151
|
The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:823481. [PMID: 25945347 PMCID: PMC4402467 DOI: 10.1155/2015/823481] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/30/2015] [Indexed: 12/03/2022]
Abstract
In recent years, most research efforts have been focused on studying insulin-sensitizing adipokines. One of the most recently discovered adipokines is vaspin, a visceral adipose tissue-derived serine protease inhibitor. Vaspin levels have been found significantly increased in mice with obesity and insulin resistance. It has been assumed that vaspin serves as an insulin sensitizer with anti-inflammatory effects and might act as a compensatory mechanism in response to decreased insulin sensitivity. Most studies in humans have shown a positive correlation between vaspin gene expression and serum levels, and metabolic syndrome parameters. Vaspin gene expression is influenced by age and gender, and the administration of insulin sensitizers enhances it in mice, whereas the use of metformin decreases serum vaspin levels in humans, probably due to different regulatory mechanisms. Presumably vaspin plays local and endocrine role in the development of initial and advanced atherosclerosis in obese subjects and might be used as a predictor of coronary and cerebrovascular disease. It is believed that vaspin could be regarded as a new link between obesity and related metabolic disorders, including glucose intolerance. The entire understanding of vaspin intimate mechanism of action might enable the development of novel etiology-based treatment strategies, targeting metabolic and glucose tolerance disorders.
Collapse
|
152
|
Zhang XM, Guo L, Chi MH, Sun HM, Chen XW. Identification of active miRNA and transcription factor regulatory pathways in human obesity-related inflammation. BMC Bioinformatics 2015; 16:76. [PMID: 25887648 PMCID: PMC4355475 DOI: 10.1186/s12859-015-0512-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022] Open
Abstract
Background Obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of metabolic syndrome (MS). Recently, a growing body of evidence supports that miRNAs are largely dysregulated in obesity and that specific miRNAs regulate obesity-associated inflammation. We applied an approach aiming to identify active miRNA-TF-gene regulatory pathways in obesity. Firstly, we detected differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) from mRNA and miRNA expression profiles, respectively. Secondly, by mapping the DEGs and DEmiRs to the curated miRNA-TF-gene regulatory network as active seed nodes and connect them with their immediate neighbors, we obtained the potential active miRNA-TF-gene regulatory subnetwork in obesity. Thirdly, using a Breadth-First-Search (BFS) algorithm, we identified potential active miRNA-TF-gene regulatory pathways in obesity. Finally, through the hypergeometric test, we identified the active miRNA-TF-gene regulatory pathways that were significantly related to obesity. Results The potential active pathways with FDR < 0.0005 were considered to be the active miRNA-TF regulatory pathways in obesity. The union of the active pathways is visualized and identical nodes of the active pathways were merged. Conclusions We identified 23 active miRNA-TF-gene regulatory pathways that were significantly related to obesity-related inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0512-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi-Mei Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, PR China.
| | - Lin Guo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China.
| | - Mei-Hua Chi
- Teaching Experiment Center of Morphology, Harbin Medical University, Harbin, 150081, PR China.
| | - Hong-Mei Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Xiao-Wen Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
153
|
Fuller S, Stephens JM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome. Adv Nutr 2015; 6:189-97. [PMID: 25770257 PMCID: PMC4352177 DOI: 10.3945/an.114.007807] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome and its complications continue to rise in prevalence and show no signs of abating in the immediate future. Therefore, the search for effective treatments is a high priority in biomedical research. Products derived from botanicals have a time-honored history of use in the treatment of metabolic diseases including type 2 diabetes. Trigonella foenum-graecum, commonly known as fenugreek, is an annual herbaceous plant that has been a staple of traditional herbal medicine in many cultures. Although fenugreek has been studied in both clinical and basic research settings, questions remain about its efficacy and biologic mechanisms of action. Diosgenin, 4-hydroxyisoleucine, and the fiber component of the plant are the most intensively studied bioactive constituents present in fenugreek. These compounds have been demonstrated to exert beneficial effects on several physiologic markers including glucose tolerance, inflammation, insulin action, liver function, blood lipids, and cardiovascular health. Although insights into the molecular mechanisms underlying the favorable effects of fenugreek have been gained, we still do not have definitive evidence establishing its role as a therapeutic agent in metabolic disease. This review aims to summarize the currently available evidence on the physiologic effects of the 3 best-characterized bioactive compounds of fenugreek, with particular emphasis on biologic mechanisms of action relevant in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Scott Fuller
- Pennington Biomedical Research Center, Baton Rouge, LA; and
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA; and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
154
|
Saini S, Duraisamy AJ, Bayen S, Vats P, Singh SB. Role of BMP7 in appetite regulation, adipogenesis, and energy expenditure. Endocrine 2015; 48:405-9. [PMID: 25178649 DOI: 10.1007/s12020-014-0406-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/23/2014] [Indexed: 01/16/2023]
Abstract
Bone morphogenetic protein 7 (BMP7), also known as osteogenic protein-1 (OP-1) is a member of Transforming growth factor-β (TGF-β) family of proteins. Bone morphogenetic proteins were discovered in 1965 by Marshal Urist, of which BMP7 is of particular interest in this review being a leptin-independent anorexinogen and having role in energy expenditure in the brown adipose tissue, which makes it a potential target for preventing/treating obesity. As it has been established that Obesity displays a state of leptin-resistance, thus a protein-like BMP7 which acts through a leptin-independent pathway could give new therapeutic directions. This review will also discuss the synthesis and action of BMP7, along with its receptors and signal transduction. A brief note about BMP7-mediated brown fat development and energy balance is also discussed.
Collapse
Affiliation(s)
- Supriya Saini
- Endocrinology and Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | | | | | | | | |
Collapse
|
155
|
Abstract
After many years of research, obesity is still a disease with an unmet medical need. Very few compounds have been approved, acting mainly on neuromediators; researches, in recent years, pointed toward compounds potentially safer than first-generation antiobesity drugs, able to interact with one or more (multitarget therapy) receptors for substances produced by the gut, adipose tissue and other targets outside CNS. Other holistic approaches, such as those involving gut microbiota and plant extracts, appeared recently in the literature, and undoubtedly will contribute to the discovery of a valuable therapy for this disease. This review deals with the positive results and the pitfalls obtained following these approaches, with a view on their clinical trial studies.
Collapse
|
156
|
Modulation of Adipocytokines Production and Serum NEFA Level by Metformin, Glimepiride, and Sitagliptin in HFD/STZ Diabetic Rats. Biochem Res Int 2015; 2015:138134. [PMID: 25838947 PMCID: PMC4369950 DOI: 10.1155/2015/138134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/20/2015] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a group of metabolic disorders characterized by hyperglycemia owing to insulin resistance and/or insulin deficiency. Current theories of T2DM pathophysiology include a decline in β-cells function, a defect in insulin signaling pathways, and a dysregulation of secretory function of adipocytes. This study aimed to investigate the effect of different antidiabetic drugs on serum levels of certain adipocytokines and nonesterified fatty acids (NEFA) in high-fat diet (HFD)/streptozotocin- (STZ-) induced diabetic rats. All treatments significantly decreased serum NEFA level. Metformin and sitagliptin increased serum adiponectin level, whereas they decreased serum leptin level. Glimepiride showed significant decline in serum levels of both adiponectin and leptin. All treatments remarkably ameliorated insulin resistance, suggested by an improvement of glycemic control, a significant reduction in homeostasis model assessment of insulin resistance (HOMA-IR), and a correction in lipid profile. Modulation of adipocytokines production (i.e., increased serum adiponectin and decreased serum leptin) may also underlie the improvement of insulin resistance and could be a possible mechanism for the beneficial cardiovascular effects of metformin and sitagliptin.
Collapse
|
157
|
Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem 2015; 26:571-84. [PMID: 25841249 DOI: 10.1016/j.jnutbio.2015.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease Prevention & Management, College of Health and Biomedicine, Victoria University, Melbourne VIC 3021, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia
| | - Hemant Poudyal
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
158
|
Aguilar-Valles A, Inoue W, Rummel C, Luheshi GN. Obesity, adipokines and neuroinflammation. Neuropharmacology 2015; 96:124-34. [PMID: 25582291 DOI: 10.1016/j.neuropharm.2014.12.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Global levels of obesity are reaching epidemic proportions, leading to a dramatic increase in incidence of secondary diseases and the significant economic burden associated with their treatment. These comorbidities include diabetes, cardiovascular disease, and some psychopathologies, which have been linked to a low-grade inflammatory state. Obese individuals exhibit an increase in circulating inflammatory mediators implicated as the underlying cause of these comorbidities. A number of these molecules are also manufactured and released by white adipose tissue (WAT), in direct proportion to tissue mass and are collectively known as adipokines. In the current review we focused on the role of two of the better-studied members of this family namely, leptin and adiponectin, with particular emphasis on their role in neuro-immune interactions, neuroinflammation and subsequent brain diseases. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Argel Aguilar-Valles
- Department of Neuroscience, Université de Montréal and Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Canada
| | - Wataru Inoue
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Giamal N Luheshi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
159
|
Laws KM, Sampson LL, Drummond-Barbosa D. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance. Dev Biol 2015; 399:226-36. [PMID: 25576925 DOI: 10.1016/j.ydbio.2014.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/02/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
Abstract
Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA
| | - Leesa L Sampson
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
160
|
Blüher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 2015; 64:131-45. [PMID: 25497344 DOI: 10.1016/j.metabol.2014.10.016] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
This year marks the 20th anniversary of the discovery of leptin, which has tremendously stimulated translational obesity research. The discovery of leptin has led to realizations that have established adipose tissue as an endocrine organ, secreting bioactive molecules including hormones now termed adipokines. Through adipokines, the adipose tissue influences the regulation of several important physiological functions including but not limited to appetite, satiety, energy expenditure, activity, insulin sensitivity and secretion, glucose and lipid metabolism, fat distribution, endothelial function, hemostasis, blood pressure, neuroendocrine regulation, and function of the immune system. Adipokines have a great potential for clinical use as potential therapeutics for obesity, obesity related metabolic, cardiovascular and other diseases. After 20 years of intense research efforts, recombinant leptin and the leptin analog metreleptin are already available for the treatment of congenital leptin deficiency and lipodystrophy. Other adipokines are also emerging as promising candidates for urgently needed novel pharmacological treatment strategies not only in obesity but also other disease states associated with and influenced by adipose tissue size and activity. In addition, prediction of reduced type 2 diabetes risk by high circulating adiponectin concentrations suggests that adipokines have the potential to be used as biomarkers for individual treatment success and disease progression, to monitor clinical responses and to identify non-responders to anti-obesity interventions. With the growing number of adipokines there is an increasing need to define their function, molecular targets and translational potential for the treatment of obesity and other diseases. In this review we present research data on adipose tissue secreted hormones, the discovery of which followed the discovery of leptin 20 years ago pointing to future research directions to unravel mechanisms of action for adipokines.
Collapse
Affiliation(s)
- Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany; Department of Endocrinology, Metabolism and Diabetes, VA Boston Medical Health Center, Boston, MA, USA.
| | - Christos S Mantzoros
- Department of Medicine, University of Leipzig, Leipzig, Germany; Department of Endocrinology, Metabolism and Diabetes, VA Boston Medical Health Center, Boston, MA, USA
| |
Collapse
|
161
|
Wędrychowicz A, Zając A, Pilecki M, Kościelniak B, Tomasik PJ. Peptides from adipose tissue in mental disorders. World J Psychiatry 2014; 4:103-111. [PMID: 25540725 PMCID: PMC4274582 DOI: 10.5498/wjp.v4.i4.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical presentation and outcome of mental disorders. Admittedly leptin and adiponectin are involved in pathophysiology of depression. A lot of disturbances in secretion and plasma levels of adipokines are observed in eating disorders with a significant impact on the symptoms and course of a disease. It is still a question whether observed dysregulation of adipokines secretion are primary or secondary. Moreover findings in this area are somewhat inconsistent, owing to differences in patient age, sex, socioeconomic status, smoking habits, level of physical activity, eating pathology, general health or medication. This was the rationale for our detailed investigation into the role of the endocrine functions of adipose tissue in mental disorders. It seems that we are continually at the beginning of understanding of the relation between adipose tissue and mental disorders.
Collapse
|
162
|
de Almeida MM, Luquetti SCPD, Sabarense CM, Corrêa JODA, dos Reis LG, Conceição EPSD, Lisboa PC, de Moura EG, Gameiro J, da Gama MAS, Lopes FCF, Garcia RMG. Butter naturally enriched in cis-9, trans-11 CLA prevents hyperinsulinemia and increases both serum HDL cholesterol and triacylglycerol levels in rats. Lipids Health Dis 2014; 13:200. [PMID: 25534067 PMCID: PMC4364335 DOI: 10.1186/1476-511x-13-200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/04/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Evidence from in vitro and animal studies indicates that conjugated linoleic acid (CLA) possesses anti-diabetic properties, which appear to be attributed to cis-9, trans-11 CLA, the major CLA isomer in ruminant fat. However, there is a shortage of studies addressing CLA from natural source. The present study aimed to evaluate the effects of butter naturally enriched in cis-9, trans-11 CLA on parameters related to glucose tolerance, insulin sensitivity and dyslipidemia in rats. METHODS Forty male Wistar rats were randomly assigned to the following dietary treatments (n=10/group), for 60 days: 1) Normal fat-Soybean oil (NF-So): diet containing 4.0% soybean oil (SO); 2) High Fat-Control Butter (HF-Cb): diet containing 21.7% control butter and 2.3% SO; 3) High Fat-CLA enriched Butter (HF-CLAb): diet containing 21.7% cis-9, trans-11 CLA-enriched butter and 2.3% SO; and 4) High fat-Soybean oil (HF-So): diet containing 24.0% SO. HF-Cb and HF-CLAb diets contained 0.075% and 0.235% of cis-9, trans-11 CLA, respectively. RESULTS HF-CLAb-fed rats had lower serum insulin levels at fasting than those fed with the HF-Cb diet, while the PPARγ protein levels in adipose tissue was increased in HF-CLAb-fed rats compared to HF-Cb-fed rats. Furthermore, R-QUICK was lower in HF-Cb than in NF-So group, while no differences in R-QUICK were observed among NF-So, HF-CLAb and HF-So groups. Serum HDL cholesterol levels were higher in HF-CLAb-fed rats than in those fed NF-So, HF-Cb and HF-So diets, as well as higher in NF-So-fed rats than in HF-Cb and HF-So-fed rats. HF-CLAb, HF-Cb and HF-So diets reduced serum LDL cholesterol levels when compared to NF-So, whereas serum triacylglycerol levels were increased in HF-CLAb. CONCLUSION Feeding rats on a high-fat diet containing butter naturally enriched in cis-9, trans-11 CLA prevented hyperinsulinemia and increased HDL cholesterol, which could be associated with higher levels of cis-9, trans-11 CLA, vaccenic acid, oleic acid and lower levels of short and medium-chain saturated fatty acids from butter naturally modified compared to control butter. On the other hand CLA-enriched butter also increased serum triacylglycerol levels, which could be associated with concomitant increases in the content of trans-9 and trans-10 C18:1 isomers in the CLA-enriched butter.
Collapse
Affiliation(s)
| | | | - Céphora Maria Sabarense
- Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
| | | | - Larissa Gomes dos Reis
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
| | - Ellen Paula Santos da Conceição
- Department of Physiological Sciences, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Department of Physiological Sciences, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Department of Physiological Sciences, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
| | | | | | | |
Collapse
|
163
|
Kehler DS, Stammers AN, Susser SE, Hamm NC, Kimber DE, Hlynsky MW, Duhamel TA. Cardiovascular complications of type 2 diabetes in youth. Biochem Cell Biol 2014; 93:496-510. [PMID: 25629355 DOI: 10.1139/bcb-2014-0118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) in youth has increased dramatically over the past decades. The literature also suggests that the progression from an impaired glucose tolerance state to established T2DM is more rapid in youth, compared to adults. The presence of significant cardiovascular complications in youth with T2DM, including cardiac, macrovascular, and microvascular remodeling, is another major issue in this younger cohort and poses a significant threat to the healthcare system. However, this issue is only now emerging as a major public health concern, with few data to support optimal treatment targets and strategies to reduce cardiovascular disease (CVD) risk in youth with T2DM. Accordingly, the purpose of this minireview is to better understand the cardiovascular complications in youth with T2DM. We briefly describe the pathophysiology from youth studies, including oxidative stress, inflammation, renin-angiotensin aldosterone system, and epigenetics, which link T2DM and CVD. We also describe the literature concerning the early signs of CVD in youth and potential treatment options to reduce cardiovascular risk.
Collapse
Affiliation(s)
- D Scott Kehler
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Andrew N Stammers
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University Of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, University of Manitoba.,d Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
164
|
Barja-Fernandez S, Leis R, Casanueva FF, Seoane LM. Drug development strategies for the treatment of obesity: how to ensure efficacy, safety, and sustainable weight loss. Drug Des Devel Ther 2014; 8:2391-400. [PMID: 25489237 PMCID: PMC4257050 DOI: 10.2147/dddt.s53129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity has increased worldwide, and approximately 25%-35% of the adult population is obese in some countries. The excess of body fat is associated with adverse health consequences. Considering the limited efficacy of diet and exercise in the current obese population and the use of bariatric surgery only for morbid obesity, it appears that drug therapy is the only available method to address the problem on a large scale. Currently, pharmacological obesity treatment options are limited. However, new antiobesity drugs acting through central nervous system pathways or the peripheral adiposity signals and gastrointestinal tract are under clinical development. One of the most promising approaches is the use of peptides that influence the peripheral satiety signals and brain-gut axis such as GLP-1 analogs. However, considering that any antiobesity drug may affect one or several of the systems that control food intake and energy expenditure, it is unlikely that a single pharmacological agent will be effective as a striking obesity treatment. Thus, future strategies to treat obesity will need to be directed at sustainable weight loss to ensure maximal safety. This strategy will probably require the coadministration of medications that act through different mechanisms.
Collapse
Affiliation(s)
- S Barja-Fernandez
- Grupo Fisiopatología Endocrina, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Departamento de Pediatría, Universidad de Santiago de Compostela (USC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - R Leis
- Departamento de Pediatría, Universidad de Santiago de Compostela (USC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - FF Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
- Laboratorio de Endocrinología Molecular y Celular, Universidad de Santiago de Compostela (USC) Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - LM Seoane
- Grupo Fisiopatología Endocrina, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain
| |
Collapse
|
165
|
Abstract
Obesity is frequently associated with chronic inflammation, metabolic and vascular alterations which predispose to the development of the Metabolic Syndrome (MetS). However, the individual obesity-related risk for the MetS is not determined by increased fat mass alone. Heterogeneity of body composition, fat distribution and adipose tissue (AT) function may underly the variable risk to develop metabolic and cardiovascular diseases associated with increased body fat mass. Importantly, an inability to increase AT mass by adipocyte hyperplasia may lead to adipocyte hypertrophy and could induce dysfunction of adipose tissue characterized by decreased insulin sensitivity, hypoxia, increased parameters of intracellular stress, increased autophagy and apoptosis and tissue inflammation. As a result, adipocytes and other AT cells release signals (e.g. adipokines, cells, metabolites) resulting in a proinflammatory, diabetogenic and atherogenic serum profile. These adverse signals may contribute to further AT inflammation and secondary organ damage in target tissues such as liver, brain, endothelium, vasculature, endocrine organs and skeletal muscle. Recently, a specific adipocyte volume threshold has been shown to predict the risk for obesity-associated type 2 diabetes. Most likely, impaired adipocyte function is caused by genetic, behavioural and environmental factors which are not entirely understood. Elucidating the mechanisms of adipocyte dysfunction may lead to the identification of novel treatment targets for obesity and the MetS.
Collapse
Affiliation(s)
- Nora Klöting
- Department of Medicine, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | | |
Collapse
|
166
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|