151
|
|
152
|
Zieliński H, Szawara-Nowak D, Wronkowska M. Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
153
|
Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf 2020; 19:954-994. [DOI: 10.1111/1541-4337.12547] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering“Dunarea de Jos” University of Galati Galati Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Stefan Dima
- Faculty of Science and Environment“Dunarea de Jos” University of Galati Galati Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
154
|
Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2019.11.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
155
|
Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chem 2020; 309:125786. [DOI: 10.1016/j.foodchem.2019.125786] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
156
|
Peanparkdee M, Iwamoto S. Encapsulation for Improvingin VitroGastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Methavee Peanparkdee
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
157
|
Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols' Bioaccessibility and Intestinal Permeability. Nutrients 2020; 12:nu12030669. [PMID: 32121413 PMCID: PMC7146296 DOI: 10.3390/nu12030669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD- and polyphenol-specific.
Collapse
|
158
|
Perales-Vázquez GDC, Mercado-Mercado G, De la Rosa LA, Sáyago-Ayerdi SG. Bioaccesibilidad y cinética de liberación in vitro de compuestos fenólicos en algunas salsas de la cocina mexicana. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las salsas en la cocina mexicana son consideradas un complemento fundamental de todos los platillos. En este trabajo se prepararon cuatro tipos de salsas mexicanas (SM): salsa roja cruda (SRCr), salsa roja cocinada (SRC), salsa verde cruda (SVCr) y salsa verde cocinada (SVC), se evaluó el porcentaje de bioaccesibilidad (%BA) y la velocidad de liberación de los compuestos fenólicos (CF) presentes en las SM. Se identificaron y cuantificaron por HPLC-MS los CF liberados de las SM en las diferentes etapas de un modelo de digestión in vitro. El %BA fue del 50% para la SRCr y hasta 62% para la SRC, valores semejantes presentaron la SVC y la SVCr. En la fracción intestinal se identificaron compuestos como catequina y galocatequín galato en los cuatro tipos de SM. La velocidad de liberación de los CF más alta fue de 3.70 mg EAG/min en la SRC y 2.16 mg EAG/min en la SVC. Los resultados sugieren una rápida liberación de los CF en ambas salsas rojas, sin embargo, esto no afecta la liberación final de los CF. Evaluar la BA de los CF de diferentes alimentos permite conocer cuántos y cuáles son los CF que potencialmente pueden estar biodisponibles en el organismo.
Collapse
|
159
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
160
|
Li ZT, Zhu L, Zhang WL, Zhan XB, Gao MJ. New dynamic digestion model reactor that mimics gastrointestinal function. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
161
|
Perez-Hernandez LM, Nugraheni K, Benohoud M, Sun W, Hernández-Álvarez AJ, Morgan MRA, Boesch C, Orfila C. Starch Digestion Enhances Bioaccessibility of Anti-Inflammatory Polyphenols from Borlotti Beans ( Phaseolus vulgaris). Nutrients 2020; 12:E295. [PMID: 31978996 PMCID: PMC7070432 DOI: 10.3390/nu12020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of beans has been associated with chronic disease prevention which may be attributed to the polyphenols present in the seed coat and endosperm. However, their bioaccessibility is likely to be limited by interactions with bean matrix components, including starch, protein and fibre. The aim of this project was to evaluate the effect of domestic processing and enzymatic digestion on the bioaccessibility of polyphenols from Borlotti beans (Phaseolus vulgaris) and to test their anti-inflammatory properties in a macrophage cell model. In vitro digestion of cooked beans released twenty times more polyphenols (40.4 ± 2.5 mg gallic acid equivalents (GAE)/g) than domestic processing (2.22 ± 0.1 mg GAE/g), with starch digestion contributing to the highest release (30.9 ± 0.75 mg GAE/g). Fluorescence microscopy visualization of isolated bean starch suggests that polyphenols are embedded within the granule structure. LC-MS analysis showed that cooked Borlotti bean contain flavonoids, flavones and hydroxycinnamic acids, and cooked bean extracts exerted moderate anti-inflammatory effects by decreasing mRNA levels of IL1β and iNOS by 25% and 40%, respectively. In conclusion, the bioaccessibility of bean polyphenols is strongly enhanced by starch digestion. These polyphenols may contribute to the health benefits associated with bean consumption.
Collapse
Affiliation(s)
- Lucia Margarita Perez-Hernandez
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Kartika Nugraheni
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | | | - Wen Sun
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Alan Javier Hernández-Álvarez
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Michael R. A. Morgan
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Christine Boesch
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| | - Caroline Orfila
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (L.M.P.-H.); (K.N.); (W.S.); (A.J.H.-Á.); (M.R.A.M.); (C.B.)
| |
Collapse
|
162
|
Liu D, Dhital S, Wu P, Chen XD, Gidley MJ. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grinding and Crushing Effects on Polyphenol Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:574-583. [PMID: 31820633 DOI: 10.1021/acs.jafc.9b05649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food structure is a key determinant for the release of phenolic compounds during gastric and intestinal digestion. We evaluated the bioaccessibility of polyphenols from apple tissue during gastric digestion in vitro from bio-mechanical perspectives including the effects of gastric juice and mucin on the apple tissue matrix under simulated stomach peristalsis. The gastric model system was effective in releasing polyphenols because of simultaneous compression and extrusion, with 3 times higher release from coarse than from fine particles. However, bioaccessibility of polyphenols was reduced up to 44% in the presence of both cell walls and gastric mucin. Most individual phenolic molecules were gradually released and were stable in the gastric environment, except for procyanidin B2. The study suggests that the bioaccessibility of polyphenols from apples in the upper digestive tract is dependent on mechanical disintegration and the residual matrix present in the swallowed bolus.
Collapse
Affiliation(s)
- Dongjie Liu
- Key Laboratory of Plant Cell Walls & Plant Resistance, Molecular Analysis & Genetic Improvement Center, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Sushil Dhital
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xiao-Dong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| |
Collapse
|
163
|
Nova P, Pimenta-Martins A, Laranjeira Silva J, Silva AM, Gomes AM, Freitas AC. Health benefits and bioavailability of marine resources components that contribute to health - what's new?. Crit Rev Food Sci Nutr 2020; 60:3680-3692. [PMID: 31920109 DOI: 10.1080/10408398.2019.1704681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The strict connection between nutritional intake and health leads to a necessity of understanding the beneficial and protective role of healthy nutrients and foods. The marine environment is a source of a plethora of many organisms with unique properties, extremely rich in bioactive compounds and with remarkable potential for medical, industrial and biotechnological applications. Marine organisms are an extreme valuable source of functional ingredients such as polysaccharides, vitamins, minerals, pigments, enzymes, proteins and peptides, polyunsaturated fatty acids (PUFA), phenolic compounds and other secondary metabolites that prevent or have the potential to treat several diseases given their cardiovascular protective, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-coagulant, anti-proliferative and anti-diabetic activities. This review provides an overview on the current advances regarding health benefits of marine bioactive compounds on several diseases and on human gut microbiota. In addition, it is discussed a crucial factor that is related to the effectiveness of these compounds on human organism namely its real bioavailability.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Pimenta-Martins
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | | | | | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Cristina Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnlogia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
164
|
Uribe-Wandurraga ZN, Igual M, García-Segovia P, Martínez-Monzó J. In vitro bioaccessibility of minerals from microalgae-enriched cookies. Food Funct 2020; 11:2186-2194. [DOI: 10.1039/c9fo02603g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microalgae can be used as an ingredient to enrich cookies with minerals. Cookies enriched with microalgae presented a higher content in minerals compared to control samples.
Collapse
Affiliation(s)
| | - Marta Igual
- Universitat Politècnica de València
- Food Technology Department
- Food Investigation and Innovation Group
- 46022 Valencia
- Spain
| | - Purificación García-Segovia
- Universitat Politècnica de València
- Food Technology Department
- Food Investigation and Innovation Group
- 46022 Valencia
- Spain
| | - Javier Martínez-Monzó
- Universitat Politècnica de València
- Food Technology Department
- Food Investigation and Innovation Group
- 46022 Valencia
- Spain
| |
Collapse
|
165
|
Świeca M, Gawlik-Dziki U, Złotek U, Kapusta I, Kordowska-Wiater M, Baraniak B. Effect of cold storage on the potentially bioaccessible isoflavones and antioxidant activities of soybean sprouts enriched with Lactobacillus plantarum 299v. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
166
|
Quan W, Tao Y, Qie X, Zeng M, Qin F, Chen J, He Z. Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
167
|
Vitas J, Popović L, Čakarević J, Malbaša R, Vukmanović S. In vitro assessment of bioaccessibility of the antioxidant activity of kombucha beverages after gastric and intestinal digestion. FOOD AND FEED RESEARCH 2020. [DOI: 10.5937/ffr2001033v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
168
|
Evaluation of the protein and bioactive compound bioaccessibility/bioavailability and cytotoxicity of the extracts obtained from aquaculture and fisheries by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:97-125. [PMID: 32402448 DOI: 10.1016/bs.afnr.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioavailability, bioaccessibility, bioactivity and cytotoxicity define if a bioactive compound obtained from aquaculture and associated by-products can be assimilated and used for the body in a safe and efficient way. Four models are used to evaluate the bioavailability: in vitro (simulated gastrointestinal digestion using intestinal epithelial Caco-2 cell cultures); ex vivo (gastrointestinal organs or organoids in laboratory conditions); in situ (intestinal perfusion in animals) and in vivo (animal studies and human studies). In vitro models are very effective, predicting in vivo actions since they evaluate multiple conditions regardless physiological effects. However, in vivo systems are essential for the validation of the results. The use of a combined model between human digestion and cell culture-based models would solve these difficulties, allowing valid conclusions. These studies must be completed with the evaluation of cytotoxicity and oxidative stress markers, providing most accurate results regarding the adverse effect on the body. These methods would test the effect of food structure, food composition, dietary factors and the effect of food processing on bioavailability. Further studies should be carried out to establish a standardized method and achieve a balance between the use of in vivo and in vitro systems.
Collapse
|
169
|
Roberts G, Allen K, Ballmer-Weber B, Clark A, Crevel R, Dunn Galvin A, Fernandez-Rivas M, Grimshaw KEC, Hourihane JO, Poulsen LK, van Ree R, Regent L, Remington B, Schnadt S, Turner PJ, Mills ENC. Identifying and managing patients at risk of severe allergic reactions to food: Report from two iFAAM workshops. Clin Exp Allergy 2019; 49:1558-1566. [PMID: 31631439 DOI: 10.1111/cea.13516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/20/2019] [Accepted: 10/17/2019] [Indexed: 12/01/2022]
Abstract
Food allergy affects a small but important number of children and adults. Much of the morbidity associated with food allergy is driven by the fear of a severe reaction and fatalities continue to occur. Foods are the commonest cause of anaphylaxis. One of the aims of the European Union-funded Integrated Approaches to Food Allergen and Allergy Risk Management (iFAAM) project was to improve the identification and management of children and adults at risk of experiencing a severe reaction. A number of interconnected studies within the project have focused on quantifying the severity of allergic reactions; the impact of food matrix, immunological factors on severity of reactions; the impact of co-factors such as medications on the severity of reactions; utilizing single-dose challenges to understand threshold and severity of reactions; and community studies to understand the experience of patients suffering real-life allergic reactions to food. Associated studies have examined population thresholds and co-factors such as exercise and stress. This paper summarizes two workshops focused on the severity of allergic reactions to food. It outlines the related studies being undertaken in the project indicating how they are likely to impact on our ability to identify individuals at risk of severe reactions and improve their management.
Collapse
Affiliation(s)
- Graham Roberts
- University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - Katie Allen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.,Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Barbara Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital, University of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland.,Clinic for Dermatology and Allergology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrew Clark
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rene Crevel
- René Crevel Consulting Ltd, Bedford, UK.,Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford, UK
| | - Audrey Dunn Galvin
- Applied Psychology and Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Montserrat Fernandez-Rivas
- Servicio de Alergia, Hospital Clınico San Carlos, IdISSC, ARADyAL, Universidad Complutense, Madrid, Spain
| | | | | | - Lars K Poulsen
- Allergy Clinic, Copenhagen University Hospital at Gentofte, Copenhagen, Denmark
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Sabine Schnadt
- German Allergy and Asthma Association, Mönchengladbach, Germany
| | - Paul J Turner
- Section of Paediatrics (Allergy and Infectious Diseases), Imperial College London, London, UK
| | - E N Clare Mills
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| |
Collapse
|
170
|
Neves DA, Lobato KBDS, Angelica RS, Teixeira Filho J, Oliveira GPRD, Godoy HT. Thermal and in vitro digestion stability of folic acid in bread. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
171
|
PEREIRA JPF, MAGESTE AC, CAMPOS NDS, SOUSA RAD, FRANCISQUINI JD, PERRONE ÍT, CARVALHO AFD, NUNES RM, MARTINS MF, SILVA PHDFD. Calcium partition in Minas Padrão cheese and its bioaccessibility during ripening time. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.12518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
172
|
Sahan Y, Aydin E, Dundar AI, Altiner DD, Celik G, Gocmen D. Effects of oleaster flour supplementation in total phenolic contents, antioxidant capacities and their bioaccessibilities of cookies. Food Sci Biotechnol 2019; 28:1401-1408. [PMID: 31695938 DOI: 10.1007/s10068-019-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022] Open
Abstract
In presented study total phenolic contents, antioxidant capacities and their bioaccessibilities from cookies supplemented with oleaster flour were investigated. Oleaster flours (OFs) were produced using two different methods (peeled oleaster flour: POF and unpeeled oleaster flour: UPOF) from two different genotypes. OFs were used to replace wheat flour in the cookie formulation (control) at the levels of 5, 10, 15, 20 and 25% (w/w). According to the results, enrichment of OFs clearly increased total phenolic contents, antioxidant capacities and bioaccessibilities of cookies. The highest bioaccessible antioxidant capacities (ABTS, CUPRAC, and FRAP) of the samples were obtained from cookie samples enriched with 25% UPOF-1. In conclusion, the increases in phenolic contents, antioxidant capacities, and bioaccessibilities from cookies supplemented with OFs suggest the potential enhancement of beneficial health effect of cookie due to increased content of bioactive compounds present in oleaster flour.
Collapse
Affiliation(s)
- Yasemin Sahan
- 1Faculty of Agriculture, Department of Food Engineering, Uludag University, Gorukle Campus, 16059 Bursa, Turkey
| | - Emine Aydin
- 2Faculty of Agriculture and Natural Sciences, Department of Agricultural Biotechnology, Duzce University, Duzce, Turkey
| | - Ayse Inkaya Dundar
- 3Faculty of Natural Sciences, Architecture and Engineering, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Dilek Dulger Altiner
- 4School of Tourism and Hotel Management, Department of Gastronomy and Culinary Arts, Kocaeli University, Kartepe/Kocaeli, Turkey
| | - Guler Celik
- 5The Scientific and Technological Research Council of Turkey, Bursa Test and Analysis Laboratory, (TUBITAK BUTAL), Bursa, Turkey
| | - Duygu Gocmen
- 1Faculty of Agriculture, Department of Food Engineering, Uludag University, Gorukle Campus, 16059 Bursa, Turkey
| |
Collapse
|
173
|
Zielińska D. The Bioaccessible Reducing Capacity of Buckwheat-Enhanced Wheat Breads Estimated by Electrochemical Method. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.84716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
174
|
Sant' Ana CT, Antunes PT, Reis TCD, Váz-Tostes MDG, Meira EF, Costa NMB. Bioaccessibility and bioavailability of iron in biofortified germinated cowpea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6287-6295. [PMID: 31259417 DOI: 10.1002/jsfa.9902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata L. Walph) is predominantly consumed in the North and Northeast regions of Brazil, and its biofortification with iron seeks to reduce the high prevalence of iron deficiency anemia in these regions. It is commonly eaten cooked; however, in the germinated form, it can improve nutritional quality by reducing the antinutritional factors and consequently improving the bioavailability of elements. The present study aimed to determine the physico-chemical characteristics, bioaccessibility and bioavailability of iron in biofortified germinated cowpea. RESULTS There was no statistical difference between the germinated and cooked beans with regard to centesimal composition. Germinated beans had phytates and tannins similar to cooked beans. The phytate-iron molar ratio for all groups did not present a statistical difference (cooking 3.58 and 3.41; germinated 3.94 and 3.51), nor did the parameters evaluating in vivo iron bioavailability. Total phenolics was higher in the germinated group (cooking 0.56 and 0.64; Germinated 2.05 and 2.45 mg gallic acid kg-1 ). In vitro bioaccessibility of iron of germinated beans presented higher values (P ≤ 0.05) compared to cooked beans. There was higher expression of divalent metal transporter-1 in biofortified and germinated beans. CONCLUSION The iron bioavailability from the biofortified and germinated beans was comparable to ferrous sulfate. Germination can be considered as an alternative and efficient method for consuming cowpea, presenting good iron bioaccessibility and bioavailability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cíntia Tomaz Sant' Ana
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Paula Tavares Antunes
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Tuane Carrari Dos Reis
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Maria das Graças Váz-Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Eduardo Frizzera Meira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Neuza Maria Brunoro Costa
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| |
Collapse
|
175
|
Xavier ADS, Furtado DZS, Assunção NA, Nascimento AN. Bioacessibility of Fe and Zn (associated to proteins) in cashew nut. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
176
|
Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res Int 2019; 121:404-411. [DOI: 10.1016/j.foodres.2019.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 11/18/2022]
|
177
|
Wochner KF, Moreira MCC, Kalschne DL, Colla E, Drunkler DA. Detoxification of Aflatoxin B
1
and M
1
by
Lactobacillus acidophilus
and prebiotics in whole cow's milk. J Food Saf 2019. [DOI: 10.1111/jfs.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katia F. Wochner
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Maria C. C. Moreira
- Departamento de AlimentosGraduação em Engenharia de Alimentos, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Daneysa L. Kalschne
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Eliane Colla
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Deisy A. Drunkler
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| |
Collapse
|
178
|
Designing selenium functional foods and beverages: A review. Food Res Int 2019; 120:708-725. [DOI: 10.1016/j.foodres.2018.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
179
|
Zieliński H, Honke J, Bączek N, Majkowska A, Wronkowska M. Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
180
|
Oracz J, Nebesny E, Zyzelewicz D, Budryn G, Luzak B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit Rev Food Sci Nutr 2019; 60:1947-1985. [PMID: 31124371 DOI: 10.1080/10408398.2019.1619160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cocoa beans and their co-products are a rich source of beneficial compounds for health promotion, including polyphenols and methylxanthines. Knowledge of bioavailability and in vivo bioactivity of these phytochemicals is crucial to understand their role and function in human health. Therefore, many studies concerning bioavailability and bioactivity of cocoa bioactive compound have been done in both in vivo animal models and in humans. This critical review comprehensively summarizes the existing knowledge about the bioavailability and the major metabolic pathways of selected cocoa bioactive compounds (i.e. monomeric flavan-3-ols, procyanidins, anthocyanins, flavonols, phenolic acids, N-phenylpropenoyl-L-amino acids, stilbenes, and methylxanthines). The compiled results indicated that many of these compounds undergo extensive metabolism prior to absorption. Different factors have been suggested to influence the bioavailability of polyphenols and methylxanthines among them the role of gut microbiota, structure of these compounds, food matrix and occurrence of other substances were the most often considered. Aforementioned factors decided about the site where these bioactive compounds are digested and absorbed from the alimentary tract, as well as the pathway by which they are metabolized. These factors also determine of the type of transport through the intestine barrier (passive, involving specific enzymes or mediated by specific transporters) and their metabolic path and profile.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Dorota Zyzelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Grazyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
181
|
Chacón-Ordóñez T, Carle R, Schweiggert R. Bioaccessibility of carotenoids from plant and animal foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3220-3239. [PMID: 30536912 DOI: 10.1002/jsfa.9525] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
The frequent consumption of carotenoid-rich foods has been associated with numerous health benefits, such as the supply of provitamin A. To exert these health benefits, carotenoids need to be efficiently liberated from the food matrix, micellized in the small intestine, taken up by the enterocytes and absorbed into the human blood stream. Enormous efforts have been made to better understand these processes. Because human studies are costly, labor-intense and time-consuming, the evaluation of carotenoid liberation and micellization at the laboratory scale using simulated in vitro digestion models has proven to be an important tool for obtaining preliminary results prior to conducting human studies. In particular, the liberation from the food matrix and the intestinal micellization can be mimicked by simulated digestion, yielding an estimate of the so-called bioaccessibility of a carotenoid. In the present review, we provide an overview of the carotenoid digestion process in vivo, the currently used in vitro digestion models and the outcomes of previous bioaccessibility studies, with a special focus on correlations with concomitantly conducted human studies. Furthermore, we advocate for the on-going requirement of better standardized digestion protocols and, in addition, we provide suggestions for the complementation of the acquired knowledge and current nutritional recommendations. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tania Chacón-Ordóñez
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Biological Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Schweiggert
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Analysis and Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| |
Collapse
|
182
|
Moreira LS, Chagas BC, Pacheco CSV, Santos HM, de Menezes LHS, Nascimento MM, Batista MAS, de Jesus RM, Amorim FAC, Santos LN, da Silva EGP. Development of procedure for sample preparation of cashew nuts using mixture design and evaluation of nutrient profiles by Kohonen neural network. Food Chem 2019; 273:136-143. [DOI: 10.1016/j.foodchem.2018.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/09/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
|
183
|
da Silva Haas IC, Toaldo IM, Gomes TM, Luna AS, de Gois JS, Bordignon-Luiz MT. Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
184
|
Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit Rev Food Sci Nutr 2019; 60:826-843. [PMID: 30632768 DOI: 10.1080/10408398.2018.1552243] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant-based foods gain more importance since they play a key role in sustainable, low-meat and healthy diets. In developing countries, these food products, especially legumes and cereals, are important staple foods. Nevertheless, the question arises on how efficient they are to deliver minerals and if it is useful to encourage their consumption to reduce the prevalence of mineral deficiencies? This review paper focuses on the discrepancy between the mineral content and the amount of minerals that can be released and absorbed from plant-based foods during human digestion which can be attributed to several inherent factors such as the presence of mineral antinutrients (phytic acid, polyphenols and dietary fiber) and physical barriers (surrounding macronutrients and cell wall). Further, this review paper summarizes the effects of different processing techniques (milling, soaking, dehulling, fermentation, germination and thermal processing) on mineral bioaccessibility and bioavailability of plant-based foods. The positive impact of these techniques mostly relies on the fact that antinutrients levels are reduced due to removal of fractions rich in antinutrients and/or due to their leaching into the processing liquid. Although processing can have a positive effect, it also can induce leaching out of minerals and a reduced mineral bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Sofie Rousseau
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Clare Kyomugasho
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Miete Celus
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc E G Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
185
|
Ma Y, Guo S, Zhao X, Zhao W, Xie L, Zhang M, Zhao Y, Wang D. Comparison of processing technology on quality of “Laba” garlic products. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1564795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Siwen Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaoyan Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Wenting Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Long Xie
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Min Zhang
- Longda Food Group Co. LTD, Shandong, China
| | - Yuwei Zhao
- Longda Food Group Co. LTD, Shandong, China
| | - Dan Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| |
Collapse
|
186
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
187
|
S Freitas C, Alves da Silva G, Perrone D, A Vericimo M, Dos S Baião D, R Pereira P, M F Paschoalin V, M Del Aguila E. Recovery of Antimicrobials and Bioaccessible Isoflavones and Phenolics from Soybean ( Glycine max) Meal by Aqueous Extraction. Molecules 2018; 24:E74. [PMID: 30587803 PMCID: PMC6337456 DOI: 10.3390/molecules24010074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Soybeans display strategic potential in food security as a source of protein and functional bioactives for human consumption. Polyphenols and other bioactive compounds can be recovered after an aqueous extraction from soybean meal, a byproduct of soy oil refining. The objective of the present study was to compile and quantify compounds from soybean oil refinery by-products, providing information about valuable bioactive phytochemicals, their bioaccessibility and potential bioactivities. Genistin, daidzin, glycitin and malonylgenistin were the predominant isoflavones, and the overall bioaccessibility of their glycosidic forms was of nearly 75%. Sixteen phenolics were identified and caffeic acid, 5-caffeoylquinic chlorogenic acid and hesperidin were the most predominant. Approximately 30% of gallic acid, syringic acid, vanillic acid and myricetin were released and the antioxidant capacity of aqueous extract was enhanced after simulated in vitro gastro intestinal digestion. The ability of aqueous soybean meal extract to inhibit lipid peroxidation was higher than natural and synthetic food antioxidants. Antimicrobial activity against several foodborne pathogens and antitumoral activity towards human glioblastoma cell line were also observed, but the aqueous extract showed no cytotoxicity to healthy murine cells. Compounds derived from the aqueous soybean meal extract have the potential to be used as health promoting agents.
Collapse
Affiliation(s)
- Cyntia S Freitas
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Genilton Alves da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Daniel Perrone
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Mauricio A Vericimo
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, 4020-141 Rio de Janeiro, Brazil.
| | - Diego Dos S Baião
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Patrícia R Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Vânia M F Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Eduardo M Del Aguila
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| |
Collapse
|
188
|
Campra P, Aznar-Garcia MJ, Ramos-Bueno RP, Gonzalez-Fernandez MJ, Khaldi H, Garrido-Cardenas JA. A whole-food approach to the in vitro assessment of the antitumor activity of gazpacho. Food Res Int 2018; 121:441-452. [PMID: 31108768 DOI: 10.1016/j.foodres.2018.11.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Gazpacho is a traditional cold soup of the Mediterranean diet consisting of a main base of fresh pureed tomato and other vegetables. Tomato and tomato products have demonstrated chemopreventive activity against several types of cancer through in vitro studies, and in animal and clinical research. Here we have applied a whole-food approach for the preclinical assessment of the antitumor potential of gazpacho. Colon cancer cells (HT-29) were exposed to growing concentrations of gazpacho previously digested in vitro to simulate the delivery of bioactive molecules to colon cells after food consumption. The cytotoxicity of gazpacho ingredients was also tested in independent experiments. Programmed cell death by apoptosis was detected by using a multiparametric analysis that combines image-based bright-field and fluorescence cytometry, intracellular ATP level determination and enzymatic activity of caspase-3/7. Modulation of gene expression of key regulatory genes (p53, Bcl-2, BAX, and cyclin D1) was also investigated. Our cytotoxicity data showed that in vitro digestion of samples allowed the delivery of bioactive levels of antitumor phytochemicals to cultured cells. Controlled experiments showed significant repetitive dose and time-response cytotoxicity of gazpacho. Gazpacho digestates caused net cell death of cultures suggesting synergic activity among phytochemicals from its vegetable ingredients. Multiparametric and genetic analyses showed that gazpacho digestates can trigger colon cancer cells death by apoptosis through the activation of caspase cascade. Our results show that coupled in vitro methodology employed can be applied to investigate the antitumor potential of complex food matrixes or combinations of foods in the diet.
Collapse
Affiliation(s)
- Pablo Campra
- Digestion Modelling Research Group, University of Almeria, Ctra. Sacramento S/N, Almeria 04120, Spain
| | - Maria Jesus Aznar-Garcia
- Digestion Modelling Research Group, University of Almeria, Ctra. Sacramento S/N, Almeria 04120, Spain
| | - Rebeca P Ramos-Bueno
- Digestion Modelling Research Group, University of Almeria, Ctra. Sacramento S/N, Almeria 04120, Spain
| | | | - Huda Khaldi
- Fundamental Biology Service, CIC, University of Granada, Granada, Spain
| | | |
Collapse
|
189
|
Zhang YY, Panozzo J, Hall MS, Ajlouni S. Bioaccessibility of Some Essential Minerals in Three Selected Australian Pulse Varieties Using an In Vitro Gastrointestinal Digestion Model. J Food Sci 2018; 83:2873-2881. [PMID: 30370926 DOI: 10.1111/1750-3841.14377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022]
Abstract
Australian produced pulse grains are exported worldwide, predominantly to developing countries where severe essential mineral deficiencies putatively subsist. An in vitro digestion model that simulates human gastric, intestinal and colonic digestion and fermentation, was used to examine the bioaccessibility of Fe, Mg, K, Ca, P, Zn, Mn, and Cu in commercially available cultivars of Australian field pea, lentil, and sweet lupin. The hull and dehulled seeds were prepared following a traditional cooking method, and quantities of bioaccessible minerals were assessed at each stage of in vitro digestion using ICP-OES elemental analyses. Results revealed that dehulled field pea (100 g dry weight) had the highest bioaccessible quantity of Fe (2.44 ± 0.73 mg), K (717.10 ± 56.66 mg), P (272.88 ± 9.30 mg), Zn (1.72.028 ± 0.28 mg), and Cu (0.41 ± 0.02 mg). Dehulled lupin was the best source of Mg (138.62 ± 1.53 mg) and Mn (1.28 ± 0.0.06 mg), and lentil hull showed the greatest Ca bioaccessible quantity (116.33 ± 16.73 mg/100 g dry weight). Additionally, the fed state digestion (11.7 mg bile/mL sample) increased the bioaccessibility of all elements significantly (P < 0.05) compared to fasted (1.95 mg bile/mL sample), except for Zn and Mn in lupin and lentils. These results demonstrated that dehulled seeds possess higher mineral bioaccessibility on a percentage basis compared with hulls, and that the fed state of in vitro digestion generally improved the mineral solubility significantly (P < 0.05). PRACTICAL APPLICATION: This research aimed to assess the prospective biological accessibility of various essential elements in three commercially available Australian pulses. Results of the study provided an insight into the contents of essential minerals in Australian pulses and illustrated the impact of traditional cooking of dehulled pulses on these minerals bioaccessibility. These findings will provide the consumers with information about some nutritional aspects of major Australian pulses.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Horsham, VIC 3400, Australia
| | - Michael S Hall
- Trace Analysis for Chemical, Earth and Environmental Sciences, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
190
|
Viera I, Pérez-Gálvez A, Roca M. Bioaccessibility of Marine Carotenoids. Mar Drugs 2018; 16:E397. [PMID: 30360450 PMCID: PMC6213429 DOI: 10.3390/md16100397] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
The benefit of carotenoids to human health is undeniable and consequently, their use for this purpose is growing rapidly. Additionally, the nutraceutical properties of carotenoids have attracted attention of the food industry, especially in a new market area, the 'cosmeceuticals.' Marine organisms (microalgae, seaweeds, animals, etc.) are a rich source of carotenoids, with optimal properties for industrial production and biotechnological manipulation. Consequently, several papers have reviewed the analysis, characterization, extraction and determination methods, biological functions and industrial applications. But, now, the bioaccessibility and bioactivity of marine carotenoids has not been focused of any review, although important achievements have been published. The specific and diverse characteristic of the marine matrix determines the bioavailability of carotenoids, some of them unique in the nature. Considering the importance of the bioavailability not just from the health and nutritional point of view but also to the food and pharmaceutical industry, we consider that the present review responds to an actual demand.
Collapse
Affiliation(s)
- Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| |
Collapse
|
191
|
González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R. Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food Funct 2018; 9:2282-2289. [PMID: 29560977 DOI: 10.1039/c7fo01857f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of pulsed electric fields (PEFs) to whole tomatoes is proposed as a pre-processing treatment to obtain purees with high health-related properties. Tomato fruit was subjected to different electric field strengths (0.4, 1.2 and 2 kV cm-1) and number of pulses (5, 18 and 30 pulses). Tomatoes were stored at 4 °C for 24 h after PEF processing and then ground and mixed with 5% olive oil. The resulting tomato-based product was subjected to in vitro gastrointestinal digestion. PEF treatments significantly increased the amount and bioaccessible fraction of carotenoids in the derived product. Treatments conducted at 2 kV cm-1 and 30 pulses led to the greatest increase in the concentration of any of the carotenoids studied in tomato-based products. The amount of carotenoids incorporated into the micellar phase was increased in the products obtained from PEF-treated tomatoes, especially after the application of 5 pulses at 2 kV cm-1. Under such treatment conditions, the bioaccessibility of lycopene, δ-carotene, β-carotene, γ-carotene and lutein was increased by 132%, 2%, 53%, 527% and 125%, respectively. Therefore, the application of PEFs as a pre-treatment could be considered as a promising technology to obtain tomato derivatives with high antioxidant potential.
Collapse
Affiliation(s)
- Sandra González-Casado
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Pedro Elez-Martínez
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Robert Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
192
|
Hossain A, Jayadeep PA. Comparison of total carotenoids, lutein, zeaxanthin, and β‐carotene content in maize employing solvent extraction and in vitro physiological methods. J Food Biochem 2018. [DOI: 10.1111/jfbc.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ashrafi Hossain
- Department of Grain Science and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) Mysuru India
| | - Padmanabhan Appukuttan Jayadeep
- Department of Grain Science and Technology CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) Mysuru India
| |
Collapse
|
193
|
Pérez-Gálvez A, Jarén-Galán M, Garrido-Fernández J, Calvo MV, Visioli F, Fontecha J. Activities, bioavailability, and metabolism of lipids from structural membranes and oils: Promising research on mild cognitive impairment. Pharmacol Res 2018; 134:299-304. [DOI: 10.1016/j.phrs.2018.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
|
194
|
Martínez MA, Ares I, Martínez-Larrañaga MR, Anadón A, Casado V, Vazquez L, Martin D, Reglero G, Torres C. Acute and repeated dose (28 days) oral safety studies of phosphatidyl-hydroxytyrosol. Food Chem Toxicol 2018; 120:462-471. [PMID: 30055313 DOI: 10.1016/j.fct.2018.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidyl-hydroxytyrosol, a carrier of hydroxytyrosol under the form of phospholipid with high antioxidant capacity, is being actively studied as a potential ingredient of functional foods and supplements. To support the safety, phosphatidyl-hydroxytyrosol has been examined in an acute and in a 28-day repeated dose oral toxicity studies in rats. Phosphatidyl-hydroxytyrosol administered in a single oral gavage dose of 2000 mg/kg of body weight (bw) resulted in no adverse events or mortality. In addition, phosphatidyl-hydroxytyrosol administered as a daily dose of 2000 mg/kg bw for 28 days by gavage resulted in no adverse events or mortality. No evidence or treatment related toxicity was detected during both studies. Data analysis of body weight gain, food consumption, clinical observations, blood biochemical, haematology, organ weight ratios and histopathological findings did not show significant differences between control and treated groups. It is concluded that phosphatidyl-hydroxytirosol orally administered to rats was safe and that no treatment-related toxicity was detected even at the high doses investigated in both acute (2000 mg/kg bw) and repeated dose (28-day) oral (2000 mg/kg bw) toxicity studies.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Victor Casado
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049, Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luis Vazquez
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049, Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049, Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Imdea-Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Carlos Torres
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049, Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
195
|
Navarro Del Hierro J, Herrera T, García-Risco MR, Fornari T, Reglero G, Martin D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin. Food Res Int 2018; 109:440-447. [PMID: 29803470 DOI: 10.1016/j.foodres.2018.04.058] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/26/2018] [Indexed: 11/15/2022]
Abstract
The efficient production of saponin-rich extracts is of increasing interest due to the bioactive properties that have being demonstrated for these compounds. However, saponins have a poor bioavailability. In this respect, the knowledge about the bioaccessibility of saponins as a first step before bioavailability has been scarcely explored. In this study, the production of ultrasound-assisted extracts of saponins from edible seeds (quinoa, soybean, red lentil, fenugreek and lupin) was carried out with ethanol, ethanol:water or water. Extraction yield, total saponin (TSC), fat and total phenolics content (TPC) were determined. Then, the bioaccessibility of saponins after the in vitro gastrointestinal digestion of the extracts was determined and the effect of TPC and fat in the extracts on bioaccessibility was evaluated. The highest saponin-rich extracts were obtained by ethanol, being fenugreek and red lentil the richest extracts (12% and 10%, respectively). Saponins from ethanol:water extracts displayed variable bioaccessibility (from 13% for fenugreek to 83% for lentil), but a bioaccessibility closer to 100% was reached for all ethanol extracts. Correlation studies showed that TPC of the extracts negatively affected the bioaccessibility of saponins, whereas fat of the extracts enhanced this parameter. As summary, ultrasound-assisted extraction is shown as an efficient method for obtaining saponin-rich extracts from edible seeds, being ethanol the most advantageous solvent due to the richness of saponins and the successful bioaccessibility from these extracts, likely caused by the co-extracted fat with ethanol. Regardless of the extracts, phenolic compounds or fat may hinder or enhance the bioaccessibility of saponins, respectively. Additionally, an adequate balance between saponins to lipids has shown to be relevant on such an effect.
Collapse
Affiliation(s)
- Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Teresa Herrera
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica R García-Risco
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Imdea-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
196
|
Berenguel O, de S Pessôa G, Arruda MAZ. Total content and in vitro bioaccessibility of tellurium in Brazil nuts. J Trace Elem Med Biol 2018; 48:46-51. [PMID: 29773192 DOI: 10.1016/j.jtemb.2018.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023]
Abstract
Alongside the Brazil nut's role as an excellent source of vitamins, oil, fatty acids, lipids and nutrients, it is also recognized as a rich source of selenium. The pathway along which selenium and sulfur are metabolized in plants is theorized to be the same as that used for tellurium. Total tellurium content and its bioaccessibility are then evaluated by ICP-MS. Interferences and sample preparation are evaluated for the accurate determination of tellurium, and the accuracy determined through analysis of the certified reference material 1643e. A concentration of 4.02 ± 0.391 ng g-1 is obtained as an average concentration through external and internal calibrations. Through this reliable result, tellurium bioaccessibility in Brazil nuts is obtained via an in vitro validated unified bioaccessibility method. Values of 32% and 30% of total tellurium are available in the gastric and gastrointestinal fractions, respectively.
Collapse
Affiliation(s)
- Otávio Berenguel
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Gustavo de S Pessôa
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
197
|
|
198
|
McClements DJ. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 2018; 9:22-41. [PMID: 29119979 DOI: 10.1039/c7fo01515a] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many researchers are currently developing emulsion-based delivery systems to increase the bioavailability of lipophilic bioactive agents, such as oil-soluble vitamins, nutraceuticals, and lipids. Oil-in-water emulsions can be specifically designed to improve the bioavailability of these bioactives by altering their composition and structural organization. This article reviews recent progress in understanding the impact of emulsion properties on the bioaccessibility of lipophilic bioactive agents, including oil phase composition, aqueous phase composition, droplet size, emulsifier type, lipid physical state, and droplet aggregation state. This knowledge can be used to design emulsions that can enhance the bioavailability and efficacy of encapsulated hydrophobic bioactives.
Collapse
|
199
|
|
200
|
Zhou F, Huang W, Li M, Zhong Y, Wang M, Lu B. Bioaccessibility and Absorption Mechanism of Phenylethanoid Glycosides Using Simulated Digestion/Caco-2 Intestinal Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4630-4637. [PMID: 29687721 DOI: 10.1021/acs.jafc.8b01307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acteoside and salidroside are major phenylethanoid glycosides (PhGs) in Osmanthus fragrans Lour. flowers with extensive pharmacological activities and poor oral bioavailability. The absorption mechanisms of these two compounds remain unclear. This study aimed to investigate the bioaccessibility of these compounds using an in vitro gastrointestinal digestion model and to examine the absorption and transport mechanisms of PhGs using the Caco-2 cell model. The in vitro digestion model revealed that the bioaccessibility of salidroside (98.7 ± 1.35%) was higher than that of acteoside (50.1 ± 3.04%), and the superior bioaccessibility of salidroside can be attributed to its stability. The absorption percentages of total phenylethanoid glycoside, salidroside, and acteoside were 1.42-1.54%, 2.10-2.68%, and 0.461-0.698% in the Caco-2 model, respectively. Salidroside permeated Caco-2 cell monolayers through passive diffusion. At the concentration of 200 μg/mL, the apparent permeability ( Papp) of salidroside in the basolateral (BL)-to-apical (AP) direction was 23.7 ± 1.33 × 10-7 cm/s, which was 1.09-fold of that in the AP-to-BL direction (21.7 ± 1.38 × 10-7 cm/s). Acteoside was poorly absorbed with low Papp (AP to BL) (4.75 ± 0.251 × 10-7 cm/s), and its permeation mechanism was passive diffusion with active efflux mediated by P-glycoprotein (P-gp). This study clarified the bioaccessibility, absorption, and transport mechanisms of PhGs. It also demonstrated that the low bioavailability of acteoside might be attributed to its poor bioaccessibility, low absorption, and P-gp efflux transporter.
Collapse
Affiliation(s)
- Fei Zhou
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Weisu Huang
- Department of Applied Technology , Zhejiang Economic & Trade Polytechnic , Hangzhou 310018 , China
| | - Maiquan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Yongheng Zhong
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Mengmeng Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|