151
|
Helfrich RF, Knight RT. Cognitive neurophysiology of the prefrontal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:35-59. [DOI: 10.1016/b978-0-12-804281-6.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
152
|
Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations. Neuron 2018; 101:321-336.e9. [PMID: 30553546 DOI: 10.1016/j.neuron.2018.11.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023]
Abstract
Computational modeling of brain mechanisms of cognition has largely focused on the cortex, but recent experiments have shown that higher-order nuclei of the thalamus participate in major cognitive functions and are implicated in psychiatric disorders. Here, we show that a pulvino-cortical circuit model, composed of the pulvinar and two cortical areas, captures several physiological and behavioral observations related to the macaque pulvinar. Effective connections between the two cortical areas are gated by the pulvinar, allowing the pulvinar to shift the operation regime of these areas during attentional processing and working memory and resolve conflict in decision making. Furthermore, cortico-pulvinar projections that engage the thalamic reticular nucleus enable the pulvinar to estimate decision confidence. Finally, feedforward and feedback pulvino-cortical pathways participate in frequency-dependent inter-areal interactions that modify the relative hierarchical positions of cortical areas. Overall, our model suggests that the pulvinar provides crucial contextual modulation to cortical computations associated with cognition.
Collapse
|
153
|
Havenith MN, Zijderveld PM, van Heukelum S, Abghari S, Glennon JC, Tiesinga P. The Virtual-Environment-Foraging Task enables rapid training and single-trial metrics of attention in head-fixed mice. Sci Rep 2018; 8:17371. [PMID: 30478333 PMCID: PMC6255915 DOI: 10.1038/s41598-018-34966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
Attention - the flexible allocation of processing resources based on behavioural demands - is essential to survival. Mouse research offers unique tools to dissect the underlying pathways, but is hampered by the difficulty of accurately measuring attention in mice. Current attention tasks for mice face several limitations: Binary (hit/miss), temporally imprecise metrics, behavioural confounds and overtraining. Thus, despite the increasing scope of neuronal population measurements, insights are limited without equally precise behavioural measures. Here we present a virtual-environment task for head-fixed mice based on 'foraging-like' navigation. The task requires animals to discriminate gratings at orientation differences from 90° to 5°, and can be learned in only 3-5 sessions (<550 trials). It yields single-trial, non-binary metrics of response speed and accuracy, which generate secondary metrics of choice certainty, visual acuity, and most importantly, of sustained and cued attention - two attentional components studied extensively in humans. This allows us to examine single-trial dynamics of attention in mice, independently of confounds like rule learning. With this approach, we show that C57/BL6 mice have better visual acuity than previously measured, that they rhythmically alternate between states of high and low alertness, and that they can be prompted to adopt different performance strategies using minute changes in reward contingencies.
Collapse
Affiliation(s)
- Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands.
| | - Peter M Zijderveld
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| |
Collapse
|
154
|
Temporal Dynamics and Response Modulation across the Human Visual System in a Spatial Attention Task: An ECoG Study. J Neurosci 2018; 39:333-352. [PMID: 30459219 DOI: 10.1523/jneurosci.1889-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
The selection of behaviorally relevant information from cluttered visual scenes (often referred to as "attention") is mediated by a cortical large-scale network consisting of areas in occipital, temporal, parietal, and frontal cortex that is organized into a functional hierarchy of feedforward and feedback pathways. In the human brain, little is known about the temporal dynamics of attentional processing from studies at the mesoscopic level of electrocorticography (ECoG), that combines millisecond temporal resolution with precise anatomical localization of recording sites. We analyzed high-frequency broadband responses (HFB) responses from 626 electrodes implanted in 8 epilepsy patients who performed a spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system. HFB responses showed high spatial selectivity and tuning, constituting ECoG response fields (RFs), within and outside the topographic visual system. In accordance with monkey physiology studies, both RF widths and onset latencies increased systematically across the visual processing hierarchy. We used the spatial specificity of HFB responses to quantitatively study spatial attention effects and their temporal dynamics to probe a hierarchical top-down model suggesting that feedback signals back propagate the visual processing hierarchy. Consistent with such a model, the strengths of attentional modulation were found to be greater and modulation latencies to be shorter in posterior parietal cortex, middle temporal cortex and ventral extrastriate cortex compared with early visual cortex. However, inconsistent with such a model, attention effects were weaker and more delayed in anterior parietal and frontal cortex.SIGNIFICANCE STATEMENT In the human brain, visual attention has been predominantly studied using methods with high spatial, but poor temporal resolution such as fMRI, or high temporal, but poor spatial resolution such as EEG/MEG. Here, we investigate temporal dynamics and attention effects across the human visual system at a mesoscopic level that combines precise spatial and temporal measurements by using electrocorticography in epilepsy patients performing a classical spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system, thereby relating them to topography and processing hierarchy. We demonstrate regional differences in temporal dynamics across the attention network. Our findings do not fully support a top-down model that promotes influences on visual cortex by reversing the processing hierarchy.
Collapse
|
155
|
Sanz LRD, Vuilleumier P, Bourgeois A. Cross-modal integration during value-driven attentional capture. Neuropsychologia 2018; 120:105-112. [PMID: 30342964 DOI: 10.1016/j.neuropsychologia.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/06/2018] [Accepted: 10/15/2018] [Indexed: 01/02/2023]
Abstract
A growing body of evidence suggests that reward may be a powerful determinant of attentional selection. To date, the study of value-based attentional capture has been mainly focused on the visual sensory modality. It is yet unknown how reward information is communicated and integrated across the different senses in order to resolve between competing choices during selective attention. Our study investigated the interference produced by an auditory reward-associated distractor when a semantically-related visual target was concurrently presented. We measured both manual and saccadic response times towards a target image (drum or trumpet), while an irrelevant sound (congruent or incongruent instrument) was heard. Each sound was previously associated with either a high or a low reward. We found that manual responses were slowed by a high-reward auditory distractor when sound and image were semantically congruent. A similar effect was observed for saccadic responses, but only for participants aware of the past reward contingencies. Auditory events associated with reward value were thus capable of involuntarily capturing attention in the visual modality. This reward effect can mitigate cross-modal semantic integration and appears to be differentially modulated by awareness for saccadic vs. manual responses. Together, our results extend previous work on value-driven attentional biases in perception by showing that these may operate across sensory modalities and override cross-modal integration for semantically-related stimuli. This study sheds new light on the potential implication of brain regions underlying value-driven attention across sensory modalities.
Collapse
Affiliation(s)
- Leandro R D Sanz
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland; Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland.
| | - Alexia Bourgeois
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| |
Collapse
|
156
|
Crabtree JW. Functional Diversity of Thalamic Reticular Subnetworks. Front Syst Neurosci 2018; 12:41. [PMID: 30405364 PMCID: PMC6200870 DOI: 10.3389/fnsys.2018.00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long been known to play important roles in modulating the flow of information through the thalamus and in generating changes in thalamic activity during transitions from wakefulness to sleep. Recently, technological advances have considerably expanded our understanding of the functional organization of TRN. These have identified an impressive array of functionally distinct subnetworks in TRN that participate in sensory, motor, and/or cognitive processes through their different functional connections with thalamic projection neurons. Accordingly, "first order" projection neurons receive "driver" inputs from subcortical sources and are usually connected to a densely distributed TRN subnetwork composed of multiple elongated neural clusters that are topographically organized and incorporate spatially corresponding electrically connected neurons-first order projection neurons are also connected to TRN subnetworks exhibiting different state-dependent activity profiles. "Higher order" projection neurons receive driver inputs from cortical layer 5 and are mainly connected to a densely distributed TRN subnetwork composed of multiple broad neural clusters that are non-topographically organized and incorporate spatially corresponding electrically connected neurons. And projection neurons receiving "driver-like" inputs from the superior colliculus or basal ganglia are connected to TRN subnetworks composed of either elongated or broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among neurons within groups of thalamic nuclei are connected to all three types of thalamic projection neurons. In addition, several TRN subnetworks mediate various bottom-up, top-down, and internuclear attentional processes: some bottom-up and top-down attentional mechanisms are specifically related to first order projection neurons whereas internuclear attentional mechanisms engage all three types of projection neurons. The TRN subnetworks formed by elongated and broad neural clusters may act as templates to guide the operations of the TRN subnetworks related to attentional processes. In this review article, the evidence revealing the functional TRN subnetworks will be evaluated and will be discussed in relation to the functions of the various sensory and motor thalamic nuclei with which these subnetworks are connected.
Collapse
Affiliation(s)
- John W Crabtree
- School of Physiology, Pharmacology, and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
157
|
Olcese U, Oude Lohuis MN, Pennartz CMA. Sensory Processing Across Conscious and Nonconscious Brain States: From Single Neurons to Distributed Networks for Inferential Representation. Front Syst Neurosci 2018; 12:49. [PMID: 30364373 PMCID: PMC6193318 DOI: 10.3389/fnsys.2018.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/25/2018] [Indexed: 11/29/2022] Open
Abstract
Neuronal activity is markedly different across brain states: it varies from desynchronized activity during wakefulness to the synchronous alternation between active and silent states characteristic of deep sleep. Surprisingly, limited attention has been paid to investigating how brain states affect sensory processing. While it was long assumed that the brain was mostly disconnected from external stimuli during sleep, an increasing number of studies indicates that sensory stimuli continue to be processed across all brain states-albeit differently. In this review article, we first discuss what constitutes a brain state. We argue that-next to global, behavioral states such as wakefulness and sleep-there is a concomitant need to distinguish bouts of oscillatory dynamics with specific global/local activity patterns and lasting for a few hundreds of milliseconds, as these can lead to the same sensory stimulus being either perceived or not. We define these short-lasting bouts as micro-states. We proceed to characterize how sensory-evoked neural responses vary between conscious and nonconscious states. We focus on two complementary aspects: neuronal ensembles and inter-areal communication. First, we review which features of ensemble activity are conducive to perception, and how these features vary across brain states. Properties such as heterogeneity, sparsity and synchronicity in neuronal ensembles will especially be considered as essential correlates of conscious processing. Second, we discuss how inter-areal communication varies across brain states and how this may affect brain operations and sensory processing. Finally, we discuss predictive coding (PC) and the concept of multi-level representations as a key framework for understanding conscious sensory processing. In this framework the brain implements conscious representations as inferences about world states across multiple representational levels. In this representational hierarchy, low-level inference may be carried out nonconsciously, whereas high levels integrate across different sensory modalities and larger spatial scales, correlating with conscious processing. This inferential framework is used to interpret several cellular and population-level findings in the context of brain states, and we briefly compare its implications to two other theories of consciousness. In conclusion, this review article, provides foundations to guide future studies aiming to uncover the mechanisms of sensory processing and perception across brain states.
Collapse
Affiliation(s)
- Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
158
|
Jiang W, Tremblay F, Chapman CE. Context-dependent tactile texture-sensitivity in monkey M1 and S1 cortex. J Neurophysiol 2018; 120:2334-2350. [PMID: 30207868 DOI: 10.1152/jn.00081.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caudal primary motor cortex (M1, area 4) is sensitive to cutaneous inputs, but the extent to which the physical details of complex stimuli are encoded is not known. We investigated the sensitivity of M1 neurons (4 Macaca mulatta monkeys) to textured stimuli (smooth/rough or rough/rougher) during the performance of a texture discrimination task and, for some cells, during a no-task condition (same surfaces; no response). The recordings were made from the hemisphere contralateral to the stimulated digits; the motor response (sensory decision) was made with the nonstimulated arm. Most M1 cells were modulated during surface scanning in the task (88%), but few of these were texture-related (24%). In contrast, 44% of M1 neurons were texture related in the no-task condition. Recordings from the neighboring primary somatosensory cortex (S1), the potential source of texture-related signals to M1, showed that S1 neurons were significantly more likely to be texture related during the task (57 vs 24%) than M1. No difference was observed in the no-task condition (52 vs. 44%). In these recordings, the details about surface texture were relevant for S1 but not for M1. We suggest that tactile inputs to M1 were selectively suppressed when the animals were engaged in the task. S1 was spared these controls, as the same inputs were task-relevant. Taken together, we suggest that the suppressive effects are most likely exerted directly at the level of M1, possibly through the activation of a top-down gating mechanism specific to motor set/intention. NEW & NOTEWORTHY Sensory feedback is important for motor control, but we have little knowledge of the contribution of sensory inputs to M1 discharge during behavior. We showed that M1 neurons signal changes in tactile texture, but mainly outside the context of a texture discrimination task. Tactile inputs to M1 were selectively suppressed during the task because this input was not relevant for the recorded hemisphere, which played no role in generating the discrimination response.
Collapse
Affiliation(s)
- Wan Jiang
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Université de Montréal , Montréal, Quebec , Canada
| | - François Tremblay
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Université de Montréal , Montréal, Quebec , Canada.,School of Rehabilitation Sciences, University of Ottawa , Ottawa, Ontario , Canada
| | - C Elaine Chapman
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Université de Montréal , Montréal, Quebec , Canada
| |
Collapse
|
159
|
Frank CL, Brown JP, Wallace K, Wambaugh JF, Shah I, Shafer TJ. Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 2018; 354:81-93. [DOI: 10.1016/j.taap.2018.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
|
160
|
Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J, Knight RT, Kastner S. Neural Mechanisms of Sustained Attention Are Rhythmic. Neuron 2018; 99:854-865.e5. [PMID: 30138591 PMCID: PMC6286091 DOI: 10.1016/j.neuron.2018.07.032] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022]
Abstract
Classic models of attention suggest that sustained neural firing constitutes a neural correlate of sustained attention. However, recent evidence indicates that behavioral performance fluctuates over time, exhibiting temporal dynamics that closely resemble the spectral features of ongoing, oscillatory brain activity. Therefore, it has been proposed that periodic neuronal excitability fluctuations might shape attentional allocation and overt behavior. However, empirical evidence to support this notion is sparse. Here, we address this issue by examining data from large-scale subdural recordings, using two different attention tasks that track perceptual ability at high temporal resolution. Our results reveal that perceptual outcome varies as a function of the theta phase even in states of sustained spatial attention. These effects were robust at the single-subject level, suggesting that rhythmic perceptual sampling is an inherent property of the frontoparietal attention network. Collectively, these findings support the notion that the functional architecture of top-down attention is intrinsically rhythmic.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.
| | - Ian C Fiebelkorn
- Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544, USA
| | - Sara M Szczepanski
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, UC Irvine, 101 The City Dr., Orange, CA 92868, USA; Department of Biomedical Engineering, Henry Samueli School of Engineering, 402 E. Peltason Dr., Irvine, CA 92617, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544, USA; Department of Psychology, Princeton University, South Drive, Princeton, NJ 08540, USA
| |
Collapse
|
161
|
|
162
|
Knudsen EI. Neural Circuits That Mediate Selective Attention: A Comparative Perspective. Trends Neurosci 2018; 41:789-805. [PMID: 30075867 DOI: 10.1016/j.tins.2018.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Selective attention is central to cognition. Dramatic advances have been made in understanding the neural circuits that mediate selective attention. Forebrain networks, most elaborated in primates, control all forms of attention based on task demands and the physical salience of stimuli. These networks contain circuits that distribute top-down signals to sensory processing areas and enhance information processing in those areas. A midbrain network, most elaborated in birds, controls spatial attention. It contains circuits that continuously compute the highest priority stimulus location and route sensory information from the selected location to forebrain networks that make cognitive decisions. The identification of these circuits, their functions and mechanisms represent a major advance in our understanding of how the vertebrate brain mediates selective attention.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
163
|
Rothlein D, DeGutis J, Esterman M. Attentional Fluctuations Influence the Neural Fidelity and Connectivity of Stimulus Representations. J Cogn Neurosci 2018; 30:1209-1228. [PMID: 30004852 DOI: 10.1162/jocn_a_01306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Attention is thought to facilitate both the representation of task-relevant features and the communication of these representations across large-scale brain networks. However, attention is not "all or none," but rather it fluctuates between stable/accurate (in-the-zone) and variable/error-prone (out-of-the-zone) states. Here we ask how different attentional states relate to the neural processing and transmission of task-relevant information. Specifically, during in-the-zone periods: (1) Do neural representations of task stimuli have greater fidelity? (2) Is there increased communication of this stimulus information across large-scale brain networks? Finally, (3) can the influence of performance-contingent reward be differentiated from zone-based fluctuations? To address these questions, we used fMRI and representational similarity analysis during a visual sustained attention task (the gradCPT). Participants ( n = 16) viewed a series of city or mountain scenes, responding to cities (90% of trials) and withholding to mountains (10%). Representational similarity matrices, reflecting the similarity structure of the city exemplars ( n = 10), were computed from visual, attentional, and default mode networks. Representational fidelity (RF) and representational connectivity (RC) were quantified as the interparticipant reliability of representational similarity matrices within (RF) and across (RC) brain networks. We found that being in the zone was characterized by increased RF in visual networks and increasing RC between visual and attentional networks. Conversely, reward only increased the RC between the attentional and default mode networks. These results diverge with analogous analyses using functional connectivity, suggesting that RC and functional connectivity in tandem better characterize how different mental states modulate the flow of information throughout the brain.
Collapse
Affiliation(s)
| | | | - Michael Esterman
- VA Boston Healthcare System.,Boston University School of Medicine
| |
Collapse
|
164
|
Rohr CS, Vinette SA, Parsons KAL, Cho IYK, Dimond D, Benischek A, Lebel C, Dewey D, Bray S. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls. Cereb Cortex 2018; 27:4350-4360. [PMID: 27522072 DOI: 10.1093/cercor/bhw236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills.
Collapse
Affiliation(s)
- Christiane S Rohr
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Sarah A Vinette
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Kari A L Parsons
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Ivy Y K Cho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alina Benischek
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
165
|
Zhan M, Engelen T, de Gelder B. Influence of continuous flash suppression mask frequency on stimulus visibility. Neuropsychologia 2018; 128:65-72. [PMID: 29763616 DOI: 10.1016/j.neuropsychologia.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
The continuous flash suppression (CFS) paradigm is increasingly used in consciousness research, but its mechanisms are still not fully understood. To better understand its temporal properties, we presented the CFS masks at 9 frequencies, and examined their influence on stimuli visibility, while taking into account the inter-individual variability and the change of CFS suppression as the experiment progressed. The frequencies consisted of fundamental frequencies of 3, 4 and 5 Hz, and their 2nd and 3rd harmonics, which included the 10 Hz frequency typically used in most of the CFS studies. We found that the suppression of stimulus awareness was stronger under 4, 6 and 8 Hz than 10 Hz. After controlling for inter-individual variability with mixed-effects analysis, we found that the number of seen trials was lower for the 4 Hz-basis frequencies than the 5 Hz ones, and was lower for the 2nd than 3rd harmonic. We propose that this may be caused by an interaction between the CFS masks and the ongoing sampling of the attentional mechanism. Examining individual data, we also found a habituation effect that the participants saw significantly more stimuli as the experiment progressed. Our results suggest that these factors need to be taken care of in future CFS studies in order to achieve optimal visual awareness suppression and ensure the generalizability of results.
Collapse
Affiliation(s)
- Minye Zhan
- Faculty of Psychology and Neuroscience, Department of Cognitive Neurosciences, Maastricht University, 6229EV Maastricht, The Netherlands
| | - Tahnée Engelen
- Faculty of Psychology and Neuroscience, Department of Cognitive Neurosciences, Maastricht University, 6229EV Maastricht, The Netherlands
| | - Beatrice de Gelder
- Faculty of Psychology and Neuroscience, Department of Cognitive Neurosciences, Maastricht University, 6229EV Maastricht, The Netherlands; Department of Computer Science, University College London, WC1E 6BT, UK.
| |
Collapse
|
166
|
White MG, Mathur BN. Frontal cortical control of posterior sensory and association cortices through the claustrum. Brain Struct Funct 2018; 223:2999-3006. [PMID: 29623428 PMCID: PMC5995986 DOI: 10.1007/s00429-018-1661-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland School of Medicine, BRB 4-011, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, BRB 4-011, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
167
|
Avella Gonzalez OJ, Tsotsos JK. Short and Long-Term Attentional Firing Rates Can Be Explained by ST-Neuron Dynamics. Front Neurosci 2018; 12:123. [PMID: 29551961 PMCID: PMC5840210 DOI: 10.3389/fnins.2018.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Attention modulates neural selectivity and optimizes the allocation of cortical resources during visual tasks. A large number of experimental studies in primates and humans provide ample evidence. As an underlying principle of visual attention, some theoretical models suggested the existence of a gain element that enhances contrast of the attended stimuli. In contrast, the Selective Tuning model of attention (ST) proposes an attentional mechanism based on suppression of irrelevant signals. In this paper, we present an updated characterization of the ST-neuron proposed by the Selective Tuning model, and suggest that the inclusion of adaptation currents (Ih) to ST-neurons may explain the temporal profiles of the firing rates recorded in single V4 cells during attentional tasks. Furthermore, using the model we show that the interaction between stimulus-selectivity of a neuron and attention shapes the profile of the firing rate, and is enough to explain its fast modulation and other discontinuities observed, when the neuron responds to a sudden switch of stimulus, or when one stimulus is added to another during a visual task.
Collapse
Affiliation(s)
- Oscar J Avella Gonzalez
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.,Laboratory for Active and Attentive Vision, Centre for Vision Research, York University, Toronto, ON, Canada
| | - John K Tsotsos
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.,Laboratory for Active and Attentive Vision, Centre for Vision Research, York University, Toronto, ON, Canada
| |
Collapse
|
168
|
Functional interplay of top-down attention with affective codes during visual short-term memory maintenance. Cortex 2018; 103:55-70. [PMID: 29554542 DOI: 10.1016/j.cortex.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/21/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022]
Abstract
Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance.
Collapse
|
169
|
Abstract
Amblyopia, a developmental disorder of vision, affects many aspects of spatial vision as well as motion perception and some cognitive skills. Current models of amblyopic vision based on known neurophysiological deficiencies have yet to provide an understanding of the wide range of amblyopic perceptual losses. Visual spatial attention is known to enhance performance in a variety of detection and discrimination tasks in visually typical humans and nonhuman primates. We investigated whether and how voluntary spatial attention affected psychophysical performance in amblyopic macaques. Full-contrast response functions for motion direction discrimination were measured for each eye of six monkeys: five amblyopic and one control. We assessed whether the effect of a valid spatial cue on performance corresponded to a change in contrast gain, a leftward shift of the function, or response gain, an upward scaling of the function. Our results showed that macaque amblyopes benefit from a valid spatial cue. Performance with amblyopic eyes viewing showed enhancement of both contrast and response gain whereas fellow and control eyes' performance showed only contrast gain. Reaction time analysis showed no speed accuracy trade-off in any case. The valid spatial cue improved contrast sensitivity for the amblyopic eye, effectively eliminating the amblyopic contrast sensitivity deficit. These results suggest that engaging endogenous spatial attention may confer substantial benefit to amblyopic vision.
Collapse
Affiliation(s)
- Amelie Pham
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Lynne Kiorpes
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
170
|
Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex. eNeuro 2018; 5:eN-NWR-0375-17. [PMID: 29497703 PMCID: PMC5830349 DOI: 10.1523/eneuro.0375-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 11/28/2022] Open
Abstract
Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection.
Collapse
|
171
|
Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A 2018. [PMID: 29382744 DOI: 10.1073/pnas.1715766115.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCNA exhibited stronger connectivity with the DN than the DAN, whereas FPCNB exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCNA may be preferentially involved in the regulation of introspective processes, whereas FPCNB may be preferentially involved in the regulation of visuospatial perceptual attention.
Collapse
|
172
|
Marchetti G. Consciousness: a unique way of processing information. Cogn Process 2018; 19:435-464. [PMID: 29423666 DOI: 10.1007/s10339-018-0855-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022]
Abstract
In this article, I argue that consciousness is a unique way of processing information, in that: it produces information, rather than purely transmitting it; the information it produces is meaningful for us; the meaning it has is always individuated. This uniqueness allows us to process information on the basis of our personal needs and ever-changing interactions with the environment, and consequently to act autonomously. Three main basic cognitive processes contribute to realize this unique way of information processing: the self, attention and working memory. The self, which is primarily expressed via the central and peripheral nervous systems, maps our body, the environment, and our relations with the environment. It is the primary means by which the complexity inherent to our composite structure is reduced into the "single voice" of a unique individual. It provides a reference system that (albeit evolving) is sufficiently stable to define the variations that will be used as the raw material for the construction of conscious information. Attention allows for the selection of those variations in the state of the self that are most relevant in the given situation. Attention originates and is deployed from a single locus inside our body, which represents the center of the self, around which all our conscious experiences are organized. Whatever is focused by attention appears in our consciousness as possessing a spatial quality defined by this center and the direction toward which attention is focused. In addition, attention determines two other features of conscious experience: periodicity and phenomenal quality. Self and attention are necessary but not sufficient for conscious information to be produced. Complex forms of conscious experiences, such as the various modes of givenness of conscious experience and the stream of consciousness, need a working memory mechanism to assemble the basic pieces of information selected by attention.
Collapse
|
173
|
Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A 2018; 115:E1598-E1607. [PMID: 29382744 DOI: 10.1073/pnas.1715766115] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCNA exhibited stronger connectivity with the DN than the DAN, whereas FPCNB exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCNA may be preferentially involved in the regulation of introspective processes, whereas FPCNB may be preferentially involved in the regulation of visuospatial perceptual attention.
Collapse
|
174
|
Berger SE, Harbourne RT, Horger MN. Cognition-Action Trade-Offs Reflect Organization of Attention in Infancy. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2018; 54:45-86. [PMID: 29455866 DOI: 10.1016/bs.acdb.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This chapter discusses what cognition-action trade-offs in infancy reveal about the organization and developmental trajectory of attention. We focus on internal attention because this aspect is most relevant to the immediate concerns of infancy, such as fluctuating levels of expertise, balancing multiple taxing skills simultaneously, learning how to control attention under variable conditions, and coordinating distinct psychological domains. Cognition-action trade-offs observed across the life span include perseveration during skill emergence, errors and inefficient strategies during decision making, and the allocation of resources when attention is taxed. An embodied cognitive-load account interprets these behavioral patterns as a result of limited attentional resources allocated across simultaneous, taxing task demands. For populations where motor errors could be costly, like infants and the elderly, attention is typically devoted to motor demands with errors occurring in the cognitive domain. In contrast, healthy young adults tend to preserve their cognitive performance by modifying their actions.
Collapse
Affiliation(s)
- Sarah E Berger
- The College of Staten Island and the Graduate Center of the City University of New York, New York, NY, United States.
| | - Regina T Harbourne
- John G. Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Melissa N Horger
- The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
175
|
Lobier M, Palva JM, Palva S. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. Neuroimage 2018; 165:222-237. [DOI: 10.1016/j.neuroimage.2017.10.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
|
176
|
Halassa MM, Kastner S. Thalamic functions in distributed cognitive control. Nat Neurosci 2017; 20:1669-1679. [DOI: 10.1038/s41593-017-0020-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 08/27/2017] [Indexed: 01/08/2023]
|
177
|
Padoa-Schioppa C, Conen KE. Orbitofrontal Cortex: A Neural Circuit for Economic Decisions. Neuron 2017; 96:736-754. [PMID: 29144973 PMCID: PMC5726577 DOI: 10.1016/j.neuron.2017.09.031] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022]
Abstract
Economic choice behavior entails the computation and comparison of subjective values. A central contribution of neuroeconomics has been to show that subjective values are represented explicitly at the neuronal level. With this result at hand, the field has increasingly focused on the difficult question of where in the brain and how exactly subjective values are compared to make a decision. Here, we review a broad range of experimental and theoretical results suggesting that good-based decisions are generated in a neural circuit within the orbitofrontal cortex (OFC). The main lines of evidence supporting this proposal include the fact that goal-directed behavior is specifically disrupted by OFC lesions, the fact that different groups of neurons in this area encode the input and the output of the decision process, the fact that activity fluctuations in each of these cell groups correlate with choice variability, and the fact that these groups of neurons are computationally sufficient to generate decisions. Results from other brain regions are consistent with the idea that good-based decisions take place in OFC and indicate that value signals inform a variety of mental functions. We also contrast the present proposal with other leading models for the neural mechanisms of economic decisions. Finally, we indicate open questions and suggest possible directions for future research.
Collapse
Affiliation(s)
- Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Katherine E Conen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
178
|
Sellers KK, Yu C, Zhou ZC, Stitt I, Li Y, Radtke-Schuller S, Alagapan S, Fröhlich F. Oscillatory Dynamics in the Frontoparietal Attention Network during Sustained Attention in the Ferret. Cell Rep 2017; 16:2864-2874. [PMID: 27626658 DOI: 10.1016/j.celrep.2016.08.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/15/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Sustained attention requires the coordination of neural activity across multiple cortical areas in the frontoparietal network, in particular the prefrontal cortex (PFC) and posterior parietal cortex (PPC). Previous work has demonstrated that activity in these brain regions is coordinated by neuronal oscillations of the local field potential (LFP). However, the underlying coordination of activity in terms of organization of single unit (SU) spiking activity has remained poorly understood, particularly in the freely moving animal. We found that long-range functional connectivity between anatomically connected PFC and PPC was mediated by oscillations in the theta frequency band. SU activity in PFC was phase locked to theta oscillations in PPC, and spiking activity in PFC and PPC was locked to local high-gamma activity. Together, our results support a model in which frequency-specific synchronization mediates functional connectivity between and within PFC and PPC of the frontoparietal attention network in the freely moving animal.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiu Yu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sankaraleengam Alagapan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
179
|
Whole-Brain Source-Reconstructed MEG-Data Reveal Reduced Long-Range Synchronization in Chronic Schizophrenia. eNeuro 2017; 4:eN-NWR-0338-17. [PMID: 29085902 PMCID: PMC5659261 DOI: 10.1523/eneuro.0338-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3–120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30–120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity.
Collapse
|
180
|
Activity in part of the neural correlates of consciousness reflects integration. Conscious Cogn 2017; 55:26-34. [DOI: 10.1016/j.concog.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
|
181
|
Kuo BC, Li CH, Lin SH, Hu SH, Yeh YY. Top-down modulation of alpha power and pattern similarity for threatening representations in visual short-term memory. Neuropsychologia 2017; 106:21-30. [PMID: 28887064 DOI: 10.1016/j.neuropsychologia.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Recent studies have shown that top-down attention biases task-relevant representations in visual short-term memory (VSTM). Accumulating evidence has also revealed the modulatory effects of emotional arousal on attentional processing. However, it remains unclear how top-down attention interacts with emotional memoranda in VSTM. In this study, we investigated the mechanisms of alpha oscillations and their spatiotemporal characteristics that underlie top-down attention to threatening representations during VSTM maintenance with electroencephalography. Participants were instructed to remember a threatening object and a neutral object in a cued variant delayed response task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat trials) or a neutral object (i.e., cue-to-neutral trials) during a retention interval prior to the probe test. We found a significant retro-cue-related alpha lateralisation over posterior regions during VSTM maintenance. The novel finding was that the magnitude of alpha lateralisation was greater for cue-to-threat objects compared to cue-to-neutral ones. These results indicated that directing attention towards threatening representations compared to neutral representations could result in greater regulation of alpha activity contralateral to the cued hemifield. Importantly, we estimated the spatiotemporal pattern similarity in alpha activity and found significantly higher similarity indexes for the posterior regions relative to the anterior regions and for the cue-to-threat objects relative to cue-to-neutral objects over the posterior regions. Together, our findings provided the oscillatory evidence of greater top-down modulations of alpha lateralisation and spatiotemporal pattern similarity for attending to threatening representations in VSTM.
Collapse
Affiliation(s)
- Bo-Cheng Kuo
- Department of Psychology, National Taiwan University, Taiwan.
| | - Chun-Hui Li
- Department of Psychology, National Taiwan University, Taiwan; Research Center for Information Technology Innovation, Academia Sinica, Taiwan
| | - Szu-Hung Lin
- Department of Psychology, National Taiwan University, Taiwan
| | - Sheng-Hung Hu
- Department of Psychology, National Taiwan University, Taiwan
| | - Yei-Yu Yeh
- Department of Psychology, National Taiwan University, Taiwan.
| |
Collapse
|
182
|
Frank CL, Brown JP, Wallace K, Mundy WR, Shafer TJ. From the Cover: Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation. Toxicol Sci 2017; 160:121-135. [DOI: 10.1093/toxsci/kfx169] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
183
|
Giattino CM, Alam ZM, Woldorff MG. Neural processes underlying the orienting of attention without awareness. Cortex 2017; 102:14-25. [PMID: 28826603 DOI: 10.1016/j.cortex.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/20/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022]
Abstract
Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive.
Collapse
Affiliation(s)
- Charles M Giattino
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
| | - Zaynah M Alam
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology & Neuroscience, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
184
|
Knudsen EI, Schwarz JS, Knudsen PF, Sridharan D. Space-Specific Deficits in Visual Orientation Discrimination Caused by Lesions in the Midbrain Stimulus Selection Network. Curr Biol 2017; 27:2053-2064.e5. [PMID: 28669762 DOI: 10.1016/j.cub.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022]
Abstract
Perceptual decisions require both analysis of sensory information and selective routing of relevant information to decision networks. This study explores the contribution of a midbrain network to visual perception in chickens. Analysis of visual orientation information in birds takes place in the forebrain sensory area called the Wulst, as it does in the primary visual cortex (V1) of mammals. In contrast, the midbrain, which receives parallel retinal input, encodes orientation poorly, if at all. We discovered, however, that small electrolytic lesions in the midbrain severely impair a chicken's ability to discriminate orientations. Focal lesions were placed in the optic tectum (OT) and in the nucleus isthmi pars parvocellularis (Ipc)-key nodes in the midbrain stimulus selection network-in chickens trained to perform an orientation discrimination task. A lesion in the OT caused a severe impairment in orientation discrimination specifically for targets at the location in space represented by the lesioned location. Distracting stimuli increased the deficit. A lesion in the Ipc produced similar but more transient effects. We discuss the possibilities that performance deficits were caused by interference with orientation information processing (sensory deficit) versus with the routing of information in the forebrain (agnosia). The data support the proposal that the OT transmits a space-specific signal that is required to gate orientation information from the Wulst into networks that mediate behavioral decisions, analogous to the role of ascending signals from the superior colliculus (SC) in monkeys. Furthermore, our results indicate a critical role for the cholinergic Ipc in this gating process.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jason S Schwarz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Phyllis F Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
185
|
Jia J, Liu L, Fang F, Luo H. Sequential sampling of visual objects during sustained attention. PLoS Biol 2017; 15:e2001903. [PMID: 28658261 PMCID: PMC5489144 DOI: 10.1371/journal.pbio.2001903] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/31/2017] [Indexed: 11/18/2022] Open
Abstract
In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional "focus," involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time.
Collapse
Affiliation(s)
- Jianrong Jia
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ling Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
186
|
Schaich Borg J, Srivastava S, Lin L, Heffner J, Dunson D, Dzirasa K, de Lecea L. Rat intersubjective decisions are encoded by frequency-specific oscillatory contexts. Brain Behav 2017; 7:e00710. [PMID: 28638715 PMCID: PMC5474713 DOI: 10.1002/brb3.710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION It is unknown how the brain coordinates decisions to withstand personal costs in order to prevent other individuals' distress. Here we test whether local field potential (LFP) oscillations between brain regions create "neural contexts" that select specific brain functions and encode the outcomes of these types of intersubjective decisions. METHODS Rats participated in an "Intersubjective Avoidance Test" (IAT) that tested rats' willingness to enter an innately aversive chamber to prevent another rat from getting shocked. c-Fos immunoreactivity was used to screen for brain regions involved in IAT performance. Multi-site local field potential (LFP) recordings were collected simultaneously and bilaterally from five brain regions implicated in the c-Fos studies while rats made decisions in the IAT. Local field potential recordings were analyzed using an elastic net penalized regression framework. RESULTS Rats voluntarily entered an innately aversive chamber to prevent another rat from getting shocked, and c-Fos immunoreactivity in brain regions known to be involved in human empathy-including the anterior cingulate, insula, orbital frontal cortex, and amygdala-correlated with the magnitude of "intersubjective avoidance" each rat displayed. Local field potential recordings revealed that optimal accounts of rats' performance in the task require specific frequencies of LFP oscillations between brain regions in addition to specific frequencies of LFP oscillations within brain regions. Alpha and low gamma coherence between spatially distributed brain regions predicts more intersubjective avoidance, while theta and high gamma coherence between a separate subset of brain regions predicts less intersubjective avoidance. Phase relationship analyses indicated that choice-relevant coherence in the alpha range reflects information passed from the amygdala to cortical structures, while coherence in the theta range reflects information passed in the reverse direction. CONCLUSION These results indicate that the frequency-specific "neural context" surrounding brain regions involved in social cognition encodes outcomes of decisions that affect others, above and beyond signals from any set of brain regions in isolation.
Collapse
Affiliation(s)
- Jana Schaich Borg
- Social Science Research Institute Duke University Durham NC USA.,Duke Institute for Brain Sciences Duke University Durham NC USA.,Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA USA
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science University of Iowa Iowa City IA USA
| | - Lizhen Lin
- Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame IN USA
| | - Joseph Heffner
- Department of Psychology, Cognitive Linguistic and Psychological Sciences Brown University Providence RI USA
| | - David Dunson
- Department of Statistical Science Duke University Durham NC USA
| | - Kafui Dzirasa
- Duke Institute for Brain Sciences Duke University Durham NC USA.,Department of Psychiatry and Behavioral Sciences Duke University Medical Center Durham NC USA.,Department of Neurobiology Duke University Medical Center Durham NC USA.,Department of Neurosurgery Duke University Medical Center Durham NC USA.,Department of Biomedical Engineering Duke University Durham NC USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA USA
| |
Collapse
|
187
|
Slama SJK, Helfrich RF. How Does Expectation Shape Object-Based Attentional Selection? J Neurosci 2017; 37:4427-4429. [PMID: 28446658 PMCID: PMC5413183 DOI: 10.1523/jneurosci.0414-17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- S J Katarina Slama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Randolph F Helfrich
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
188
|
Grant WS, Tanner J, Itti L. Biologically plausible learning in neural networks with modulatory feedback. Neural Netw 2017; 88:32-48. [DOI: 10.1016/j.neunet.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
189
|
Battistoni E, Stein T, Peelen MV. Preparatory attention in visual cortex. Ann N Y Acad Sci 2017; 1396:92-107. [PMID: 28253445 DOI: 10.1111/nyas.13320] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
Abstract
Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions.
Collapse
Affiliation(s)
- Elisa Battistoni
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Timo Stein
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Marius V Peelen
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
190
|
Abstract
This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells – or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries. This paper describes a DCM for fMRI based on neural mass models and canonical microcircuits. This enables the (Bayesian) fusion of EEG and fMRI data. That encompasses the formal modelling of neurovascular coupling. Offers a surprising insight into the relationship between haemodynamic and electrophysiological responses.
Collapse
|
191
|
Schmitt LI, Halassa MM. Interrogating the mouse thalamus to correct human neurodevelopmental disorders. Mol Psychiatry 2017; 22:183-191. [PMID: 27725660 PMCID: PMC5258688 DOI: 10.1038/mp.2016.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 11/09/2022]
Abstract
While localizing sensory and motor deficits is one of the cornerstones of clinical neurology, behavioral and cognitive deficits in psychiatry remain impervious to this approach. In psychiatry, major challenges include the relative subtlety by which neural circuits are perturbed, and the limited understanding of how basic circuit functions relate to thought and behavior. Neurodevelopmental disorders offer a window to addressing the first challenge given their strong genetic underpinnings, which can be linked to biological mechanisms. Such links have benefited from genetic modeling in the mouse, and in this review we highlight how this small mammal is now allowing us to crack neural circuits as well. We review recent studies of mouse thalamus, discussing how they revealed general principles that may underlie human perception and attention. Controlling the magnitude (gain) of thalamic sensory responses is a mechanism of attention, and the mouse has enabled its functional dissection at an unprecedented resolution. Further, modeling human genetic neurodevelopmental disease in the mouse has shown how diminished thalamic gain control can lead to attention deficits. This breaks new ground in how we untangle the complexity of psychiatric diseases; by making thalamic circuits accessible to mechanistic dissection; the mouse has not only taught us how they fundamentally work, but also how their dysfunction can be precisely mapped onto behavioral and cognitive deficits. Future studies promise even more progress, with the hope that principled targeting of identified thalamic circuits can be uniquely therapeutic.
Collapse
Affiliation(s)
- L. Ian Schmitt
- The Neuroscience Institute, New York University School of Medicine, New York, NY
| | - Michael M. Halassa
- The Neuroscience Institute, New York University School of Medicine, New York, NY,Center for Neural Science, New York University, New York, NY,Department of Psychiatry, NYU Langone Medical Center, New York, NY
| |
Collapse
|
192
|
Zhang YF, Li QQ, Qu J, Sun CM, Wang Y. Alterations of motor cortical microcircuit in a depressive-like mouse model produced by light deprivation. Neuroscience 2017; 341:79-94. [DOI: 10.1016/j.neuroscience.2016.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023]
|
193
|
Eštočinová J, Lo Gerfo E, Della Libera C, Chelazzi L, Santandrea E. Augmenting distractor filtering via transcranial magnetic stimulation of the lateral occipital cortex. Cortex 2016; 84:63-79. [DOI: 10.1016/j.cortex.2016.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023]
|
194
|
Battelli L, Grossman ED, Plow EB. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimul 2016; 10:263-269. [PMID: 27838275 DOI: 10.1016/j.brs.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The interhemispheric competition hypothesis attributes the distribution of selective attention to a balance of mutual inhibition between homotopic, interhemispheric connections in parietal cortex (Kinsbourne 1977; Battelli et al., 2009). In support of this hypothesis, repetitive inhibitory TMS over right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical activity that spreads beyond the site of stimulation (Plow et al., 2014). Behaviorally, the impacts of inhibitory rTMS may be long delayed from the onset of stimulation, as much as 30 minutes (Agosta et al., 2014; Hubl et al., 2008). OBJECTIVE In this study, we examine the temporal dynamics of inhibitory rTMS on cortical network integrity that supports sustained visual attention. METHODS Healthy individuals received 15 min of 1 Hz offline, inhibitory rTMS (or sham) over left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). RESULTS FC immediately and significantly decreased between the stimulation site (left IPS) and all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between left and right FEF at approximately 36 min following stimulation, and between sites in the unstimulated hemisphere approximately 48 min after stimulation. CONCLUSIONS These findings demonstrate large-scale changes in cortical organization following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. The delayed, compensatory increases in functional connectivity have implications for models of dynamic reorganization in networks supporting spatial and nonspatial selective attention, and compensatory mechanisms within these networks that may be stabilized in chronic stroke.
Collapse
Affiliation(s)
- Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Via Bettini 31, 38068 Rovereto, TN, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ela B Plow
- Department of Biomedical Engineering and Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
195
|
Cheng N, Khanbabaei M, Murari K, Rho JM. Disruption of visual circuit formation and refinement in a mouse model of autism. Autism Res 2016; 10:212-223. [PMID: 27529416 PMCID: PMC5324550 DOI: 10.1002/aur.1687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/30/2016] [Indexed: 12/21/2022]
Abstract
Aberrant connectivity is believed to contribute to the pathophysiology of autism spectrum disorder (ASD). Recent neuroimaging studies have increasingly identified such impairments in patients with ASD, including alterations in sensory systems. However, the cellular substrates and molecular underpinnings of disrupted connectivity remain poorly understood. Utilizing eye‐specific segregation in the dorsal lateral geniculate nucleus (dLGN) as a model system, we investigated the formation and refinement of precise patterning of synaptic connections in the BTBR T + tf/J (BTBR) mouse model of ASD. We found that at the neonatal stage, the shape of the dLGN occupied by retinal afferents was altered in the BTBR group compared to C57BL/6J (B6) animals. Notably, the degree of overlap between the ipsi‐ and contralateral afferents was significantly greater in the BTBR mice. Moreover, these abnormalities continued into mature stage in the BTBR animals, suggesting persistent deficits rather than delayed maturation of axonal refinement. Together, these results indicate disrupted connectivity at the synaptic patterning level in the BTBR mice, suggesting that in general, altered neural circuitry may contribute to autistic behaviours seen in this animal model. In addition, these data are consistent with the notion that lower‐level, primary processing mechanisms contribute to altered visual perception in ASD. Autism Res2017, 10: 212–223. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Collapse
Affiliation(s)
- Ning Cheng
- Developmental Neurosciences Research Program, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maryam Khanbabaei
- Developmental Neurosciences Research Program, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kartikeya Murari
- Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
196
|
Bueichekú E, Miró-Padilla A, Palomar-García MÁ, Ventura-Campos N, Parcet MA, Barrós-Loscertales A, Ávila C. Reduced posterior parietal cortex activation after training on a visual search task. Neuroimage 2016; 135:204-13. [PMID: 27132048 DOI: 10.1016/j.neuroimage.2016.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022] Open
Abstract
Gaining experience on a cognitive task improves behavioral performance and is thought to enhance brain efficiency. Despite the body of literature already published on the effects of training on brain activation, less research has been carried out on visual search attention processes under well controlled conditions. Thirty-six healthy adults divided into trained and control groups completed a pre-post letter-based visual search task fMRI study in one day. Twelve letters were used as targets and ten as distractors. The trained group completed a training session (840 trials) with half the targets between scans. The effects of training were studied at the behavioral and brain levels by controlling for repetition effects using both between-subjects (trained vs. control groups) and within-subject (trained vs. untrained targets) controls. The trained participants reduced their response speed by 31% as a result of training, maintaining their accuracy scores, whereas the control group hardly changed. Neural results revealed that brain changes associated with visual search training were circumscribed to reduced activation in the posterior parietal cortex (PPC) when controlling for group, and they included inferior occipital areas when controlling for targets. The observed behavioral and brain changes are discussed in relation to automatic behavior development. The observed training-related decreases could be associated with increased neural efficiency in specific key regions for task performance.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - Noelia Ventura-Campos
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - María-Antonia Parcet
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - Alfonso Barrós-Loscertales
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
197
|
Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an electric fish. J Neurophysiol 2016; 115:2577-92. [PMID: 26961107 DOI: 10.1152/jn.00979.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region.
Collapse
Affiliation(s)
- James J Jun
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|