal demise. Finally, we discuss how mitochondrial dysfunction in astrocytes could contribute to inflammatory signaling in neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrycja Mulica
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sandro L. Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
195
|
Piscopo P, Bellenghi M, Manzini V, Crestini A, Pontecorvi G, Corbo M, Ortona E, Carè A, Confaloni A. A Sex Perspective in Neurodegenerative Diseases: microRNAs as Possible Peripheral Biomarkers. Int J Mol Sci 2021; 22:ijms22094423. [PMID: 33922607 PMCID: PMC8122918 DOI: 10.3390/ijms22094423] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
- Correspondence: ; Tel.: +39-064-990-3538
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| | - Giada Pontecorvi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144 Milano, Italy;
| | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.B.); (G.P.); (E.O.); (A.C.)
| | - Annamaria Confaloni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (V.M.); (A.C.); (A.C.)
| |
Collapse
|
196
|
Sabia S, Fayosse A, Dumurgier J, van Hees VT, Paquet C, Sommerlad A, Kivimäki M, Dugravot A, Singh-Manoux A. Association of sleep duration in middle and old age with incidence of dementia. Nat Commun 2021; 12:2289. [PMID: 33879784 PMCID: PMC8058039 DOI: 10.1038/s41467-021-22354-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Sleep dysregulation is a feature of dementia but it remains unclear whether sleep duration prior to old age is associated with dementia incidence. Using data from 7959 participants of the Whitehall II study, we examined the association between sleep duration and incidence of dementia (521 diagnosed cases) using a 25-year follow-up. Here we report higher dementia risk associated with a sleep duration of six hours or less at age 50 and 60, compared with a normal (7 h) sleep duration, although this was imprecisely estimated for sleep duration at age 70 (hazard ratios (HR) 1.22 (95% confidence interval 1.01-1.48), 1.37 (1.10-1.72), and 1.24 (0.98-1.57), respectively). Persistent short sleep duration at age 50, 60, and 70 compared to persistent normal sleep duration was also associated with a 30% increased dementia risk independently of sociodemographic, behavioural, cardiometabolic, and mental health factors. These findings suggest that short sleep duration in midlife is associated with an increased risk of late-onset dementia.
Collapse
Affiliation(s)
- Séverine Sabia
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France.
- Department of Epidemiology and Public Health, University College London, London, UK.
| | - Aurore Fayosse
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
| | - Julien Dumurgier
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
- Université de Paris, Inserm U1144, Cognitive Neurology Center, GHU APHP Nord Lariboisière - Fernand Widal Hospital, Paris, France
| | | | - Claire Paquet
- Université de Paris, Inserm U1144, Cognitive Neurology Center, GHU APHP Nord Lariboisière - Fernand Widal Hospital, Paris, France
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Aline Dugravot
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
| | - Archana Singh-Manoux
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
197
|
Natário KHP, Aguiar GBD, Vieira MADCES. The glymphatic system and its relation with neurological diseases. Rev Assoc Med Bras (1992) 2021; 67:620-624. [DOI: 10.1590/1806-9282.20200925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
|
198
|
Eide PK, Pripp AH, Ringstad G, Valnes LM. Impaired glymphatic function in idiopathic intracranial hypertension. Brain Commun 2021; 3:fcab043. [PMID: 34235434 PMCID: PMC8253298 DOI: 10.1093/braincomms/fcab043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic intracranial hypertension is a brain disease incorporating cerebrospinal fluid disturbance, increased intracranial pressure and visual failure, but with unknown cause. This study examined a hypothesis that glymphatic function is impaired in idiopathic intracranial hypertension patients. The MRI contrast agent gadobutrol was utilized as a cerebrospinal fluid tracer following intrathecal administration. Consecutive standardized T1 MRI acquisitions over 48 h were done to assess tracer distribution within brain of 15 idiopathic intracranial hypertension patients and 15 reference individuals who were comparable in age and gender distribution. Using FreeSurfer software, we semi-quantified tracer level in multiple brain regions as T1 MRI signal change. The tracer enriched the entire brain of idiopathic intracranial hypertension and reference subjects. In idiopathic intracranial hypertension, tracer enrichment was increased and clearance of tracer delayed from a wide range of brain regions, including both grey and white matter. Differences were most evident in frontal and temporal regions. The pulsatile intracranial pressure was measured overnight and tracer propagation in brain compared between individuals with pathological and normal pulsatile intracranial pressure. In individuals with pathological pulsatile intracranial pressure, tracer enrichment was stronger and clearance from brain delayed, particularly in regions nearby large artery trunks at the brain surface. The present in vivo observations provide evidence for impaired glymphatic function in several brain regions of idiopathic intracranial hypertension patients. Glymphatic failure may imply altered clearance of metabolic byproducts, which may precede neurodegeneration. Further studies are needed to characterize glymphatic failure in idiopathic intracranial hypertension.
Collapse
Affiliation(s)
- Per Kristian Eide
- Institute of Clinical Medicine, University of Oslo, N-0316 Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, N-0424 Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, N-0424 Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, N-0424 Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, N-0424 Oslo, Norway
| |
Collapse
|
199
|
Raghunandan A, Ladron-de-Guevara A, Tithof J, Mestre H, Du T, Nedergaard M, Thomas JH, Kelley DH. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. eLife 2021; 10:65958. [PMID: 33687330 PMCID: PMC7979157 DOI: 10.7554/elife.65958] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebrospinal fluid (CSF) flowing through periarterial spaces is integral to the brain’s mechanism for clearing metabolic waste products. Experiments that track tracer particles injected into the cisterna magna (CM) of mouse brains have shown evidence of pulsatile CSF flow in perivascular spaces surrounding pial arteries, with a bulk flow in the same direction as blood flow. However, the driving mechanism remains elusive. Several studies have suggested that the bulk flow might be an artifact, driven by the injection itself. Here, we address this hypothesis with new in vivo experiments where tracer particles are injected into the CM using a dual-syringe system, with simultaneous injection and withdrawal of equal amounts of fluid. This method produces no net increase in CSF volume and no significant increase in intracranial pressure. Yet, particle-tracking reveals flows that are consistent in all respects with the flows observed in earlier experiments with single-syringe injection.
Collapse
Affiliation(s)
- Aditya Raghunandan
- Department of Mechanical Engineering, University of Rochester, Rochester, United States
| | - Antonio Ladron-de-Guevara
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, United States.,Department of Mechanical Engineering, University of Minnesota, Minneapolis, United States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States.,Center for Translational Neuromedicine, University of Copenhagen, Rochester, United States
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, United States
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, United States
| |
Collapse
|
200
|
Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease. Nat Med 2021; 27:411-418. [PMID: 33462448 DOI: 10.1038/s41591-020-01198-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). However, there is no direct evidence in humans to support this role1-5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.
Collapse
Affiliation(s)
- Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dan-Hao Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Hai-Yan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yong-Kang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiu-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Zhi Xiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Zhong-Xian Zhang
- National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qin-Chen Cao
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA.,Texas A & M University Colleges of Medicine and Pharmacy, College Station, TX, USA.,Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, USA
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| | - Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|