151
|
Mower AF, Kwok S, Yu H, Majewska AK, Okamoto KI, Hayashi Y, Sur M. Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proc Natl Acad Sci U S A 2011; 108:21241-6. [PMID: 22160721 PMCID: PMC3248554 DOI: 10.1073/pnas.1108261109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unbalanced visual input during development induces persistent alterations in the function and structure of visual cortical neurons. The molecular mechanisms that drive activity-dependent changes await direct visualization of underlying signals at individual synapses in vivo. By using a genetically engineered Förster resonance energy transfer (FRET) probe for the detection of CaMKII activity, and two-photon imaging of single synapses within identified functional domains, we have revealed unexpected and differential mechanisms in specific subsets of synapses in vivo. Brief monocular deprivation leads to activation of CaMKII in most synapses of layer 2/3 pyramidal cells within deprived eye domains, despite reduced visual drive, but not in nondeprived eye domains. Synapses that are eliminated in deprived eye domains have low basal CaMKII activity, implying a protective role for activated CaMKII against synapse elimination.
Collapse
Affiliation(s)
- Amanda F. Mower
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Showming Kwok
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Hongbo Yu
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ania K. Majewska
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ken-Ichi Okamoto
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Yasunori Hayashi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- RIKEN–MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
152
|
Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo. Proc Natl Acad Sci U S A 2011; 108:21235-40. [PMID: 22160713 DOI: 10.1073/pnas.1108270109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rules by which visual experience influences neuronal responses and structure in the developing brain are not well understood. To elucidate the relationship between rapid functional changes and dendritic spine remodeling in vivo, we carried out chronic imaging experiments that tracked visual responses and dendritic spines in the ferret visual cortex following brief periods of monocular deprivation. Functional changes, which were largely driven by loss of deprived eye responses, were tightly regulated with structural changes at the level of dendritic spines, and occurred very rapidly (on a timescale of hours). The magnitude of functional changes was correlated with the magnitude of structural changes across the cortex, and both these features reversed when the deprived eye was reopened. A global rule governed how the responses to the two eyes or changes in spines were altered by monocular deprivation: the changes occurred irrespective of regional ocular dominance preference and were independently mediated by each eye, and the loss or gain of responses/spines occurred as a constant proportion of predeprivation drive by the deprived or nondeprived eye, respectively.
Collapse
|
153
|
Activation of Rho GTPases triggers structural remodeling and functional plasticity in the adult rat visual cortex. J Neurosci 2011; 31:15163-72. [PMID: 22016550 DOI: 10.1523/jneurosci.2617-11.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A classical example of age-dependent plasticity is ocular dominance (OD) plasticity, triggered by monocular deprivation (MD). Sensitivity of cortical circuits to a brief period of MD is maximal in juvenile animals and downregulated in adult age. It remains unclear whether a reduced potential for morphological remodeling underlies this downregulation of physiological plasticity in adulthood. Here we have tested whether stimulation of structural rearrangements is effective in promoting experience-dependent plasticity in adult age. We have exploited a bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), that regulates actin dynamics and structure of neuronal processes via a persistent activation of Rho GTPases. Injection of CNF1 into the adult rat visual cortex triggered a long-lasting activation of the Rho GTPase Rac1, with a consequent increase in spine density and length in pyramidal neurons. Adult rats treated with CNF1, but not controls, showed an OD shift toward the open eye after MD. CNF1-mediated OD plasticity was selectively attributable to the enhancement of open-eye responses, whereas closed-eye inputs were unaffected. This effect correlated with an increased density of geniculocortical terminals in layer IV of monocularly deprived, CNF1-treated rats. Thus, Rho GTPase activation reinstates OD plasticity in the adult cortex via the potentiation of more active inputs from the open eye. These data establish a direct link between structural remodeling and functional plasticity and demonstrate a role for Rho GTPases in brain plasticity in vivo. The plasticizing effects of Rho GTPase activation may be exploited to promote brain repair.
Collapse
|
154
|
Carulli D, Foscarin S, Rossi F. Activity-dependent plasticity and gene expression modifications in the adult CNS. Front Mol Neurosci 2011; 4:50. [PMID: 22144945 PMCID: PMC3226246 DOI: 10.3389/fnmol.2011.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 01/20/2023] Open
Abstract
Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| |
Collapse
|
155
|
Liu Z, Li Y, Zhang L, Xin H, Cui Y, Hanson LR, Frey WH, Chopp M. Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats. Neurobiol Dis 2011; 45:804-9. [PMID: 22115941 DOI: 10.1016/j.nbd.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
As a thrombolytic agent, application of recombinant tissue plasminogen activator (tPA) to ischemic stroke is limited by the narrow time window and side effects on brain edema and hemorrhage. This study examined whether tPA, administered by intranasal delivery directly targeting the brain and spinal cord, provides therapeutic benefit during the subacute phase after stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Animals were treated intranasally with saline, 60 μg or 600 μg recombinant human tPA at 7 and 14days after MCAo (n=8/group), respectively. An adhesive-removal test and a foot-fault test were used to monitor functional recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticorubral tract (CRT) and the corticospinal tract (CST). Naive rats (n=6) were employed as normal control. Animals were euthanized 8 weeks after stroke. Compared with saline treated animals, significant functional improvements were evident in rats treated with 600 μg tPA (p<0.05), but not in 60 μg tPA treated rats. Furthermore, 600 μg tPA treatment significantly enhanced both CRT and CST sprouting originating from the contralesional cortex into the denervated side of the red nucleus and cervical gray matter compared with control group (p<0.01), respectively. The behavioral outcomes were highly correlated with CRT and CST axonal remodeling. Our data suggest that delayed tPA intranasal treatment provides therapeutic benefits for neurological recovery after stroke by, at least in part, promoting neuronal remodeling in the brain and spinal cord.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells, and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors, and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain.
Collapse
Affiliation(s)
- Lorraine E. Dansie
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
157
|
Xin H, Li Y, Shen LH, Liu X, Hozeska-Solgot A, Zhang RL, Zhang ZG, Chopp M. Multipotent mesenchymal stromal cells increase tPA expression and concomitantly decrease PAI-1 expression in astrocytes through the sonic hedgehog signaling pathway after stroke (in vitro study). J Cereb Blood Flow Metab 2011; 31:2181-8. [PMID: 21829213 PMCID: PMC3210339 DOI: 10.1038/jcbfm.2011.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) increase tissue plasminogen activator (tPA) activity in astrocytes of the ischemic boundary zone, leading to increased neurite outgrowth in the brain. To probe the mechanisms that underlie MSC-mediated activation of tPA, we investigated the morphogenetic gene, sonic hedgehog (Shh) pathway. In vitro oxygen and glucose deprivation and coculture of astrocytes and MSCs were used to mimic an in vivo ischemic condition. Both real-time-PCR and western blot showed that MSC coculture significantly increased the Shh level and concomitantly increased tPA and decreased plasminogen activator inhibitor 1 (PAI-1) levels in astrocytes. Inhibiting the Shh signaling pathway with cyclopamine blocked the increase of tPA and the decrease of PAI-1 expression in astrocytes subjected to MSC coculture or recombinant mouse Shh (rm-Shh) treatment. Both MSCs and rm-Shh decreased the transforming growth factor-β1 level in astrocytes, and the Shh pathway inhibitor cyclopamine reversed these decreases. Both Shh-small-interfering RNA (siRNA) and Glil-siRNA downregulated Shh and Gli1 (a key mediator of the Shh transduction pathway) expression in cultured astrocytes and concomitantly decreased tPA expression and increased PAI-1 expression in these astrocytes after MSC or rm-Shh treatment. Our data indicate that MSCs increase astrocytic Shh, which subsequently increases tPA expression and decreases PAI-1 expression after ischemia.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Lee H, Sawatari A. Medium spiny neurons of the neostriatal matrix exhibit specific, stereotyped changes in dendritic arborization during a critical developmental period in mice. Eur J Neurosci 2011; 34:1345-54. [PMID: 21995728 DOI: 10.1111/j.1460-9568.2011.07852.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mice, the matrix compartment of the striatum (caudate/putamen) undergoes major developmental changes during the second postnatal week, including the establishment of corticostriatal and nigrostriatal afferents, the maturation of parvalbumin-positive interneurons and the appearance of perineuronal nets. It is not known if any of these events influence the dendritic structure of medium spiny neurons, the principal output cells of the striatum. To determine whether any measurable changes in the dendrites of matrix medium spiny neurons occur during this important developmental period, we labeled individual cells at different time points flanking the second postnatal week. These cells exhibit distinct dendritic morphologies from the earliest postnatal time points examined. Furthermore, our data show that the dendritic arbors of these neurons change in length, branch points, diameter and tortuosity, regardless of morphological type. The increase in dendritic length is accompanied by a decrease in the number of branch points that occur in different, but consistent, parts of the dendritic arbor. All of these changes are most pronounced during the second postnatal week, coinciding with a number of developmental events considered important for consolidating circuitry within the striatal matrix. Our results further support the critical importance of this early postnatal period in striatal development.
Collapse
Affiliation(s)
- Hyunchul Lee
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
159
|
Schonfeld-Dado E, Segal M. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator. PLoS One 2011; 6:e25919. [PMID: 21998719 PMCID: PMC3188552 DOI: 10.1371/journal.pone.0025919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022] Open
Abstract
Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX), neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE), was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA). Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1), protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.
Collapse
Affiliation(s)
- Eldi Schonfeld-Dado
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
160
|
miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 2011; 14:1240-2. [PMID: 21892155 PMCID: PMC3183341 DOI: 10.1038/nn.2909] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/06/2011] [Indexed: 11/09/2022]
Abstract
Using quantitative analyses, we identified microRNAs (miRNAs) that were abundantly expressed in visual cortex and that responded to dark rearing and/or monocular deprivation. The most substantially altered miRNA, miR-132, was rapidly upregulated after eye opening and was delayed by dark rearing. In vivo inhibition of miR-132 in mice prevented ocular dominance plasticity in identified neurons following monocular deprivation and affected the maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits.
Collapse
|
161
|
Fabbro S, Schaller K, Seeds NW. Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer's disease transgenic mouse model. J Neurochem 2011; 118:928-38. [PMID: 21689108 DOI: 10.1111/j.1471-4159.2011.07359.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid-beta (Aβ) plaques are a hallmark of Alzheimer's disease. Several proteases including plasmin are thought to promote proteolytic cleavage and clearance of Aβ from brain. The activity of both plasmin and tissue plasminogen activator are reduced in Alzheimer's disease brain, while the tissue plasminogen activator inhibitor neuroserpin is up-regulated. Here, the relationship of tissue plasminogen activator and neuroserpin to Aβ levels is explored in mouse models. Aβ(1-42) peptide injected into the frontal cortex of tissue plasminogen activator knockout mice is slow to disappear compared to wildtype mice, whereas neuroserpin knockout mice show a rapid clearance of Aβ(1-42). The relationship of neuroserpin and tissue plasminogen activator to Aβ plaque formation was studied further by knocking-out neuroserpin in the human amyloid precursor protein-J20 transgenic mouse. Compared to the J20-transgenic mouse, the neuroserpin-deficient J20-transgenic mice have a dramatic reduction of Aβ peptides, fewer and smaller plaques, and more active tissue plasminogen activator associated with plaques. Furthermore, neuroserpin-deficient J20-transgenic mice have near normal performances in the Morris water maze, in contrast to the spatial memory defects seen in J20-transgenic mice. These results support the concept that neuroserpin inhibition of tissue plasminogen activator plays an important role both in the accumulation of brain amyloid plaques and loss of cognitive abilities.
Collapse
Affiliation(s)
- Shay Fabbro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
162
|
Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nat Commun 2011; 2:317. [PMID: 21587234 DOI: 10.1038/ncomms1312] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/13/2011] [Indexed: 11/08/2022] Open
Abstract
Chronic monocular deprivation induces severe amblyopia that is resistant to spontaneous reversal. However, dark exposure initiated in adulthood reactivates synaptic plasticity in the visual cortex and promotes recovery from chronic monocular deprivation in Long Evans rats. Here we show that chronic monocular deprivation induces a significant decrease in the density of dendritic spines on principal neurons throughout the deprived visual cortex. Nevertheless, dark exposure followed by reverse deprivation promotes the recovery of dendritic spine density of neurons in all laminae. Importantly, the ocular dominance of neurons in thalamo-recipient laminae of the cortex, and the amplitude of the thalamocortical visually evoked potential recover following dark exposure and reverse deprivation. Thus, dark exposure reactivates widespread synaptic plasticity in the adult visual cortex, including thalamocortical synapses, during the recovery from chronic monocular deprivation.
Collapse
|
163
|
LeBlanc JJ, Fagiolini M. Autism: a "critical period" disorder? Neural Plast 2011; 2011:921680. [PMID: 21826280 PMCID: PMC3150222 DOI: 10.1155/2011/921680] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/02/2011] [Indexed: 11/24/2022] Open
Abstract
Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits.
Collapse
Affiliation(s)
- Jocelyn J. LeBlanc
- Harvard Medical School and The F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
| | - Michela Fagiolini
- Harvard Medical School and The F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
| |
Collapse
|
164
|
A critical period for auditory thalamocortical connectivity. Nat Neurosci 2011; 14:1189-94. [PMID: 21804538 PMCID: PMC3419581 DOI: 10.1038/nn.2882] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/06/2011] [Indexed: 11/08/2022]
Abstract
Neural circuits are shaped by experience during periods of heightened brain plasticity in early postnatal life. Exposure to acoustic features produces age-dependent changes through largely unresolved cellular mechanisms and sites of origin. We isolated the refinement of auditory thalamocortical connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary locus of change for the tonotopic plasticity. The evolving postnatal connectivity between thalamus and cortex in the days following hearing onset may therefore determine a critical period for auditory processing.
Collapse
|
165
|
Tremblay MÈ, Majewska AK. A role for microglia in synaptic plasticity? Commun Integr Biol 2011; 4:220-2. [PMID: 21655446 DOI: 10.4161/cib.4.2.14506] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 01/11/2023] Open
Abstract
Remodeling of brain circuits, including the formation, modification and elimination of synaptic structures, occurs throughout life as animals adapt to their environment. Until very recently, known mechanisms for experience-dependent synaptic plasticity had placed neurons and their structural interactions with astrocytes in the spotlight. However microglia, the immune cells of the brain, are very active even in the absence of pathological insults and their processes periodically contact dendritic spines and axon terminals in vivo.1-3 This intriguing behavior prompted us to explore, using electron microscopy and two-photon in vivo imaging in the primary visual cortex of juvenile mice, a possible role for quiescent microglia in the modification of synaptic structures.4 Our work uncovered subtle changes in the behavior of microglia during manipulations of visual experience including regulation of perisynaptic extracellular spaces, contact with subsets of structurally dynamic and transient dendritic spines, and phagocytic engulfment of intact synapses. Based on these results, here we further discuss three means of synapse modification or elimination that could be mediated by microglia in the context of normal experience-dependent plasticity.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Department of Neurobiology and Anatomy and Center for Visual Science; University of Rochester; Rochester, NY USA
| | | |
Collapse
|
166
|
Spolidoro M, Putignano E, Munafò C, Maffei L, Pizzorusso T. Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. ACTA ACUST UNITED AC 2011; 22:725-34. [PMID: 21685398 DOI: 10.1093/cercor/bhr158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ocular dominance (OD) shift induced by monocular deprivation (MD) during the critical period is mediated by an initial depression of deprived-eye responses followed by an increased responsiveness to the nondeprived eye. It is not fully clear to what extent these 2 events are correlated and which are their physiological and molecular mediators. The extracellular synaptic environment plays an important role in regulating visual cortical plasticity. Matrix metalloproteinases (MMPs) are a family of activity-dependent zinc-dependent extracellular endopeptidases mediating extracellular matrix remodeling. We investigated the effects of MMP inhibition on OD plasticity in juvenile monocularly deprived rats. By using electrophysiological recordings, we found that MMP inhibition selectively prevented the potentiation of neuronal responses to nondeprived-eye stimulation occurring after 7 days of MD and potentiation of deprived-eye responses occurring after eye reopening. Three days of MD only resulted in a depression of deprived-eye responses insensitive to MMP inhibition. MMP inhibition did not influence homeostatic plasticity tested in the monocular cortex but significantly prevented an increase in dendritic spine density present after 7 days MD in layer II-III pyramids.
Collapse
Affiliation(s)
- M Spolidoro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy.
| | | | | | | | | |
Collapse
|
167
|
Lazarus MS, Huang ZJ. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J Neurophysiol 2011; 106:775-87. [PMID: 21613595 DOI: 10.1152/jn.00729.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the rodent primary visual cortex, maturation of GABA inhibitory circuitry is regulated by visual input and contributes to the onset and progression of ocular dominance (OD) plasticity. Cortical inhibitory circuitry consists of diverse groups of GABAergic interneurons, which display distinct physiological properties and connectivity patterns. Whether different classes of interneurons mature with similar or distinct trajectories and how their maturation profiles relate to experience dependent development are not well understood. We used green fluorescent protein reporter lines to study the maturation of two broad classes of cortical interneurons: parvalbumin-expressing (PV) cells, which are fast spiking and innervate the soma and proximal dendrites, and somatostatin-expressing (SOM) cells, which are regular spiking and target more distal dendrites. Both cell types demonstrate extensive physiological maturation, but with distinct trajectories, from eye opening to the peak of OD plasticity. Typical fast-spiking characteristics of PV cells became enhanced, and synaptic signaling from PV to pyramidal neurons became faster. SOM cells demonstrated a large increase in input resistance and a depolarization of resting membrane potential, resulting in increased excitability. While the substantial maturation of PV cells is consistent with the importance of this source of inhibition in triggering OD plasticity, the significant increase in SOM cell excitability suggests that dendrite-targeted inhibition may also play a role in OD plasticity. More generally, these results underscore the necessity of cell type-based analysis and demonstrate that distinct classes of cortical interneurons have markedly different developmental profiles, which may contribute to the progressive emergence of distinct functional properties of cortical circuits.
Collapse
Affiliation(s)
- Matthew S Lazarus
- Cold Spring Harbor Laboratory, One Bungtown Rd., Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
168
|
Mahmood A, Qu C, Ning R, Wu H, Goussev A, Xiong Y, Irtenkauf S, Li Y, Chopp M. Treatment of TBI with collagen scaffolds and human marrow stromal cells increases the expression of tissue plasminogen activator. J Neurotrauma 2011; 28:1199-207. [PMID: 21355820 DOI: 10.1089/neu.2010.1694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study examines the effects of combination therapy of collagen scaffolds and human marrow stromal cells (hMSCs) on the expression of tissue plasminogen activator (tPA) after traumatic brain injury (TBI) in rats. Adult male Wistar rats (n=48) were injured with controlled cortical impact and treated either with scaffolds suffused with hMSCs (3×10(6)) or hMSCs (3×10(6)) alone transplanted into the lesion cavity 1 week after TBI. A control group was treated with saline. Neurological function was assessed using the Morris Water Maze test (MWM) and modified Neurological Severity Scores (mNSS). The rats were sacrificed 14 days after TBI and brain samples were processed for immunohistochemical analysis and quantitative Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) studies. Enhanced functional improvement was observed on both the mNSS and MWM tests in the scaffold+hMSC-treated group compared to the other two groups. Immunostaining with anti-human mitochondrial antibody (E5204) showed more hMSCs in the injury zone of the scaffold+hMSC group compared to the hMSC-alone group. Triple staining showed that more neurons were tPA-positive in the scaffold+hMSC group compared to the other two groups (p<0.05). Western blot analysis and qRT-PCR showed that scaffold+hMSC and hMSC-alone treatment enhanced the expression of tPA compared to controls (p<0.05), but tPA expression was significantly greater in the scaffold+hMSC group. The induction of tPA by hMSCs after TBI may be one of the mechanisms involved in promoting functional improvement after TBI.
Collapse
Affiliation(s)
- Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Loss of prestin does not alter the development of auditory cortical dendritic spines. Neural Plast 2011; 2011:305621. [PMID: 21773053 PMCID: PMC3134106 DOI: 10.1155/2011/305621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022] Open
Abstract
Disturbance of sensory input during development can have disastrous effects on the development of sensory cortical areas. To examine how moderate perturbations of hearing can impact the development of primary auditory cortex, we examined markers of excitatory synapses in mice who lacked prestin, a protein responsible for somatic electromotility of cochlear outer hair cells. While auditory brain stem responses of these mice show an approximately 40 dB increase in threshold, we found that loss of prestin produced no changes in spine density or morphological characteristics on apical dendrites of cortical layer 5 pyramidal neurons. PSD-95 immunostaining also showed no changes in overall excitatory synapse density. Surprisingly, behavioral assessments of auditory function using the acoustic startle response showed only modest changes in prestin KO animals. These results suggest that moderate developmental hearing deficits produce minor changes in the excitatory connectivity of layer 5 neurons of primary auditory cortex and surprisingly mild auditory behavioral deficits in the startle response.
Collapse
|
170
|
Plasminogen activator promotes recovery following spinal cord injury. Cell Mol Neurobiol 2011; 31:961-7. [PMID: 21573723 DOI: 10.1007/s10571-011-9701-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
Abstract
Plasminogen activators play an important role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function after spinal cord injury. A genetic approach using knockout mice lacking various genes in the plasminogen activator/plasmin system has shown that induction of urokinase plasminogen activator (uPA) is required during the first hour after a C2-hemisection for the acquisition of the CPP response. The uPA knockout mice do not show the structural remodeling of phrenic motor neuron synapses characteristic of the CPP response. As shown here uPA acts in a cell signaling manner via binding to its receptor uPAR rather than as a protease, since uPAR knockout mice or knock-in mice possessing a modified uPA that is unable to bind to uPAR both fail to generate a CPP and recover respiratory function. Microarray data and real-time PCR analysis of mRNAs induced in the phrenic motor nucleus after C2-hemisection in C57Bl/6 mice as compared to uPA knockout mice indicate a potential cell signaling cascade downstream possibly involving β-integrin and Src, and other pathways. Identification of these uPA-mediated signaling pathways may provide the opportunity to pharmacologically upregulate the synaptic plasticity necessary for recovery of phrenic motoneuron activity following cervical spinal cord injury.
Collapse
|
171
|
Leslie JH, Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H Leslie
- Department of Biology, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
172
|
Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats. Neurosci Lett 2011; 494:196-201. [DOI: 10.1016/j.neulet.2011.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/04/2011] [Accepted: 03/04/2011] [Indexed: 01/18/2023]
|
173
|
|
174
|
Dahlhaus M, Li KW, van der Schors RC, Saiepour MH, van Nierop P, Heimel JA, Hermans JM, Loos M, Smit AB, Levelt CN. The synaptic proteome during development and plasticity of the mouse visual cortex. Mol Cell Proteomics 2011; 10:M110.005413. [PMID: 21398567 PMCID: PMC3098591 DOI: 10.1074/mcp.m110.005413] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During brain development, the neocortex shows periods of enhanced plasticity, which enables the acquisition of knowledge and skills that we use and build on in adult life. Key to persistent modifications of neuronal connectivity and plasticity of the neocortex are molecular changes occurring at the synapse. Here we used isobaric tag for relative and absolute quantification to measure levels of 467 synaptic proteins in a well-established model of plasticity in the mouse visual cortex and the regulation of its critical period. We found that inducing visual cortex plasticity by monocular deprivation during the critical period increased levels of kinases and proteins regulating the actin-cytoskeleton and endocytosis. Upon closure of the critical period with age, proteins associated with transmitter vesicle release and the tubulin- and septin-cytoskeletons increased, whereas actin-regulators decreased in line with augmented synapse stability and efficacy. Maintaining the visual cortex in a plastic state by dark rearing mice into adulthood only partially prevented these changes and increased levels of G-proteins and protein kinase A subunits. This suggests that in contrast to the general belief, dark rearing does not simply delay cortical development but may activate signaling pathways that specifically maintain or increase the plasticity potential of the visual cortex. Altogether, this study identified many novel candidate plasticity proteins and signaling pathways that mediate synaptic plasticity during critical developmental periods or restrict it in adulthood.
Collapse
Affiliation(s)
- Martijn Dahlhaus
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Taniguchi Y, Inoue N, Morita S, Nikaido Y, Nakashima T, Nagai N, Okada K, Matsuo O, Miyata S. Localization of plasminogen in mouse hippocampus, cerebral cortex, and hypothalamus. Cell Tissue Res 2010; 343:303-17. [PMID: 21190118 DOI: 10.1007/s00441-010-1110-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/29/2010] [Indexed: 01/15/2023]
Abstract
Although the tissue plasminogen activator/plasminogen system contributes to numerous brain functions, such as learning, memory, and anxiety behavior, little attention has as yet been given to the localization of plasminogen in the brain. We have investigated the localization of plasminogen in the adult mouse brain by using immunohistochemistry. In the hippocampus, plasminogen immunoreactivity was seen in the pyramidal cell layer as numerous punctate structures in neuronal somata. An electron-microscopic study further demonstrated that the plasminogen-immunoreactive punctate structures represented secretory vesicles and/or vesicle clusters. In the cerebral cortex, plasminogen immunoreactivity was evident in the somata of the layer II/III and V neurons. A quantitative analysis revealed that parvalbumin (PV)-positive neurons had more plasminogen-immunoreactive puncta compared with those of PV-negative neurons in the hippocampus and cerebral cortex. Plasminogen immunoreactivity was present throughout the hypothalamus, being particularly prominent in the neuronal somata of the organum vasculosum laminae terminalis, ventromedial preoptic nucleus, supraoptic nucleus, subfornical organ, medial part of the paraventricular nucleus (PVN), posterior part of the PVN, and arcuate hypothalamic nucleus. Thus, plasminogen is highly expressed in specific populations of hippocampal, cortical, and hypothalamic neurons, and plasminogen-containing vesicles are mainly observed at neuronal somata.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010; 8:e1000527. [PMID: 21072242 PMCID: PMC2970556 DOI: 10.1371/journal.pbio.1000527] [Citation(s) in RCA: 1106] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022] Open
Abstract
Microglia, the brain's immune cells, show unique interactions with nearby synaptic elements under non-pathological conditions that are sensitive to changes in sensory experience. Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain. Microglia are important players in immune responses to brain injury. In the event of pathological insults, microglia rapidly become activated and acquire the ability to release various inflammatory molecules that influence neuronal survival as well as synaptic function and plasticity. Similarly to macrophages in other areas of the body, activated microglia can engulf, or phagocytose, cellular debris and are believed to eliminate synapses. In the absence of pathological insult, microglia are more quiescent, but still, these immune surveillants continually sample their surrounding environment and contact neighboring cells and synapses. To further explore the roles of microglia at synapses under non-pathological conditions, we used quantitative electron microscopy and two-photon in vivo imaging to characterize the interactions between quiescent microglia and synaptic elements in the visual cortex of juvenile mice. We also examined the “activity-dependent” processes involved by preventing light exposure in a group of mice. We show surprising changes in microglial behavior during alterations in visual experience, such as increased phagocytosis of synaptic elements and interaction with subsets of structurally dynamic and transient synapses. These observations suggest that microglia may participate in the modification or elimination of synaptic structures, and therefore actively contribute to learning and memory in the healthy brain.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MÈT); (AKM)
| | - Rebecca L. Lowery
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
| | - Ania K. Majewska
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MÈT); (AKM)
| |
Collapse
|
177
|
Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 2010; 11:735-46. [DOI: 10.1038/nrn2898] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
178
|
Abstract
Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology, or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity.
Collapse
Affiliation(s)
- Deanna L Benson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
179
|
Imamura Y, Morita S, Nakatani Y, Okada K, Ueshima S, Matsuo O, Miyata S. Tissue plasminogen activator and plasminogen are critical for osmotic homeostasis by regulating vasopressin secretion. J Neurosci Res 2010; 88:1995-2006. [PMID: 20175210 DOI: 10.1002/jnr.22370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Systemic osmotic homeostasis is regulated mainly by neuroendocrine system of arginine-vasopressin (AVP) in mammalians. In the present study, we demonstrated that the immunoreactivity of tissue plasminogen activator (tPA) was observed specifically at neurosecretory granules of AVP-positive magnocellular terminals and that of plasminogen was seen at astrocytes in the neurohypophysis (NH). Both tPA and plasminogen knockout (KO) mice revealed higher plasma osmolarity upon water deprivation, a chronic osmotic stimulation, as compared with their wild-type (WT) animals, indicating abnormal osmotic control in these KO mice. tPA KO mice but not plasminogen ones revealed lower ability in secreting AVP into the blood circulation upon an acute osmotic stimulation. Both tPA and plasminogen KO animals showed lower ability in secreting AVP into the blood circulation upon a chronic osmotic stimulation. The recombinant tPA was able to promote the release of AVP from isolated NH. Chronic osmotic stimulation decreased the laminin expression level of neurohypophysial microvessel in WT mice but not in plasminogen KO ones. We suggest that AVP secretion is critically regulated by tPA-dependent facilitation of AVP release from terminals and plasminogen-dependent increase of AVP permeability across microvessels possibly via laminin degradation.
Collapse
Affiliation(s)
- Yuhki Imamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
180
|
Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 2010; 30:11086-95. [PMID: 20720116 DOI: 10.1523/jneurosci.1661-10.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The impact of activity on neuronal circuitry is complex, involving both functional and structural changes whose interaction is largely unknown. We have used optical imaging of mouse visual cortex responses and two-photon imaging of superficial layer spines on layer 5 neurons to monitor network function and synaptic structural dynamics in the mouse visual cortex in vivo. Total lack of vision due to dark-rearing from birth dampens visual responses and shifts spine dynamics and morphologies toward an immature state. The effects of vision after dark rearing are strongly dependent on the timing of exposure: over a period of days, functional and structural changes are temporally related such that light stabilizes spines while increasing visually driven activity. The effects of long-term light exposure can be partially mimicked by experimentally enhancing inhibitory signaling in the darkness. Brief light exposure, however, results in a rapid, transient, NMDA-dependent increase of cortical responses, accompanied by increased dynamics of dendritic spines. These findings indicate that visual experience induces rapid reorganization of cortical circuitry followed by a period of stabilization, and demonstrate a close relationship between dynamic changes at single synapses and cortical network function.
Collapse
|
181
|
Borges VM, Lee TW, Christie DL, Birch NP. Neuroserpin regulates the density of dendritic protrusions and dendritic spine shape in cultured hippocampal neurons. J Neurosci Res 2010; 88:2610-7. [PMID: 20648651 DOI: 10.1002/jnr.22428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroserpin is a member of the serpin superfamily that is expressed principally in neurons of the central and peripheral nervous systems. Neuroserpin's spatial-temporal expression during development and in the adult brain suggests possible roles in synaptogenesis and synaptic plasticity. This is supported by behavioral changes in transgenic mice overexpressing neuroserpin. We have used an embryonic rat primary hippocampal neuron culture model to investigate whether neuroserpin can regulate elements of synaptic morphology that may be involved in these changes in cognitive function. Neuroserpin localized to axonal and dendritic compartments in cultured neurons and accumulated in synapsin-positive presynaptic terminals. Increased expression of neuroserpin resulted in an increase in the density of dendritic protrusions and alterations in dendritic spine shape. Our results identify neuroserpin as a new regulator of structural plasticity and suggest a cellular mechanism that may contribute to neuroserpin's effects on cognition.
Collapse
Affiliation(s)
- Victor M Borges
- School of Biological Sciences and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
182
|
Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J Neurosci 2010; 30:9670-82. [PMID: 20660250 DOI: 10.1523/jneurosci.1248-10.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocular lid closure (MC) causes a profound shift in the ocular dominance (OD) of neurons in primary visual cortex (V1). Anatomical studies in both cat and mouse V1 suggest that large-scale structural rearrangements of eye-specific thalamocortical (TC) axons in response to MC occur much more slowly than the shift in OD. Consequently, there has been considerable debate as to whether the plasticity of TC synapses, which transmit competing visual information from each eye to V1, contributes to the early functional consequences of MC or is simply a feature of long-term deprivation. Here, we used quantitative immuno-electron microscopy to examine the possibility that alterations of TC synapses occur rapidly enough to impact OD after brief MC. The effect of short-term deprivation on TC synaptic structure was examined in male C57BL/6 mice that underwent 3 and 7 d of MC or monocular retinal inactivation (MI) with tetrodotoxin. The data show that 3 d of MC is sufficient to induce substantial remodeling of TC synapses. In contrast, 3 d of MI, which alters TC activity but does not shift OD, does not significantly affect the structure of TC synapses. Our results support the hypothesis that the rapid plasticity of TC synapses is a key step in the sequence of events that shift OD in visual cortex.
Collapse
|
183
|
Fox SE, Levitt P, Nelson CA. How the timing and quality of early experiences influence the development of brain architecture. Child Dev 2010; 81:28-40. [PMID: 20331653 DOI: 10.1111/j.1467-8624.2009.01380.x] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain development, and then proceeds to the ways experience interacts with and modifies the structures and functions of the developing brain. Much of the attention is focused on early experience and sensitive periods, although it is made clear that later experience also plays an important role in maintaining and elaborating this early wiring diagram, which is critical to establishing a solid footing for development beyond the early years.
Collapse
Affiliation(s)
- Sharon E Fox
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | |
Collapse
|
184
|
Kasai H, Hayama T, Ishikawa M, Watanabe S, Yagishita S, Noguchi J. Learning rules and persistence of dendritic spines. Eur J Neurosci 2010; 32:241-9. [DOI: 10.1111/j.1460-9568.2010.07344.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
185
|
Briner A, De Roo M, Dayer A, Muller D, Kiss JZ, Vutskits L. Bilateral whisker trimming during early postnatal life impairs dendritic spine development in the mouse somatosensory barrel cortex. J Comp Neurol 2010; 518:1711-23. [PMID: 20235164 DOI: 10.1002/cne.22297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rodent somatosensory barrel cortex is an ideal model for studying the impact of sensory experience on developing brain circuitry. To examine whether and how interference with sensory perception in the early postnatal period can affect the development of synaptic networks in this system, we took advantage of a transgenic mouse strain expressing the yellow fluorescent protein in layer 5B pyramidal neurons of the somatosensory cortex. By using ex vivo confocal imaging, we first demonstrate a cortical-layer-specific increase in the number of dendritic spines during postnatal development on apical dendritic shafts of these cells extending up to cortical layer 1. Next, by performing bilateral whisker trimming at distinct developmental stages, we show that disruption of sensory perception before postnatal day 20 impairs dendritic spine development in apical dendritic segments within layers 1 and 2/3 but not in layer 4. The whisker trimming-induced decrease in dendritic spine density during this period is accompanied by a highly significant decrease in dendritic spine head diameter. Finally, we also show that these whisker trimming-induced morphological alterations of dendritic spines during the early postnatal period are no longer detectable in adult animals. Altogether, these findings further emphasize the important role of sensory activity in synaptic network assembly in the developing barrel cortex. They also support an as yet unidentified structural mechanism that might contribute to the layer- and cell-type-specific physiological effects of whisker trimming during the early postnatal period.
Collapse
Affiliation(s)
- Adrian Briner
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
186
|
Gundelfinger ED, Frischknecht R, Choquet D, Heine M. Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 2010; 31:2156-65. [DOI: 10.1111/j.1460-9568.2010.07253.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
187
|
Takahata T, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of OCC1-related, extracellular matrix proteins in the lateral geniculate nucleus of macaque monkeys. J Chem Neuroanat 2010; 40:112-22. [PMID: 20457249 DOI: 10.1016/j.jchemneu.2010.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/02/2010] [Accepted: 05/02/2010] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) plays important roles in the development and plasticity of the central nervous system, and it has been shown that it regulates reorganization of the neuronal network. We have found that expression of OCC1, testican-1, testican-2, testican-3, SPARC and SC1 mRNAs, which encode members of the OCC1-related family of ECM proteins, exhibits distinct activity-dependent expression patterns in the adult macaque visual cortex. This finding suggests that OCC1-related proteins play crucial roles in the visual processing pathway. In the present study, we examined mRNA expression patterns of OCC1-related genes in the dorsal lateral geniculate nucleus (dLGN) of macaques. The mRNAs of testican-1 and testican-2 were strongly expressed in both excitatory projection neurons and GABAergic interneurons in the dLGN. Expression of testican-3 mRNA, which is predominantly observed in GABAergic interneurons in the cortex, was restricted to excitatory projection neurons in the dLGN. SPARC mRNA was strongly, and exclusively, expressed in glial cells in the dLGN. Interestingly, neuronal SC1 mRNA expression was abundantly observed in intercalated, koniocellular layers of the dLGN, while it was preferentially observed in blob regions of the primary visual area that receives color coding K-pathway projection from dLGN koniocellular layers, suggesting a pathway preference of expression. Finally, monocular inactivation experiments demonstrated that expression of testican-1, testican-2 and testican-3 mRNAs in the dLGN is dependent on sensory activity. Given their differential expression patterns and activity dependence, products of OCC1-related genes may modulate visual processing and plasticity at the level of the dLGN and the visual cortex.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | | | |
Collapse
|
188
|
Yasunaga KI, Kanamori T, Morikawa R, Suzuki E, Emoto K. Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev Cell 2010; 18:621-32. [PMID: 20412776 DOI: 10.1016/j.devcel.2010.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/23/2010] [Accepted: 02/11/2010] [Indexed: 02/05/2023]
Abstract
In response to changes in the environment, dendrites from certain neurons change their shape, yet the mechanism remains largely unknown. Here we show that dendritic arbors of adult Drosophila sensory neurons are rapidly reshaped from a radial shape to a lattice-like shape within 24 hr after eclosion. This radial-to-lattice reshaping arises from rearrangement of the existing radial branches into the lattice-like pattern, rather than extensive dendrite pruning followed by regrowth of the lattice-shaped arbors over the period. We also find that the dendrite reshaping is completely blocked in mutants for the matrix metalloproteinase (Mmp) 2. Further genetic analysis indicates that Mmp2 promotes the dendrite reshaping through local degradation of the basement membrane upon which dendrites of the sensory neurons innervate. These findings suggest that regulated proteolytic alteration of the extracellular matrix microenvironment might be a fundamental mechanism to drive a large-scale change of dendritic structures during reorganization of neuronal circuits.
Collapse
Affiliation(s)
- Kei-ichiro Yasunaga
- Department of Cell Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
189
|
Abstract
Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.
Collapse
|
190
|
Nagai N, Matsuo O. Roles of fibrinolytic system components in the nervous system. PATHOPHYSIOLOGY 2010; 17:141-7. [DOI: 10.1016/j.pathophys.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022] Open
|
191
|
Sale A, Berardi N, Spolidoro M, Baroncelli L, Maffei L. GABAergic inhibition in visual cortical plasticity. Front Cell Neurosci 2010; 4:10. [PMID: 20407586 PMCID: PMC2854574 DOI: 10.3389/fncel.2010.00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/17/2010] [Indexed: 11/13/2022] Open
Abstract
Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neural plasticity wanes and recovery from the effects of visual defects on visual acuity (amblyopia) or binocularity is much reduced or absent. Recent results pointed out that intracortical inhibition is a fundamental limiting factor for adult cortical plasticity and that its reduction by means of different pharmacological and environmental strategies makes it possible to greatly enhance plasticity in the adult visual cortex, promoting ocular dominance plasticity and recovery from amblyopia. Here we focus on the role of intracortical GABAergic circuitry in controlling both developmental and adult cortical plasticity. We shall also discuss the potential clinical application of these findings to neurological disorders in which synaptic plasticity is compromised because of excessive intracortical inhibition.
Collapse
Affiliation(s)
- Alessandro Sale
- Institute of Neuroscience Consiglio Nazionale delle Ricerche Pisa, Italy
| | | | | | | | | |
Collapse
|
192
|
Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 2010; 30:361-71. [PMID: 20053917 DOI: 10.1523/jneurosci.2233-09.2010] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent plasticity in the cortex is often higher during short critical periods in postnatal development. The mechanisms limiting adult cortical plasticity are still unclear. Maturation of intracortical GABAergic inhibition is suggested to be crucial for the closure of the critical period for ocular dominance (OD) plasticity in the visual cortex. We find that reduction of GABAergic transmission in the adult rat visual cortex partially reactivates OD plasticity in response to monocular deprivation (MD). This is accompanied by an enhancement of activity-dependent potentiation of synaptic efficacy but not of activity-dependent depression. We also found a decrease in the expression of chondroitin sulfate proteoglycans in the visual cortex of MD animals with reduced inhibition, after the reactivation of OD plasticity. Thus, intracortical inhibition is a crucial limiting factor for the induction of experience-dependent plasticity in the adult visual cortex.
Collapse
|
193
|
Morita S, Oohira A, Miyata S. Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo-neurohypophysial system. Neuroscience 2010; 166:1068-82. [PMID: 20109532 DOI: 10.1016/j.neuroscience.2010.01.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/18/2022]
Abstract
The hypothalamo-neurohypophysial system (HNS) consisting of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurons shows the structural plasticity including the rearrangement of synapses, dendrites, and neurovascular contacts during chronic physiological stimulation. In this study, we examined the remodeling of chondroitin sulfate proteoglycans (CSPGs), main extracellular matrix (ECM), in the HNS after salt loading known as a chronic stimulation to cause the structural plasticity. In the supraoptic nucleus (SON), confocal microscopic observation revealed that the immunoreactivity of 6B4 proteoglycans (PG) was observed mainly at AVP-positive magnocellular neurons but that of neurocan was seen chiefly at OXT-positive magnocellular neurons. The immunoreactivity of phosphacan and aggrecan was seen at both AVP- and OXT-positive magnocellular neurons. Electron microscopic observation further showed that the immunoreactivity of phosphacan and neurocan was observed at astrocytic processes to surround somata, dendrites, and terminals, but not synaptic junctions. In the neurohypophysis (NH), the immunoreactivity of phosphacan, 6B4 PGs, and neurocan was observed at AVP-positive magnocellular terminals, but the reactivity of Wisteria floribunda agglutinin lectin was seen at OXT-positive ones. The immunoreactivity of versican was found at microvessel and that of aggrecan was not detected in the NH. Quantitative morphometrical analysis showed that the chronic physiological stimulation by 7-day salt loading decreased the level of 6B4 PGs in the SON and the level of phosphacan, 6B4 PGs, and neurocan in the NH. These results suggest that the extracellular microenvironment of CSPGs is different between AVP and OXT magnocellular neurons and activity-dependent remodeling of CSPGs could be involved in the structural plasticity of the HNS.
Collapse
Affiliation(s)
- S Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
194
|
Yamahachi H, Marik SA, McManus JNJ, Denk W, Gilbert CD. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 2009; 64:719-29. [PMID: 20005827 PMCID: PMC2818836 DOI: 10.1016/j.neuron.2009.11.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2009] [Indexed: 11/19/2022]
Abstract
The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen following focal binocular lesions, which induce rapid changes in receptive field size and position. To follow the dynamics of the circuitry underlying these changes, we imaged the intrinsic long-range horizontal connections within the lesion projection zone (LPZ) in adult macaque primary visual cortex. To image the same axons over time, we combined viral vector-mediated EGFP transfer and two-photon microscopy. The lesion triggered, within the first week, an approximately 2-fold outgrowth of axons toward the center of the LPZ. Over the subsequent month, axonal density declined due to a parallel process of pruning and sprouting but maintained a net increase relative to prelesion levels. The rate of turnover of axonal boutons also increased. The axonal restructuring recapitulates the pattern of exuberance and pruning seen in early development and correlates well with the functional changes following retinal lesions.
Collapse
|
195
|
Abstract
Sensory experience and learning alter sensory representations in cerebral cortex. The synaptic mechanisms underlying sensory cortical plasticity have long been sought. Recent work indicates that long-term cortical plasticity is a complex, multicomponent process involving multiple synaptic and cellular mechanisms. Sensory use, disuse, and training drive long-term potentiation and depression (LTP and LTD), homeostatic synaptic plasticity and plasticity of intrinsic excitability, and structural changes including formation, removal, and morphological remodeling of cortical synapses and dendritic spines. Both excitatory and inhibitory circuits are strongly regulated by experience. This review summarizes these findings and proposes that these mechanisms map onto specific functional components of plasticity, which occur in common across the primary somatosensory, visual, and auditory cortices.
Collapse
Affiliation(s)
- Daniel E Feldman
- Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
| |
Collapse
|
196
|
Abstract
Adult primary sensory cortex is not hard wired, but adapts to sensory experience. The cellular basis for cortical plasticity involves a combination of functional and structural changes in cortical neurons and the connections between them. Functional changes such as synaptic strengthening have been the focus of many investigations. However, structural modifications to the connections between neurons play an important role in cortical plasticity. In this review, the authors focus on structural remodeling that leads to rewiring of cortical circuits. Recent work has identified axonal remodeling, growth of new dendritic spines, and synapse turnover as important structural mechanisms for experience-dependent plasticity in mature cortex. These findings have begun to unravel how rewiring occurs in adult neocortex and offer new insights into the cellular mechanisms for learning and memory.
Collapse
Affiliation(s)
- Samuel J. Barnes
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, London, UK
| | - Gerald T. Finnerty
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, London, UK,
| |
Collapse
|
197
|
Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009; 10:647-58. [PMID: 19693029 DOI: 10.1038/nrn2699] [Citation(s) in RCA: 1304] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.
Collapse
Affiliation(s)
- Anthony Holtmaat
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Switzerland.
| | | |
Collapse
|
198
|
Roberts AC, Díez-García J, Rodriguiz RM, López IP, Luján R, Martínez-Turrillas R, Picó E, Henson MA, Bernardo DR, Jarrett TM, Clendeninn DJ, López-Mascaraque L, Feng G, Lo DC, Wesseling JF, Wetsel WC, Philpot BD, Pérez-Otaño I. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 2009; 63:342-56. [PMID: 19679074 DOI: 10.1016/j.neuron.2009.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/27/2009] [Accepted: 06/16/2009] [Indexed: 12/22/2022]
Abstract
NR3A is the only NMDA receptor (NMDAR) subunit that downregulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains unknown. To investigate whether removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that prolonged NR3A expression in the forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development.
Collapse
Affiliation(s)
- Adam C Roberts
- Department of Cell and Molecular Physiology, Neuroscience Center, and Neurodevelopmental Disorders Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Synaptic plasticity-associated proteases and protease inhibitors in the brain linked to the processing of extracellular matrix and cell adhesion molecules. ACTA ACUST UNITED AC 2009; 4:223-34. [DOI: 10.1017/s1740925x09990172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Research on the molecular and cellular basis of learning and memory has focused on the mechanisms that underlie the induction and expression of synaptic plasticity. There is increasing evidence that structural changes at the synapse are associated with synaptic plasticity and that extracellular matrix (ECM) components and cell adhesion molecules are associated with these changes. The functions of both groups of molecules can be regulated by proteolysis. In this article we review the roles of selected proteases and protease inhibitors in perisynaptic proteolysis of the ECM and synaptic adhesion proteins and the impact of proteolysis on synaptic modification and cognitive function.
Collapse
|
200
|
Seeds NW, Akison L, Minor K. Role of plasminogen activator in spinal cord remodeling after spinal cord injury. Respir Physiol Neurobiol 2009; 169:141-9. [PMID: 19651246 DOI: 10.1016/j.resp.2009.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 12/22/2022]
Abstract
Plasminogen activators play an active role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function following spinal cord injury. A genetic approach has been used to identify molecular mechanisms underlying this synaptic plasticity. Knockout mice lacking different genes in the plasminogen activator/plasmin system demonstrate that expression of urokinase plasminogen activator (uPA) is required during the critical 1-2h delay period following C2-hemisection for the acquisition of a good CPP response. uPA knockout mice fail to show the structural remodeling of phrenic motorneuron synapses that underlie the CPP response. Potential mechanisms by which uPA may promote phrenic motorneuron synaptic plasticity have been explored. Expression of uPA receptors, uPAR and LRP-1, are both up-regulated in the ipsilateral phrenic motor nucleus (PMN) following C2-hemisection. A comparison of microarray data and real-time PCR analysis of mRNAs induced in the PMN after hemisection indicate potential cell signaling pathways downstream of uPA's interaction with these cell surface receptors in the PMN. Knowledge of these uPA-mediated signaling pathways may identify potential means for the pharmacological activation of the synaptic plasticity required for recovery of phrenic motorneuron activity.
Collapse
Affiliation(s)
- Nicholas W Seeds
- Department of Biochemistry & Molecular Genetics and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| | | | | |
Collapse
|