151
|
Huppert TJ, Jones PB, Devor A, Dunn AK, Teng IC, Dale AM, Boas DA. Sensitivity of neural-hemodynamic coupling to alterations in cerebral blood flow during hypercapnia. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:044038. [PMID: 19725749 PMCID: PMC2774124 DOI: 10.1117/1.3210779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relationship between measurements of cerebral blood oxygenation and neuronal activity is highly complex and depends on both neurovascular and neurometabolic biological coupling. While measurements of blood oxygenation changes via optical and MRI techniques have been developed to map functional brain activity, there is evidence that the specific characteristics of these signals are sensitive to the underlying vascular physiology and structure of the brain. Since baseline blood flow and oxygen saturation may vary between sessions and across subjects, functional blood oxygenation changes may be a less reliable indicator of brain activity in comparison to blood flow and metabolic changes. In this work, we use a biomechanical model to examine the relationships between neural, vascular, metabolic, and hemodynamic responses to parametric whisker stimulation under both normal and hypercapnic conditions in a rat model. We find that the relationship between neural activity and oxy- and deoxyhemoglobin changes is sensitive to hypercapnia-induced changes in baseline cerebral blood flow. In contrast, the underlying relationships between evoked neural activity, blood flow, and model-estimated oxygen metabolism changes are unchanged by the hypercapnic challenge. We conclude that evoked changes in blood flow and cerebral oxygen metabolism are more closely associated with underlying evoked neuronal responses.
Collapse
Affiliation(s)
- Theodore J Huppert
- University of Pittsburgh, Department of Radiology, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
152
|
Stein BE, Stanford TR, Ramachandran R, Perrault TJ, Rowland BA. Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness. Exp Brain Res 2009; 198:113-26. [PMID: 19551377 DOI: 10.1007/s00221-009-1880-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/21/2009] [Indexed: 11/30/2022]
Abstract
Single-neuron studies provide a foundation for understanding many facets of multisensory integration. These studies have used a variety of criteria for identifying and quantifying multisensory integration. While a number of techniques have been used, an explicit discussion of the assumptions, criteria, and analytical methods traditionally used to define the principles of multisensory integration is lacking. This was not problematic when the field was small, but with rapid growth a number of alternative techniques and models have been introduced, each with its own criteria and sets of implicit assumptions to define and characterize what is thought to be the same phenomenon. The potential for misconception prompted this reexamination of traditional approaches in order to clarify their underlying assumptions and analytic techniques. The objective here is to review and discuss traditional quantitative methods advanced in the study of single-neuron physiology in order to appreciate the process of multisensory integration and its impact.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
153
|
Abstract
Neuroimaging analysis using structural data has begun to provide insights into the pathophysiology of headache syndromes. Several independent studies have suggested a decrease in grey matter in pain-transmitting areas in migraine patients. Most of these data are discussed as damage or loss of brain grey matter, reinforcing the idea of migraine as a progressive disease. However, given what we know about the nature of morphometric changes detectable by the methods we have to date, this interpretation is highly speculative and not supported by the data. It is likely that these changes are the consequence and not the cause of the respective headache syndromes, as they are probably not irreversible and only mirror the proportion or duration of pain suffered. Moreover, structural changes are not headache specific and have to be seen in the light of a wealth of pain studies using these methods. The studies in cluster headache patients prompted the use of stereotactic stimulation of the hypothalamic target point identified by functional and structural neuroimaging. Due to the nature of the methods used and due to a high anatomical variance it is more than questionable to use this point as a definite answer to the source of the headache in clusters and even more so when it is uncritically used in individuals. We need a way to study each patient individually using the functional imaging method with the highest spatial and temporal resolution available to enable us to target the seed point for deep brain stimulation on this individual basis. One of the major future challenges is to understand the behavioural consequences and cellular mechanisms underlying neuroanatomic changes in pain and headache.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, Universitäts-Krankenhaus Eppendorf , Martinistrasse 52, Hamburg, Germany.
| |
Collapse
|
154
|
Pereira A, Furlan FA. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J Biol Phys 2009; 35:465-80. [PMID: 19669426 DOI: 10.1007/s10867-009-9147-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/04/2009] [Indexed: 01/21/2023] Open
Abstract
Recent research on brain correlates of cognitive processes revealed the occurrence of global synchronization during conscious processing of sensory stimuli. In spite of technological progress in brain imaging, an explanation of the computational role of synchrony is still a highly controversial issue. In this study, we depart from an analysis of the usage of blood-oxygen-level-dependent functional magnetic resonance imaging for the study of cognitive processing, leading to the identification of evoked local field potentials as the vehicle for sensory patterns that compose conscious episodes. Assuming the "astrocentric hypothesis" formulated by James M. Robertson (astrocytes being the final stage of conscious processing), we propose that the role of global synchrony in perceptual conscious processing is to induce the transfer of information patterns embodied in local field potentials to astrocytic calcium waves, further suggesting that these waves are responsible for the "binding" of spatially distributed patterns into unitary conscious episodes.
Collapse
Affiliation(s)
- Alfredo Pereira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brasil.
| | | |
Collapse
|
155
|
Abstract
With cognitive disorders increasingly common, clinicians urgently need faster and more accurate tools to classify such disorders and to noninvasively monitor therapeutic interventions. In this review, we provide information on MRI techniques that enable the study of the morphology, neuronal integrity, and metabolism of dementing illnesses. In addition, we explore the usefulness of such techniques as surrogate markers of these diseases.
Collapse
Affiliation(s)
- Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, A-8036 Graz, Austria.
| | | | | | | | | |
Collapse
|
156
|
McClernon FJ. Neuroimaging of Nicotine Dependence: Key Findings and Application to the Study of Smoking-Mental Illness Comorbidity. J Dual Diagn 2009; 5:168-178. [PMID: 19756221 PMCID: PMC2743422 DOI: 10.1080/15504260902869204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Modern neuroimaging techniques offer the opportunity to non-invasively study neuroanatomical and neurofunctional correlates of nicotine dependence and its treatment. In the present review, the most widely used neuroimaging techniques-magnetic resonance imaging (MRI), positron emission tomography (PET) and functional MRI (fMRI)-are briefly described and their strengths and limitations discussed. The use of these techniques has resulted in new insights into the neuropharmacology of tobacco addiction. Studies comparing smokers and nonsmokers have shown that smokers have less grey matter density in frontal brain regions and greater concentrations of nicotinic receptors. Research on the effects of smoking a cigarette confirms that smoking leads to the release of dopamine in brain reward areas and to nicotinic receptor binding. Studies of smoking abstinence have identified functional brain correlates of increased reactivity to smoking-related cues, and worsening of concentration. To date, neuroimaging studies of nicotine dependence among individuals with mental illness have focused almost exclusively on schizophrenia. A conceptual/methodological framework for studying dual diagnosis using neuroimaging measures is provided with the aim of spurring additional research in this area.
Collapse
Affiliation(s)
- F Joseph McClernon
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| |
Collapse
|
157
|
Dunn JF, Tuor UI, Kmech J, Young NA, Henderson AK, Jackson JC, Valentine PA, Teskey GC. Functional brain mapping at 9.4T using a new MRI-compatible electrode chronically implanted in rats. Magn Reson Med 2009; 61:222-8. [PMID: 19097225 DOI: 10.1002/mrm.21803] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a need for acute and chronic stimulation of the brain within the MRI for studies of epilepsy, as well as deep brain stimulation for movement and behavioral disorders. This work describes the production and characteristics of carbon fiber-based electrodes for acute and chronic stimulation in the brain. Increasing MRI field strengths are making it increasingly difficult to introduce foreign objects without a susceptibility artifact. We describe the production of, and the characteristics of carbon fiber-based electrodes. These are biocompatible and can be implanted for chronic studies. We show the use of these electrodes at 9.4T for studying functional activation. Data are presented showing regional connectivity. Activation not only occurs near the electrode, but at sites distant and often contralateral to the electrode. In addition, there were sites showing strong negative activation to stimulation both with direct stimulation and during a kindling-associated seizure.
Collapse
Affiliation(s)
- Jeff F Dunn
- Experimental Imaging Centre, Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Tiret P, Chaigneau E, Lecoq J, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Methods Mol Biol 2009; 489:81-91. [PMID: 18839088 DOI: 10.1007/978-1-59745-543-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-photon laser scanning microscopy (TPLSM) is an efficient tool to study cerebral blood flow (CBF) and cellular activity in depth in the brain. We describe here the advantages and weaknesses of the olfactory bulb as a model to study neurovascular coupling using TPLSM. By combining intra- and extracellular recordings, TPLSM of CBF in individual capillaries, local application of drugs, we show that odor triggers odorant-specific and concentration-dependent increases in CBF. We also demonstrate that activation of neurons is required to trigger blood flow responses.
Collapse
Affiliation(s)
- Pascale Tiret
- Laboratory of Neurophysiology; Université Paris Descartes, INSERM U603, Paris, France
| | | | | | | |
Collapse
|
159
|
Abstract
Recent developments in functional imaging as well as the emergence of new anatomical imaging techniques suited for the study of white matter have shifted investigational paradigms from a localized to a more holistic network approach. Aside from detecting local activity, functional MRI can be applied to the study of connectivity. However, the concept of "functional connectivity" remains broad, and specific designs and analyses may affect the results. In addition, connectivity cannot be viewed in isolation. Rather, from a developmental perspective, connectivity and local cortical architecture are intimately related. Therefore, combined approaches examining local organization and connectivity are the most promising avenues for elucidating disturbances of neurofunctional organization in developmental disorders. Here this approach is illustrated via data obtained from autism research that suggest impaired local cortical architecture and reduced long-range connectivity between cerebral regions.
Collapse
Affiliation(s)
- Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA 92120-1863, USA.
| |
Collapse
|
160
|
Imaging the brain: visualising “pathological entities”? Searching for reliable protocols within psychiatry and their impact on the understanding of psychiatric diseases. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s10202-008-0055-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
161
|
Wu CW, Chuang KH, Wai YY, Wan YL, Chen JH, Liu HL. Vascular space occupancy-dependent functional MRI by tissue suppression. J Magn Reson Imaging 2008; 28:219-26. [PMID: 18581345 DOI: 10.1002/jmri.21410] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To measure the cerebral blood volume (CBV) dynamics during neural activation, a novel technique named vascular space occupancy (VASO)-based functional MRI (fMRI) was recently introduced for noninvasive CBV detection. However, its application is limited because of its low contrast-to-noise ratio (CNR) due to small signal change from the inverted blood. MATERIALS AND METHODS In this study a new approach-VASO with tissue suppression (VAST)-is proposed to enhance CNR. This technique is compared with VASO and blood oxygenation level-dependent (BOLD) fMRI in block-design and event-related visual experiments. RESULTS Based on acquired T(1) maps, 75.3% of the activated pixels detected by VAST are located in the cortical gray matter. Temporal characteristics of functional responses obtained by VAST were consistent with that of VASO. Although the baseline signal was decreased by the tissue suppression, the CNR of VAST was about 43% higher than VASO. CONCLUSION With the improved sensitivity, VAST fMRI provides a useful alternative for mapping the spatial/temporal features of regional CBV changes during brain activation. However, the technical imperfectness of VAST, such as the nonideal inversion efficiency and physiological contaminations, limits its application to precise CBV quantification.
Collapse
Affiliation(s)
- Changwei W Wu
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Section 4 No. 1 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
162
|
Park JC, Zhang X, Ferrera J, Hirsch J, Hood DC. Comparison of contrast-response functions from multifocal visual-evoked potentials (mfVEPs) and functional MRI responses. J Vis 2008; 8:8.1-12. [PMID: 19146350 DOI: 10.1167/8.10.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 06/10/2008] [Indexed: 12/30/2022] Open
Abstract
Contrast response functions (CRFs) from multifocal visual-evoked potential (mfVEP) and BOLD fMRI responses were obtained using the same stimuli to test the hypothesis of a linear relationship between the mfVEP and BOLD fMRI responses. Monocular mfVEP and BOLD fMRI responses were obtained using an 8 degrees in diameter, dartboard pattern stimulus with reversing checkerboards. Six contrast conditions (4%, 8%, 16%, 32%, 64%, and 90%) were run. The mfVEP, largely generated in V1, was compared to the BOLD fMRI signal from V1 and extrastriate cortex. Retinotopic maps of each subject were acquired and used to localize the V1 area. For all subjects, the CRFs for the mfVEPs and BOLD fMRI responses showed good agreement, suggesting that they both share the same functional relationship with underlying neural activity. In particular, this result is consistent with the assumption that the relationship between the BOLD response and underlying neural activity is linear, although the particular linear model proposed by D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht (2000) does not fit the results.
Collapse
Affiliation(s)
- Jason C Park
- Department of Psychology, Columbia University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
163
|
Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC. Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 2008; 191:383-402. [PMID: 18936922 DOI: 10.1007/s00221-008-1601-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS-fMRI studies that illustrate how this novel combined technique may provide unique insights into causal interactions among brain regions in humans. We show how fMRI can detect the spatial topography of local and remote TMS effects and how these may vary with psychological factors such as task-state. Concurrent TMS-fMRI may furthermore reveal how the brain adapts to so-called virtual lesions induced by TMS, and the distributed activity changes that may underlie the behavioural consequences often observed during cortical stimulation with TMS. We argue that combining TMS with neuroimaging techniques allows a further step in understanding the physiological underpinnings of TMS, as well as the neural correlated of TMS-evoked consequences on perception and behaviour. This can provide powerful new insights about causal interactions among brain regions in both health and disease that may ultimately lead to developing more efficient protocols for basic research and therapeutic TMS applications.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
164
|
Cohen MX, David N, Vogeley K, Elger CE. Gamma-band activity in the human superior temporal sulcus during mentalizing from nonverbal social cues. Psychophysiology 2008; 46:43-51. [PMID: 18992070 DOI: 10.1111/j.1469-8986.2008.00724.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The posterior superior temporal sulcus (pSTS) is a key structure for our ability to infer others' mental states based on social cues including facial expressions, body posture, and gestures ("mentalizing"), but the neural mechanisms of this ability remain largely unknown. We recorded electrocorticogram directly from the pSTS in humans to show that enhanced neural oscillations in the gamma frequency range (35-55 Hz) accompany mentalizing. One patient with a lesion in pSTS was tested behaviorally on this task; he was unable to infer a virtual character's preferences from nonverbal social cues. Enhanced coherent gamma oscillations in the patients with intact pSTS may reflect a process by which social signals are bound into a unified representation to support mentalizing. This may be relevant for other social cognitive processes, as well as to the study of autism spectrum disorders, for which both mentalizing deficits and abnormal gamma activity have been reported.
Collapse
Affiliation(s)
- Michael X Cohen
- Department of Epileptology, University of Bonn, 53101 Bonn, Germany.
| | | | | | | |
Collapse
|
165
|
Abstract
Although dementia is a clinical diagnosis, neuroimaging often is crucial for proper assessment. Magnetic resonance imaging (MRI) and computed tomography (CT) may identify nondegenerative and potentially treatable causes of dementia. Recent neuroimaging advances, such as the Pittsburgh Compound-B (PIB) ligand for positron emission tomography imaging in Alzheimer's disease, will improve our ability to differentiate among the neurodegenerative dementias. High-resolution volumetric MRI has increased the capacity to identify the various forms of the frontotemporal lobar degeneration spectrum and some forms of parkinsonism or cerebellar neurodegenerative disorders, such as corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy, and spinocerebellar ataxias. In many cases, the specific pattern of cortical and subcortical abnormalities on MRI has diagnostic utility. Finally, among the new MRI methods, diffusion-weighted MRI can help in the early diagnosis of Creutzfeldt-Jakob disease. Although only clinical assessment can lead to a diagnosis of dementia, neuroimaging is clearly an invaluable tool for the clinician in the differential diagnosis.
Collapse
Affiliation(s)
- Paolo Vitali
- Department of Neurology, UCSF Memory and Aging Center, University of California-San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
166
|
Tyler CW, Kontsevich LL, Ferree TC. Independent components in stimulus-related BOLD signals and estimation of the underlying neural responses. Brain Res 2008; 1229:72-89. [PMID: 18625206 PMCID: PMC6685289 DOI: 10.1016/j.brainres.2008.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 05/24/2008] [Accepted: 06/10/2008] [Indexed: 11/23/2022]
Abstract
We measured blood oxygen level dependent (BOLD) responses to the onset of dynamic noise stimulation in defined regions of the primary retinotopic projection (V1) in visual cortex. The response waveforms showed a remarkable diversity across stimulus types, violating the basic assumption of a unitary general linear model of a uniform BOLD response function convolved with each stimulus sequence. We used independent component analysis (ICA) to analyze the component mechanisms contributing to these responses. The underlying neural responses for the components were estimated by nonlinear optimization through the Friston-Buxton hemodynamic model of the BOLD response. Our analysis suggests that one of the identified components reflected a sustained neural response to the stimulus and that another reflected an extremely slow neural response. A third component exhibited nonlinear change-specific transient responses. The first two components showed stable spatial structure in the V1 region of interest with respect to the eccentricity of the noise stimulus.
Collapse
Affiliation(s)
- C W Tyler
- Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, CA 94115, USA.
| | | | | |
Collapse
|
167
|
Minati L, Rosazza C, Zucca I, D'Incerti L, Scaioli V, Bruzzone MG. Spatial correspondence between functional MRI (fMRI) activations and cortical current density maps of event-related potentials (ERP): a study with four tasks. Brain Topogr 2008; 21:112-27. [PMID: 18758934 DOI: 10.1007/s10548-008-0064-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
We investigated the spatial correspondence between functional MRI (fMRI) activations and cortical current density maps of event-related potentials (ERPs) reconstructed without fMRI priors. The presence of a significant spatial correspondence is a prerequisite for direct integration of the two modalities, enabling to combine the high spatial resolution of fMRI with the high temporal resolution of ERPs. Four separate tasks were employed: visual stimulation with a pattern-reversal chequerboard, recognition of images of nameable objects, recognition of written words, and auditory stimulation with a piano note. ERPs were acquired with 19 recording channels, and source localisation was performed using a realistic head model, a standard cortical mesh and the multiple sparse priors method. Spatial correspondence was evaluated at group level over 10 subjects, by means of a voxel-by-voxel test and a test on the distribution of local maxima. Although not complete, it was significant for the visual stimulation task, image and word recognition tasks (P < 0.001 for both types of test), but not for the auditory stimulation task. These findings indicate that partial but significant spatial correspondence between the two modalities can be found even with a small number of channels, for three of the four tasks employed. Absence of correspondence for the auditory stimulation task was caused by the unfavourable situation of the activated cortex being perpendicular to the overlying scalp, whose consequences were exacerbated by the small number of channels. The present study corroborates existing literature in this field, and may be of particular relevance to those interested in combining fMRI with ERPs acquired with the standard 10-20 system.
Collapse
Affiliation(s)
- Ludovico Minati
- Science Direction Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milano, MI, Italy.
| | | | | | | | | | | |
Collapse
|
168
|
Hohwy J, Roepstorff A, Friston K. Predictive coding explains binocular rivalry: an epistemological review. Cognition 2008; 108:687-701. [PMID: 18649876 DOI: 10.1016/j.cognition.2008.05.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 04/18/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Binocular rivalry occurs when the eyes are presented with different stimuli and subjective perception alternates between them. Though recent years have seen a number of models of this phenomenon, the mechanisms behind binocular rivalry are still debated and we still lack a principled understanding of why a cognitive system such as the brain should exhibit this striking kind of behaviour. Furthermore, psychophysical and neurophysiological (single cell and imaging) studies of rivalry are not unequivocal and have proven difficult to reconcile within one framework. This review takes an epistemological approach to rivalry that considers the brain as engaged in probabilistic unconscious perceptual inference about the causes of its sensory input. We describe a simple empirical Bayesian framework, implemented with predictive coding, which seems capable of explaining binocular rivalry and reconciling many findings. The core of the explanation is that selection of one stimulus, and subsequent alternation between stimuli in rivalry occur when: (i) there is no single model or hypothesis about the causes in the environment that enjoys both high likelihood and high prior probability and (ii) when one stimulus dominates, the bottom-up, driving signal for that stimulus is explained away while, crucially, the bottom-up signal for the suppressed stimulus is not, and remains as an unexplained but explainable prediction error signal. This induces instability in perceptual dynamics that can give rise to perceptual transitions or alternations during rivalry.
Collapse
Affiliation(s)
- Jakob Hohwy
- Department of Philosophy, Monash University, Australia.
| | | | | |
Collapse
|
169
|
Hamidi M, Tononi G, Postle BR. Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res 2008; 1230:202-10. [PMID: 18662678 DOI: 10.1016/j.brainres.2008.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/22/2008] [Accepted: 07/02/2008] [Indexed: 11/16/2022]
Abstract
Functional neuroimaging studies have produced contradictory data about the extent to which specific regions of the frontal and the posterior parietal cortices contribute to the retention of information in spatial working memory. We used high frequency repetitive transcranial magnetic stimulation (rTMS) to assess the necessity for the short-term retention of spatial information of brain areas identified by previous functional imaging studies: dorsolateral prefrontal cortex (dlPFC), frontal eye fields (FEF), superior parietal lobule (SPL) and intraparietal sulcus (IPS). 10 Hz rTMS spanned the 3-s delay period of a spatial delayed-recognition task. The postcentral gyrus (PCG) was included to control for any regionally non-specific effects of rTMS. The only regionally-specific effect was a significant decrease in reaction time when rTMS was applied to SPL. Additionally, rTMS lowered accuracy to a greater extent when applied to left than to right hemisphere, and was more disruptive when applied contralaterally vs. ipsilaterally to the visual field in which the memory probe was presented. Although seemingly paradoxical, the finding of rTMS-induced improvement in task performance has a precedent, and is consistent with the idea that regions associated with spatial sensory-motor processing make necessary contributions to the short-term retention of this information. Possible factors underlying rTMS-induced behavioral facilitation are considered.
Collapse
|
170
|
Cowan RL, Wood J, Dietrich MS, de B Frederick B, Lukas SE, Renshaw PF. Differential effects of D-amphetamine on red and blue light-induced photic activation: A novel BOLD fMRI assay of human dopamine function. Synapse 2008; 62:268-72. [PMID: 18240321 DOI: 10.1002/syn.20491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neurotransmitter dopamine (DA) is implicated in the pathophysiology of central nervous system (CNS) illnesses including Parkinson's disease, attention deficit disorder, schizophrenia, and substance abuse. A better understanding of CNS DA function would be of importance in improving our understanding of these conditions. Several lines of evidence suggest that exploring visual system function may be a useful paradigm for examining DA function. Clinical and basic science findings suggest that the visual response to blue light might prove a useful assay of CNS DA tone. To test this hypothesis, we used the functional magnetic resonance imaging (fMRI) BOLD method to measure visual cortical activation in human subjects (N = 6) in response to 8 Hz flashing red and blue light stimuli during placebo conditions and during the oral administration of 2.5 mg of D-amphetamine, a drug known to increase synaptic concentrations of DA and other monoamine neurotransmitters. There was no effect of D-amphetamine administration on the percent BOLD signal change to red or blue light. However, there was a specific augmentation of the spatial extent of activation (as measured by the number of activated pixels; P = 0.018) to blue, but not red light following D-amphetamine administration. This finding is consistent with our hypothesis that blue light function may have utility as an assay of CNS DA tone. However, several limitations to the study, including the small sample size, low dosage of D-amphetamine, and the fact that D-amphetamine increases synaptic concentrations of DA and other monoamine neurotransmitters do not permit a conclusion regarding a specific role for DA in the observed increase in spatial activation to blue light in the amphetamine condition.
Collapse
Affiliation(s)
- Ronald L Cowan
- Department of Psychiatry, Psychiatric Neuroimaging Program, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Shusterman V, Troy WC. From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:061911. [PMID: 18643304 DOI: 10.1103/physreve.77.061911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/28/2008] [Indexed: 05/26/2023]
Abstract
In large-scale neural networks in the brain the emergence of global behavioral patterns, manifested by electroencephalographic activity, is driven by the self-organization of local neuronal groups into synchronously functioning ensembles. However, the laws governing such macrobehavior and its disturbances, in particular epileptic seizures, are poorly understood. Here we use a mean-field population network model to describe a state of baseline physiological activity and the transition from the baseline state to rhythmic epileptiform activity. We describe principles which explain how this rhythmic activity arises in the form of spatially uniform self-sustained synchronous oscillations. In addition, we show how the rate of migration of the leading edge of the synchronous oscillations can be theoretically predicted, and compare the accuracy of this prediction with that measured experimentally using multichannel electrocorticographic recordings obtained from a human subject experiencing epileptic seizures. The comparison shows that the experimentally measured rate of migration of the leading edge of synchronous oscillations is within the theoretically predicted range of values. Computer simulations have been performed to investigate the interactions between different regions of the brain and to show how organization in one spatial region can promote or inhibit organization in another. Our theoretical predictions are also consistent with the results of functional magnetic resonance imaging (fMRI), in particular with observations that lower-frequency electroencephalographic (EEG) rhythms entrain larger areas of the brain than higher-frequency rhythms. These findings advance the understanding of functional behavior of interconnected populations and might have implications for the analysis of diverse classes of networks.
Collapse
Affiliation(s)
- Vladimir Shusterman
- Cardiovascular Institute and Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
172
|
Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik A, Kletter K, Moser E, Kasper S, Lanzenberger R. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. Neuroimage 2008; 41:204-11. [DOI: 10.1016/j.neuroimage.2008.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022] Open
|
173
|
Perini R, Choe R, Yodh AG, Sehgal C, Divgi CR, Rosen MA. Non-invasive assessment of tumor neovasculature: techniques and clinical applications. Cancer Metastasis Rev 2008; 27:615-30. [DOI: 10.1007/s10555-008-9147-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Jones M, Devonshire IM, Berwick J, Martin C, Redgrave P, Mayhew J. Altered neurovascular coupling during information-processing states. Eur J Neurosci 2008; 27:2758-72. [PMID: 18445054 DOI: 10.1111/j.1460-9568.2008.06212.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain imaging techniques rely on changes in blood flow, volume and oxygenation to infer the loci and magnitude of changes in activity. Although progress has been made in understanding the link between stimulus-evoked neural activity and haemodynamics, the extent to which neurovascular-coupling relationships remain constant during different states of baseline cortical activity is poorly understood. Optical imaging spectroscopy, laser Doppler flowmetry and electrophysiology were used to measure haemodynamics and neural activity in the barrel cortex of anaesthetized rats. The responses to stimulation of the whisker pad were recorded during quiescence and cortical desynchronization produced by stimulation of the brainstem. Cortical desynchronization was accompanied by increases in baseline blood flow, volume and oxygenation. Haemodynamic responses to low-frequency whisker stimuli (1 Hz) were attenuated during arousal compared with that observed during quiescence. During arousal it was possible to increase stimulus-evoked haemodynamics by increasing the frequency of the stimulus. Neural responses to low-frequency stimuli were also attenuated but to a far lesser extent than the reduction in the accompanying haemodynamics. In contrast, neuronal activity evoked by high-frequency stimuli (40 Hz) was enhanced during arousal, but induced haemodynamic responses of a similar magnitude compared with that observed for the same high-frequency stimulus presented during quiescence. These data suggest that there may be differences in stimulus-evoked neural activity and accompanying haemodynamics during different information-processing states.
Collapse
Affiliation(s)
- Myles Jones
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | | | | | | | | | | |
Collapse
|
175
|
Georgopoulos AP, Karageorgiou E. Neurostatistics: applications, challenges and expectations. Stat Med 2008; 27:407-17. [PMID: 18050155 DOI: 10.1002/sim.3137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain function and its relations to cognition and behavior can be elucidated only by the use of various complementary methods. Over the past 20 years, we have been studying the brain mechanisms underlying spatial processes using different methods, including the recording of single cell activity in behaving monkeys, functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in human subjects, all performing the same tasks. These methods provide partially overlapping perspectives, resulting in a gain in knowledge beyond the province of the individual method. A common aspect in this endeavor is the statistical analysis of the data acquired by different methods, especially regarding the encoding of information in unitary elements (single cell activity in neurophysiology, blood oxygenation level-dependent (BOLD) activation of voxels in fMRI, magnetic field strength in MEG) and the decoding of information from ensembles. In this paper we illustrate the various approaches, their data analysis and possible applications to medicine in the context of operations in space.
Collapse
|
176
|
Vanzetta I, Grinvald A. Coupling between neuronal activity and microcirculation: implications for functional brain imaging. HFSP JOURNAL 2008; 2:79-98. [PMID: 19404475 PMCID: PMC2645573 DOI: 10.2976/1.2889618] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/11/2008] [Indexed: 01/12/2023]
Abstract
In the neocortex, neurons with similar response properties are often clustered together in column-like structures, giving rise to what has become known as functional architecture-the mapping of various stimulus feature dimensions onto the cortical sheet. At least partially, we owe this finding to the availability of several functional brain imaging techniques, both post-mortem and in-vivo, which have become available over the last two generations, revolutionizing neuroscience by yielding information about the spatial organization of active neurons in the brain. Here, we focus on how our understanding of such functional architecture is linked to the development of those functional imaging methodologies, especially to those that image neuronal activity indirectly, through metabolic or haemodynamic signals, rather than directly through measurement of electrical activity. Some of those approaches allow exploring functional architecture at higher spatial resolution than others. In particular, optical imaging of intrinsic signals reaches the striking detail of approximately 50 mum, and, together with other methodologies, it has allowed characterizing the metabolic and haemodynamic responses induced by sensory-evoked neuronal activity. Here, we review those findings about the spatio-temporal characteristics of neurovascular coupling and discuss their implications for functional brain imaging, including position emission tomography, and non-invasive neuroimaging techniques, such as funtional magnetic resonance imaging, applicable also to the human brain.
Collapse
Affiliation(s)
- Ivo Vanzetta
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
- Institut de Neurosciences Cognitives de la Méditerranée, CNRS UMR 6193, Aix-Marseille Université, 13402 Marseille Cedex 20, France
| | - Amiram Grinvald
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
177
|
Stein BE, Stanford TR. Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 2008; 9:255-66. [PMID: 18354398 DOI: 10.1038/nrn2331] [Citation(s) in RCA: 925] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For thousands of years science philosophers have been impressed by how effectively the senses work together to enhance the salience of biologically meaningful events. However, they really had no idea how this was accomplished. Recent insights into the underlying physiological mechanisms reveal that, in at least one circuit, this ability depends on an intimate dialogue among neurons at multiple levels of the neuraxis; this dialogue cannot take place until long after birth and might require a specific kind of experience. Understanding the acquisition and usage of multisensory integration in the midbrain and cerebral cortex of mammals has been aided by a multiplicity of approaches. Here we examine some of the fundamental advances that have been made and some of the challenging questions that remain.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|
178
|
Draganski B, May A. Training-induced structural changes in the adult human brain. Behav Brain Res 2008; 192:137-42. [PMID: 18378330 DOI: 10.1016/j.bbr.2008.02.015] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 02/07/2023]
Abstract
Structural and functional brain reorganisation can occur beyond the developmental maturation period and this was recently recognised as an intrinsic property of the human central nervous system. Brain injury or altered afferent input due to environmental changes, novel experience and learning new skills are known as modulators of brain function and underlying neuroanatomic circuitry. During the past decade invasive animal studies and in vivo imaging techniques have delineated the correlates of experience dependent reorganisation. The major future challenge is to understand the behavioural consequences and cellular mechanisms underlying training-induced neuroanatomic plasticity in order to adapt treatment strategies for patients with brain injury or neurodegenerative disorders.
Collapse
Affiliation(s)
- B Draganski
- Wellcome Trust Centre for Neuroimaging, NHNN Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
179
|
Slade JM, Carlson JJ, Forbes SC, Stein NJ, Moll MR, Wiseman RW, Meyer RA. The postprandial increase in blood triglycerides has no direct effect on the brain BOLD response. Hum Brain Mapp 2008; 30:749-56. [PMID: 18266244 DOI: 10.1002/hbm.20543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous study showed that ingestion of a liquid meal high in polyunsaturated lipids decreased the blood-oxygenation-level-dependent (BOLD) response measured by functional magnetic resonance imaging (fMRI) during a finger-tapping motor task, and suggested that this effect was due to a direct effect of blood lipids on the cerebral vasculature. This study compared the time course and magnitude of the BOLD response in fixed anatomic locations before and 3 h after ingestion of high versus low lipid content liquid meals (235 ml Ensure Plus [Abbot Labs] with or without 50 ml added canola oil). Blood triglyceride content peaked 3 h after the high lipid meal and was elevated by 33% compared with the low lipid meal. There was no significant effect of meal composition on the time course or magnitude of the BOLD response in fixed-location clusters of voxels which were activated during either a motor (finger-tapping), a visual (flashing checkerboard), or an integrative/cognitive (number addition) block-design task paradigm. The results indicate that increased blood total triglyceride content after a meal with relatively high polyunsaturated fat does not directly alter the hemodynamic BOLD response to neural activity. However, the postprandial effect on BOLD response of other meals with varying fat types and amounts, as well as other nutrients and phytochemicals, remains to be determined.
Collapse
Affiliation(s)
- Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M. Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 2008; 39:1839-49. [DOI: 10.1016/j.neuroimage.2007.10.058] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022] Open
|
182
|
Casanova R, Ryali S, Serences J, Yang L, Kraft R, Laurienti PJ, Maldjian JA. The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis. Neuroimage 2008; 40:1606-18. [PMID: 18329292 DOI: 10.1016/j.neuroimage.2008.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/26/2007] [Accepted: 01/05/2008] [Indexed: 10/22/2022] Open
Abstract
In fMRI data analysis it has been shown that for a wide range of situations the hemodynamic response function (HRF) can be reasonably characterized as the impulse response function of a linear and time invariant system. An accurate and robust extraction of the HRF is essential to infer quantitative information about the relative timing of the neuronal events in different brain regions. When no assumptions are made about the HRF shape, it is most commonly estimated using time windowed averaging or a least squares estimated general linear model based on either Fourier or delta basis functions. Recently, regularization methods have been employed to increase the estimation efficiency of the HRF; typically these methods produce more accurate HRF estimates than the least squares approach [Goutte, C., Nielsen, F.A., Hansen, L.K., 2000. Modeling the Haemodynamic Response in fMRI Using Smooth FIR Filters. IEEE Trans. Med. Imag. 19(12), 1188-1201.]. Here, we use simulations to clarify the relative merit of temporal regularization based methods compared to the least squares methods with respect to the accuracy of estimating certain characteristics of the HRF such as time to peak (TTP), height (HR) and width (W) of the response. We implemented a Bayesian approach proposed by Marrelec et al. [Marrelec, G., Benali, H., Ciuciu, P., Pelegrini-Issac, M., Poline, J.-B., 2003. Robust Estimation of the Hemodynamic Response Function in Event-Related BOLD fMRI Using Basic Physiological Information. Hum. Brain Mapp. 19, 1-17., Marrelec, G., Benali, H., Ciuciu, P., Poline, J.B. Bayesian estimation of the hemodynamic of the hemodynamic response function in functional MRI. In: R. F, editor; 2001; Melville. p 229-247.] and its deterministic counterpart based on a combination of Tikhonov regularization [Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of ill-posed problems. Washington DC: W.H. Winston.] and generalized cross-validation (GCV) [Wahba, G., 1990. Spline Models for Observational Data. Philadelphia: SIAM.] for selecting the regularization parameter. The performance of both methods is compared with least square estimates as a function of temporal resolution, color and strength of the noise, and the type of stimulus sequences used. In almost all situations, under the considered assumptions (e.g. linearity, time invariance and smooth HRF), the regularization-based techniques more accurately characterize the HRF compared to the least-squares method. Our results clarify the effects of temporal resolution, noise color, and experimental design on the accuracy of HRF estimation.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
183
|
Stark JA, McKie S, Davies KE, Williams SR, Luckman SM. 5-HT2C antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding. Eur J Neurosci 2008; 27:457-65. [DOI: 10.1111/j.1460-9568.2007.06002.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
184
|
Perlbarg V, Marrelec G. Contribution of exploratory methods to the investigation of extended large-scale brain networks in functional MRI: methodologies, results, and challenges. Int J Biomed Imaging 2008; 2008:218519. [PMID: 18497865 PMCID: PMC2386147 DOI: 10.1155/2008/218519] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/07/2007] [Indexed: 11/18/2022] Open
Abstract
A large-scale brain network can be defined as a set of segregated and integrated regions, that is, distant regions that share strong anatomical connections and functional interactions. Data-driven investigation of such networks has recently received a great deal of attention in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). We here review the rationale for such an investigation, the methods used, the results obtained, and also discuss some issues that have to be faced for an efficient exploration.
Collapse
Affiliation(s)
- V. Perlbarg
- U678,
Inserm,
Paris 75013,
France
- Faculté de Médecine Pitié-Salpêtrière,
Université Pierre et Marie Curie,
Paris 75013,
France
| | - G. Marrelec
- U678,
Inserm,
Paris 75013,
France
- Faculté de Médecine Pitié-Salpêtrière,
Université Pierre et Marie Curie,
Paris 75013,
France
| |
Collapse
|
185
|
|
186
|
Berwick J, Johnston D, Jones M, Martindale J, Martin C, Kennerley AJ, Redgrave P, Mayhew JEW. Fine detail of neurovascular coupling revealed by spatiotemporal analysis of the hemodynamic response to single whisker stimulation in rat barrel cortex. J Neurophysiol 2007; 99:787-98. [PMID: 18046008 DOI: 10.1152/jn.00658.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial resolution of hemodynamic-based neuroimaging techniques, including functional magnetic resonance imaging, is limited by the degree to which neurons regulate their blood supply on a fine scale. Here we investigated the spatial detail of neurovascular events with a combination of high spatiotemporal resolution two-dimensional spectroscopic optical imaging, multichannel electrode recordings and cytochrome oxidase histology in the rodent whisker barrel field. After mechanical stimulation of a single whisker, we found two spatially distinct cortical hemodynamic responses: a transient response in the "upstream" branches of surface arteries and a later highly localized increase in blood volume centered on the activated cortical column. Although the spatial representation of this localized response exceeded that of a single "barrel," the spread of hemodynamic activity accurately reflected the neural response in neighboring columns rather than being due to a passive "overspill." These data confirm hemodynamics are capable of providing accurate "single-condition" maps of neural activity.
Collapse
Affiliation(s)
- J Berwick
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Tempel-Brami C, Pinkas I, Scherz A, Salomon Y. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging. PLoS One 2007; 2:e1191. [PMID: 18030327 PMCID: PMC2077809 DOI: 10.1371/journal.pone.0001191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022] Open
Abstract
In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI). We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD)-MRI protocol, termed photosensitized (ps)MRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold) were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1). This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.
Collapse
Affiliation(s)
| | - Iddo Pinkas
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Salomon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
Menon M, Jensen J, Vitcu I, Graff-Guerrero A, Crawley A, Smith MA, Kapur S. Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: effects of dopaminergic modulation. Biol Psychiatry 2007; 62:765-72. [PMID: 17224134 DOI: 10.1016/j.biopsych.2006.10.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/14/2006] [Accepted: 10/16/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND The prediction error (PE) hypothesized by the temporal difference model has been shown to correlate with the phasic activity of dopamine neurons during reward learning and the blood-oxygen level dependent (BOLD) response during reward and aversive conditioning tasks. We hypothesized that dopamine would modulate the PE related signal in aversive conditioning and that haloperidol would reduce PE related activity, while an acute dose of amphetamine would increase PE related activity in the ventral striatum. METHODS Healthy participants took an acute dose of amphetamine, haloperidol, or placebo. We used functional magnetic resonance imaging (fMRI) to measure the BOLD signal while they carried out an aversive conditioning task, using cutaneous electrical stimulation as the unconditioned stimulus (US) and yellow and blue circles as conditioned stimulus (CS+ and CS-, respectively). RESULTS Prediction error related BOLD activity was seen only in the ventral striatum in the placebo subjects. The subjects given amphetamine showed a wider network of PE related BOLD activity, including the ventral striatum, globus pallidus, putamen, insula, anterior cingulate, and substantia nigra/ventral tegmental area. Haloperidol subjects did not show PE related activity in any of these regions. CONCLUSIONS Our results provide the first demonstration that the modulation of dopamine transmission affects both the physiological correlates and PE related BOLD activity during aversive learning.
Collapse
Affiliation(s)
- Mahesh Menon
- Schizophrenia Program and PET Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
189
|
Vidarsdottir S, Smeets PAM, Eichelsheim DL, van Osch MJP, Viergever MA, Romijn JA, van der Grond J, Pijl H. Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Diabetes 2007; 56:2547-50. [PMID: 17670916 DOI: 10.2337/db07-0193] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The hypothalamus plays a critical role in the regulation of energy balance and fuel flux. Glucose ingestion inhibits hypothalamic neuronal activity in healthy humans. We hypothesized that hypothalamic neuronal activity in response to an oral glucose load would be altered in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized, single blind, case-control study, 7 type 2 diabetic men (BMI 27.9 +/- 2.0 kg/m(2)) and 10 age-matched healthy men (BMI 26.1 +/- 3.2 kg/m(2)) were scanned twice for 38 min on separate days using functional magnetic resonance imaging. After 8 min, they ingested either a glucose solution (75 g in 300 ml water) or water (300 ml). RESULTS Glucose ingestion resulted in a prolonged significant blood oxygen level-dependent signal decrease in the upper and lower hypothalamus in healthy subjects but not in diabetic patients. CONCLUSIONS Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Failure of neural circuits to properly adapt to nutrient ingestion may contribute to metabolic imbalance in type 2 diabetic patients.
Collapse
Affiliation(s)
- Solrun Vidarsdottir
- Leiden University Medical Center, Department of Endocrinology and Metabolic Disease, C4-83, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy. Neuroimage 2007; 39:979-86. [PMID: 17997330 DOI: 10.1016/j.neuroimage.2007.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 09/21/2007] [Accepted: 09/24/2007] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) visualizes activated brain areas with a high spatial resolution. The activation signal is determined by the local change of cerebral blood oxygenation, blood volume and blood flow which serve as surrogate marker for the neuronal signal itself. Here, the complex coupling between these parameters and the electrophysiologic activity is characterized non-invasively in humans during a simple motor task using simultaneously DC-magnetoencephalography (DC-MEG), for the detection of neuronal signals, and time-resolved near-infrared spectroscopy (trNIRS), for cortical metabolic/vascular responses: over the left primary motor cortex hand area of healthy subjects DC-fields and trNIRS parameters followed closely the 30 s motor task cycles, i.e., finger movements of the right hand alternating with rest. In subjects showing a sufficient signal-to-noise ratio the analysis of variance of photon time of flight proved that the task-related trNIRS changes originated from the cortex. While onset and relaxation started simultaneously, trNIRS signals reached 50% of the maximum level 1-4 s later than the DC-MEG-signals. The non-invasive 'dual' setup helps to characterize simultaneously the two complementary aspects of the 'hemodynamic inverse problem', i.e., the coupling of neuronal and vascular/metabolic signals, in healthy subjects and provides a new analysis perspective for pathophysiological coupling concepts in diverse diseases, e.g., in stroke, hypertension and Alzheimer's disease.
Collapse
|
191
|
Kipervaser ZG, Pelled G, Goelman G. Statistical framework and noise sensitivity of the amplitude radial correlation contrast method. Magn Reson Med 2007; 58:554-61. [PMID: 17763348 DOI: 10.1002/mrm.21278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A statistical framework for the amplitude radial correlation contrast (RCC) method, which integrates a conventional pixel threshold approach with cluster-size statistics, is presented. The RCC method uses functional MRI (fMRI) data to group neighboring voxels in terms of their degree of temporal cross correlation and compares coherences in different brain states (e.g., stimulation OFF vs. ON). By defining the RCC correlation map as the difference between two RCC images, the map distribution of two OFF states is shown to be normal, enabling the definition of the pixel cutoff. The empirical cluster-size null distribution obtained after the application of the pixel cutoff is used to define a cluster-size cutoff that allows 5% false positives. Assuming that the fMRI signal equals the task-induced response plus noise, an analytical expression of amplitude-RCC dependency on noise is obtained and used to define the pixel threshold. In vivo and ex vivo data obtained during rat forepaw electric stimulation are used to fine-tune this threshold. Calculating the spatial coherences within in vivo and ex vivo images shows enhanced coherence in the in vivo data, but no dependency on the anesthesia method, magnetic field strength, or depth of anesthesia, strengthening the generality of the proposed cutoffs.
Collapse
Affiliation(s)
- Zeev Gideon Kipervaser
- MRI/MRS Laboratory, Human Biology Research Center, Department of Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
192
|
Frasch MG, Walter B, Friedrich H, Hoyer D, Eiselt M, Bauer R. Detecting the signature of reticulothalamocortical communication in cerebrocortical electrical activity. Clin Neurophysiol 2007; 118:1969-79. [PMID: 17604691 DOI: 10.1016/j.clinph.2007.05.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/05/2007] [Accepted: 05/22/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Reticulothalamocortical (RTC) and cortico-cortical (CC) communications underlie multiple fundamental neurophysiological processes. Detecting changes in RTC versus CC communication from the EEG alone remains an unsolved problem. RTC communication shows complex (linear and nonlinear) properties in EEG. Aiming to detect changes in complexity of RTC communication from EEG, we applied a novel concept to analyze the complexity of information flow in RTC communication on different time scales of neuronal oscillations with mutual information function (MIF). METHODS We studied information flow in RTC and CC communication in a previously established model of moderate and deep propofol/fentanyl anesthesia in six juvenile pigs. We recorded the electrothalamogram (EThG) of the reticular thalamic nucleus (RTN) and the electrocorticogram (ECoG) of five ipsilateral regions and characterized their linear (spectral power, coherence) and complexity (MIF) properties. RESULTS During deep anesthesia, ECoG complexity over the temporoparietal region decreased on the time scale of beta frequency band. The spectral power in the beta frequency band decreased over others, but not over the temporoparietal region. Coherence decreased predominantly in the alpha band in both CC and RTC communication while information flow complexity decreased specifically in RTC, but not in CC, communication, suggesting higher information flow in RTC communication during deep anesthesia. CONCLUSIONS Information flow complexity changes in ECoG specifically reflect changes in RTC communication. SIGNIFICANCE RTC communication can be quantified from cerebrocortical activity alone by assessing information flow complexity of CC communication.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynaecology, Lawson Health Research Institute, The University of Western Ontario, London, Ont., Canada N6A 4V2.
| | | | | | | | | | | |
Collapse
|
193
|
Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage 2007; 39:310-7. [PMID: 17920296 DOI: 10.1016/j.neuroimage.2007.07.058] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 06/19/2007] [Accepted: 07/31/2007] [Indexed: 11/21/2022] Open
Abstract
A variety of techniques have been developed to noninvasively image human brain function that are central to research and clinical applications endeavoring to understand how the brain works and to detect pathology (e.g. epilepsy, schizophrenia, etc.). Current methods can be broadly divided into those that rely on hemodynamic responses as indicators of neural activity (e.g. fMRI, optical, and PET) and methods that measure neural activity directly (e.g. MEG and EEG). The approaches all suffer from poor temporal resolution, poor spatial localization, or indirectly measuring neural activity. It has been suggested that the proton spin population will be altered by neural activity resulting in a measurable effect on the NMR signal that can be imaged by MRI methods. We present here the physical basis and experimental evidence for the resonant interaction between magnetic fields such as those arising from neural activity, with the spin population in ultra-low field (microT) NMR experiments. We demonstrate through the use of current phantoms that, in the case of correlated zero-mean current distributions such as those one might expect to result from neural activity, resonant interactions will produce larger changes in the observed NMR signal than dephasing. The observed resonant interactions reported here might one day form the foundation of a new functional neuroimaging modality ultimately capable of simultaneous direct neural activity and brain anatomy tomography.
Collapse
|
194
|
Mandelkow H, Halder P, Brandeis D, Soellinger M, de Zanche N, Luechinger R, Boesiger P. Heart beats brain: The problem of detecting alpha waves by neuronal current imaging in joint EEG–MRI experiments. Neuroimage 2007; 37:149-63. [PMID: 17544703 DOI: 10.1016/j.neuroimage.2007.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 03/10/2007] [Accepted: 04/07/2007] [Indexed: 11/20/2022] Open
Abstract
It has been suggested recently that the influence of the neuro-magnetic field should make electrical brain activity directly detectable by MRI. To test this hypothesis, we performed combined EEG-MRI experiments which aim to localize the neuronal current sources of alpha waves (8-12 Hz), one of the most prominent EEG phenomena in humans. A detailed analysis of cross-spectral coherence between simultaneously recorded EEG and MRI time series revealed no sign of alpha waves. Instead the EEG-MRI approach was found to be hampered by artefacts due to cardiac pulsation, which extend into the frequency band of alpha waves. Separate brain displacement mapping experiments confirmed that not only the EEG but also the MRI signal is confounded by harmonics of the cardiac frequency even at 10 Hz and beyond. This well-known ballistocardiogram artefact cannot be avoided or eliminated entirely by available signal processing techniques. Therefore we must conclude that current EEG-MRI methodology based on correlation analysis lacks not only the sensitivity but also the specificity required for the reliable detection of alpha waves.
Collapse
Affiliation(s)
- H Mandelkow
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
195
|
Turner DA, Foster KA, Galeffi F, Somjen GG. Differences in O2 availability resolve the apparent discrepancies in metabolic intrinsic optical signals in vivo and in vitro. Trends Neurosci 2007; 30:390-8. [PMID: 17590447 PMCID: PMC3340602 DOI: 10.1016/j.tins.2007.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/24/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
Monitoring changes in the fluorescence of metabolic chromophores, reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide, and the absorption of cytochromes, is useful to study neuronal activation and mitochondrial metabolism in the brain. However, these optical signals evoked by stimulation, seizures and spreading depression in intact brain differ from those observed in vitro. The responses in vivo consist of a persistent oxidized state during neuronal activity followed by mild reduction during recovery. In vitro, however, brief oxidation is followed by prolonged and heightened reduction, even during persistent neuronal activation. In normally perfused, oxygenated and activated brain tissue in vivo, partial pressure of oxygen (P(O2)) levels often undergo a brief 'dip' that is always followed by an overshoot above baseline, due to increased blood flow (neuronal-vascular coupling). By contrast, in the absence of blood circulation, tissue P(O2)in vitro decreases more markedly and recovers slowly to baseline without overshooting. Although oxygen is abundant in vivo, it is diffusion-limited in vitro. The disparities in mitochondrial and tissue oxygen availability account for the different redox responses.
Collapse
Affiliation(s)
- Dennis A Turner
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
196
|
Abstract
Oxygen plays a major role as a substrate in metabolic processes in numerous signaling pathways, in redox metabolism, and in free radical metabolism. To study the role of oxygen in normal and pathophysiological states, methods that can be used noninvasively are required. This review examines the potential of nuclear magnetic resonance techniques to study tissue oxygenation. It is written from a systems perspective, looking at detection methods with respect to the path that oxygen takes in the mammalian system-from the lungs, through the vascular system, into the interstitial space, and finally into the cell. Methods discussed range from those that are quantifiable, such as the assessment of spin lattice relaxation time in fluorocarbon solutions, to those that are more correlative, such as assessment of lactate and high energy phosphates. Since the methods vary in their site of application, sensitivity, and specificity to the quantification of oxygen, this review provides examples of how each method has been applied. This may facilitate the reader's understanding of how to optimally apply different methods to study specific biomedical problems.
Collapse
Affiliation(s)
- J F Dunn
- Department of Radiology, Physiology, and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Alberta, Canada.
| |
Collapse
|
197
|
Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M. Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR IN BIOMEDICINE 2007; 20:522-45. [PMID: 17315146 DOI: 10.1002/nbm.1131] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review aims to make the reader aware of the potential of functional MRI (fMRI) in brain activation studies in small animal models. As small animals generally require anaesthesia for immobilization during MRI protocols, this is believed to be a serious limitation to the type of question that can be addressed with fMRI. We intend to introduce a fresh view with an in-depth overview of the surprising number of fMRI applications in a wide range of important research domains in neuroscience. These include the pathophysiology of brain functioning, the basic science of activity, and functional connectivity of different sensory circuits, including sensory brain mapping, the challenges when studying the hypothalamus as the major control centre in the central nervous system, and the limbic system as neural substrate for emotions and reward. Finally the contribution of small animal fMRI research to cognitive neuroscience is outlined. This review avoids focusing exclusively on traditional small laboratory animals such as rodents, but rather aims to broaden the scope by introducing alternative lissencephalic animal models such as songbirds and fish, as these are not yet well recognized as neuroimaging study subjects. These models are well established in many other neuroscience disciplines, and this review will show that their investigation with in vivo imaging tools will open new doors to cognitive neuroscience and the study of the autonomous nervous system in experimental animals.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
198
|
Chaigneau E, Tiret P, Lecoq J, Ducros M, Knöpfel T, Charpak S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 2007; 27:6452-60. [PMID: 17567806 PMCID: PMC6672435 DOI: 10.1523/jneurosci.3141-06.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF). Here, we use two animal models and several techniques (two-photon imaging of CBF and neuronal calcium dynamics, intracellular and extracellular recordings, local pharmacology) to analyze the relationship between neuronal activity and local CBF during odor stimulation in the rodent olfactory bulb. Application of glutamate receptor antagonists or tetrodotoxin directly into single rat olfactory glomeruli blocked postsynaptic responses but did not affect the local odor-evoked CBF increases. This suggests that in our experimental conditions, odor always activates more than one glomerulus and that silencing one of a few clustered glomeruli does not affect the vascular response. To block synaptic transmission more widely, we then superfused glutamate antagonists over the surface of the olfactory bulb in transgenic G-CaMP2 mice. This was for two reasons: (1) mice have a thin olfactory nerve layer compared to rats and this will favor drug access to the glomerular layer, and (2) transgenic G-CaMP2 mice express the fluorescent calcium sensor protein G-CaMP2 in mitral cells. In G-CaMP2 mice, odor-evoked, odor-specific, and concentration-dependent calcium increases in glomeruli. Superfusion of glutamate receptor antagonists blocked odor-evoked postsynaptic calcium signals and CBF responses. We conclude that activation of postsynaptic glutamate receptors and rises in dendritic calcium are major steps for neurovascular coupling in olfactory bulb glomeruli.
Collapse
Affiliation(s)
- Emmanuelle Chaigneau
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Pascale Tiret
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Jérôme Lecoq
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Mathieu Ducros
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Thomas Knöpfel
- Laboratory for Neural Circuit Dynamics, Riken Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Serge Charpak
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| |
Collapse
|
199
|
Lengler U, Kafadar I, Neubauer BA, Krakow K. fMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. Epilepsy Res 2007; 75:29-38. [PMID: 17509833 DOI: 10.1016/j.eplepsyres.2007.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 02/26/2007] [Accepted: 03/18/2007] [Indexed: 11/26/2022]
Abstract
EEG-correlated fMRI (EEG/fMRI) can identify alterations of brain function associated with interictal epileptiform discharges (IED). fMRI activation can localize the irritative zone and indicate functional disturbance distant from the spike focus. This might be of particular interest in paediatric epilepsy syndromes with frequent IED. Using simultaneous EEG/fMRI in a 3T MR scanner we studied blood oxygen level-dependent (BOLD) signal changes related to spontaneous IED in 10 children with typical and atypical benign focal epilepsy of childhood (BFE) or benign epileptic activity of childhood (BEAC). EEG artefacts were subtracted offline and IED were used as regressors for event-related fMRI analysis in SPM2. In four of the seven children with IED during EEG/fMRI we found IED related positive and negative signal changes (p<0.001, uncorrected). In three children we found only significant negative signal changes. At a more liberal threshold (p<0.05, uncorrected) these three children had positive signal changes congruent with the four children with significant positive signal changes. In summary, we found positive or negative signal changes in perisylvian, central, premotor and prefrontal regions. One child showed additional bilateral occipital fMRI activation. In addition to former reports our results indicated that frontal brain areas are functionally disturbed during IED corresponding to general neuropsychological findings in BFE and BEAC. We conclude that using EEG/fMRI it might be possible to localize generators of IED and functionally disturbed brain regions in children with BFE. Further studies are required to differentiate between BFE subtypes and to identify fMRI signatures of specific syndromes or corresponding neuropsychological deficits.
Collapse
Affiliation(s)
- Ulrike Lengler
- Department of Neurology, Johann Wolfgang Goethe-University and Brain Imaging Center, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
200
|
Iannetti GD, Wise RG. BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 2007; 25:978-88. [PMID: 17499469 DOI: 10.1016/j.mri.2007.03.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In the past decade the use of blood oxygen level-dependent (BOLD) fMRI to investigate the effect of diseases and pharmacological agents on brain activity has increased greatly. BOLD fMRI does not measure neural activity directly, but relies on a cascade of physiological events linking neural activity to the generation of MRI signal. However, most of the disease and pharmacological studies performed so far have interpreted changes in BOLD fMRI as "brain activation," ignoring the potential confounds that can arise through drug- or disease-induced modulation of events downstream of the neural activity. This issue is especially serious in diseases (like multiple sclerosis, brain tumours and stroke) and drugs (like anaesthetics or those with a vascular action) that are known to influence these physiological events. Here we provide evidence that, to extract meaningful information on brain activity in patient and pharmacological BOLD fMRI studies, it is important to identify, characterise and possibly correct these influences that potentially confound the results. We suggest a series of experimental measures to improve the interpretability of BOLD fMRI studies. We have ranked these according to their potential information and current practical feasibility. First-line, necessary improvements consist of (1) the inclusion of one or more control tasks, and (2) the recording of physiological parameters during scanning and subsequent correction of possible between-group differences. Second-line, highly recommended important aim to make the results of a patient or drug BOLD study more interpretable and include the assessment of (1) baseline brain perfusion, (2) vascular reactivity, (3) the inclusion of stimulus-related perfusion fMRI and (4) the recording of electrophysiological responses to the stimulus of interest. Finally, third-line, desirable improvements consist of the inclusion of (1) simultaneous EEG-fMRI, (2) cerebral blood volume and (3) rate of metabolic oxygen consumption measurements and, when relevant, (4) animal studies investigating signalling between neural cells and blood vessels.
Collapse
Affiliation(s)
- G D Iannetti
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX, Oxford, UK
| | | |
Collapse
|