151
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Risoluti R, Napoli A. Protein Extraction, Enrichment and MALDI MS and MS/MS Analysis from Bitter Orange Leaves ( Citrus aurantium). Molecules 2020; 25:E1485. [PMID: 32218285 PMCID: PMC7181213 DOI: 10.3390/molecules25071485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Citrus aurantium is a widespread tree in the Mediterranean area, and it is mainly used as rootstock for other citrus. In the present study, a vacuum infiltration centrifugation procedure, followed by solid phase extraction matrix-assisted laser desorption ionization tandem mass spectrometry (SPE MALDI MS/MS) analysis, was adopted to isolate proteins from leaves. The results of mass spectrometry (MS) profiling, combined with the top-down proteomics approach, allowed the identification of 78 proteins. The bioinformatic databases TargetP, SignalP, ChloroP, WallProtDB, and mGOASVM-Loc were used to predict the subcellular localization of the identified proteins. Among 78 identified proteins, 20 were targeted as secretory pathway proteins and 36 were predicted to be in cellular compartments including cytoplasm, nucleus, and cell membrane. The largest subcellular fraction was the secretory pathway, accounting for 25% of total proteins. Gene Ontology (GO) of Citrus sinensis was used to simplify the functional annotation of the proteins that were identified in the leaves. The Kyoto Encyclopedia of Genes and Genomes (KEGG) showed the enrichment of metabolic pathways including glutathione metabolism and biosynthesis of secondary metabolites, suggesting that the response to a range of environmental factors is the key processes in citrus leaves. Finally, the Lipase GDSL domain-containing protein GDSL esterase/lipase, which is involved in plant development and defense response, was for the first time identified and characterized in Citrus aurantium.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Roberta Risoluti
- Department of Chemistry, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy;
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| |
Collapse
|
152
|
Le LTHL, Yoo W, Jeon S, Lee C, Kim KK, Lee JH, Kim TD. Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase ( HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:55. [PMID: 32190120 PMCID: PMC7074997 DOI: 10.1186/s13068-020-01696-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great stability, relatively small size for convenient genetic manipulations, and ease of immobilization. Hence, it is highly important to identify novel SGNH-type lipases with high catalytic efficiencies and good stabilities. RESULTS A promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Moreover, immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters. CONCLUSIONS This work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from H. arcticus. This is the first analysis on biodiesel and flavor synthesis using a cold-adapted halophilic SGNH-type lipase from a Halocynthiibacter species.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| | - Changwoo Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Jun Hyuck Lee
- Department of Polar Sciences, University of Science and Technology (UST), Incheon, 21990 South Korea
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon, 21990 South Korea
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, 04310 South Korea
| |
Collapse
|
153
|
Qu X, Song X, Zhang N, Ma J, Ge H. The phospholipase A effector PlaA from Legionella pneumophila: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2020; 76:138-144. [DOI: 10.1107/s2053230x20002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Legionella pneumophila encodes an extracellular secreted phospholipase A named PlaA that is translocated by the type II secretion system. It plays an essential role in maintaining the integrity of Legionella-containing vacuoles in L. pneumophila pathogenesis. Here, it is shown that PlaA has a main lysophospholipase activity to hydrolyze fatty-acyl groups in lysophospholipids. Although it has a very low phospholipase A activity to catalyze the hydrolysis of fatty-acyl groups in phospholipids, PlaA can bind phospholipids such as 1,2-dipalmitoylphosphatidylcholine with a dissociation constant of 11.1 µM. Sequence-alignment analysis combined with activity assays revealed that PlaA contains a distinct substrate-binding site among the known structures of the phospholipase A family, implying that PlaA may present a novel mechanism for substrate recognition. Native PlaA and its selenomethionine (SeMet)-substituted form were purified and crystallized by vapour diffusion in hanging drops at 296 K. Diffraction data were collected to a resolution of 2.0 Å for native PlaA protein and to a resolution of 2.7 Å for SeMet-substituted PlaA protein. The crystals of native PlaA belonged to the monoclinic space group P21, while the crystals of SeMet-substituted PlaA belonged to the primitive orthorhombic space group P212121. Initial phases for PlaA were obtained from SeMet SAD data sets.
Collapse
|
154
|
Bhattacharya S, Ghosh P, Banerjee D, Banerjee A, Ray S. In Silico Drug Target Discovery Through Proteome Mining from M. tuberculosis: An Insight into Antivirulent Therapy. Comb Chem High Throughput Screen 2020; 23:253-268. [PMID: 32072892 DOI: 10.2174/1386207323666200219120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE One of the challenges to conventional therapies against Mycobacterium tuberculosis is the development of multi-drug resistant pathogenic strains. This study was undertaken to explore new therapeutic targets for the revolutionary antivirulence therapy utilizing the pathogen's essential hypothetical proteins, serving as virulence factors, which is the essential first step in novel drug designing. METHODS Functional annotations of essential hypothetical proteins from Mycobacterium tuberculosis (H37Rv strain) were performed through domain annotation, Gene Ontology analysis, physicochemical characterization and prediction of subcellular localization. Virulence factors among the essential hypothetical proteins were predicted, among which pathogen-specific drug target candidates, non-homologous to human and gut microbiota, were identified. This was followed by druggability and spectrum analysis of the identified targets. RESULTS AND CONCLUSION The study successfully assigned functions of 83 essential hypothetical proteins of Mycobacterium tuberculosis, among which 25 were identified as virulence factors. Out of 25, 12 virulence factors were observed as potential pathogen-specific drug target candidates. Nine potential targets had druggable properties and rest three were considered as novel targets. Exploration of these targets will provide new insights into future drug development. Characterization of subcellular localizations revealed that most of the predicted targets were cytoplasmic which could be ideal for intracellular drugs, while two drug targets were membranebound, ideal for vaccines. Spectrum analysis identified one broad-spectrum and 11 narrowspectrum targets. This study would, therefore, instigate designing novel therapeutics for antivirulence therapy, which have the potential to serve as revolutionary treatment instead of conventional antibiotic therapies to overcome the lethality of antibiotic-resistant strains.
Collapse
Affiliation(s)
| | - Puja Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
155
|
Guo S, Wong SM. A Conserved Carboxylesterase Inhibits Tobacco mosaic virus (TMV) Accumulation in Nicotiana benthamiana Plants. Viruses 2020; 12:E195. [PMID: 32050642 PMCID: PMC7077250 DOI: 10.3390/v12020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
A carboxylesterase (CXE) or carboxylic-ester hydrolase is an enzyme that catalyzes carboxylic ester and water into alcohol and carboxylate. In plants, CXEs have been implicated in defense, development, and secondary metabolism. We discovered a new CXE gene in Nicotiana benthamiana that is related to virus resistance. The transcriptional level of NbCXE expression was significantly increased after Tobacco mosaic virus (TMV) infection. Transient over-expression of NbCXE inhibited TMV accumulation in N. benthamiana plants. Conversely, when the NbCXE gene was silenced with a Tobacco rattle virus (TRV)-based gene silencing system, TMV RNA accumulation was increased in NbCXE-silenced plants after infection. NbCXE protein was shown to interact with TMV coat protein (CP) in vitro. Additionally, the expressions of host defense-related genes were increased in transient NbCXE-overexpressed plants but decreased in NbCXE silenced N. benthamiana plants. In summary, our study showed that NbCXE is a novel resistance-related gene involved in host defense responses against TMV infection.
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| |
Collapse
|
156
|
Su HG, Zhang XH, Wang TT, Wei WL, Wang YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:726. [PMID: 32670311 PMCID: PMC7332888 DOI: 10.3389/fpls.2020.00726] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 05/03/2023]
Abstract
GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Dong-Hong Min,
| |
Collapse
|
157
|
Li Z, Li L, Huo Y, Chen Z, Zhao Y, Huang J, Jian S, Rong Z, Wu D, Gan J, Hu X, Li J, Xu XW. Structure-guided protein engineering increases enzymatic activities of the SGNH family esterases. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:107. [PMID: 32549911 PMCID: PMC7294632 DOI: 10.1186/s13068-020-01742-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/30/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Esterases and lipases hydrolyze short-chain esters and long-chain triglycerides, respectively, and therefore play essential roles in the synthesis and decomposition of ester bonds in the pharmaceutical and food industries. Many SGNH family esterases share high similarity in sequences. However, they have distinct enzymatic activities toward the same substrates. Due to a lack of structural information, the detailed catalytic mechanisms of these esterases remain barely investigated. RESULTS In this study, we identified two SGNH family esterases, CrmE10 and AlinE4, from marine bacteria with significantly different preferences for pH, temperature, metal ion, and organic solvent tolerance despite high sequence similarity. The crystal structures of these two esterases, including wild type and mutants, were determined to high resolutions ranging from 1.18 Å to 2.24 Å. Both CrmE10 and AlinE4 were composed of five β-strands and nine α-helices, which formed one compact N-terminal α/β globular domain and one extended C-terminal domain. The aspartic residues (D178 in CrmE10/D162 in AlinE4) destabilized the conformations of the catalytic triad (Ser-Asp-His) in both esterases, and the metal ion Cd2+ might reduce enzymatic activity by blocking proton transfer or substrate binding. CrmE10 and AlinE4 showed distinctly different electrostatic surface potentials, despite the similar atomic architectures and a similar swap catalytic mechanism. When five negatively charged residues (Asp or Glu) were mutated to residue Lys, CrmE10 obtained elevated alkaline adaptability and significantly increased the enzymatic activity from 0 to 20% at pH 10.5. Also, CrmE10 mutants exhibited dramatic change for enzymatic properties when compared with the wide-type enzyme. CONCLUSIONS These findings offer a perspective for understanding the catalytic mechanism of different esterases and might facilitate the industrial biocatalytic applications.
Collapse
Affiliation(s)
- Zhengyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Long Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yingyi Huo
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zijun Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Yu Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Shuling Jian
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| | - Di Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xiaojian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Ministry of Natural Resources & Second Institute of Oceanography, Hangzhou, 310012 China
| |
Collapse
|
158
|
Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, Bardetti P, Chiara M, Guazzotti A, Caporali E, Mendes MA, Colombo L, Kater MM. MADS-Box and bHLH Transcription Factors Coordinate Transmitting Tract Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:526. [PMID: 32435255 PMCID: PMC7219087 DOI: 10.3389/fpls.2020.00526] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 05/14/2023]
Abstract
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.
Collapse
|
159
|
Le LTHL, Yoo W, Jeon S, Kim KK, Kim TD. Characterization and Immobilization of a Novel SGNH Family Esterase ( LaSGNH1) from Lactobacillus acidophilus NCFM. Int J Mol Sci 2019; 21:ijms21010091. [PMID: 31877740 PMCID: PMC6981805 DOI: 10.3390/ijms21010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The SGNH family esterases are highly effective biocatalysts due to their strong catalytic efficiencies, great stabilities, relatively small sizes, and ease of immobilization. Here, a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus NCFM, which has homologues in many Lactobacillus species, was identified, characterized, and immobilized. LaSGNH1 is highly active towards acetate- or butyrate-containing compounds, such as p-nitrophenyl acetate or 1-naphthyl acetate. Enzymatic properties of LaSGNH1, including thermal stability, optimum pH, chemical stability, and urea stability, were investigated. Interestingly, LaSGNH1 displayed a wide range of substrate specificity that included glyceryl tributyrate, tert-butyl acetate, and glucose pentaacetate. Furthermore, immobilization of LaSGNH1 by crosslinked enzyme aggregates (CLEAs) showed enhanced thermal stability and efficient recycling property. In summary, this work paves the way for molecular understandings and industrial applications of a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
- Department of Precision Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea;
| | - Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea;
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea; (L.T.H.L.L.); (W.Y.); (S.J.)
- Correspondence: ; Tel.: +82-10-2739-6479
| |
Collapse
|
160
|
Torres-Barajas LR, Alvarez-Zúñiga MT, Mendoza-Hernández G, Aguilar-Osorio G. Analysis of polysaccharide hydrolases secreted by Aspergillus flavipes FP-500 on corn cobs and wheat bran as complex carbon sources. Prep Biochem Biotechnol 2019; 50:390-400. [DOI: 10.1080/10826068.2019.1700518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lizzete Ruth Torres-Barajas
- Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Coyoacan, Mexico
| | - María Teresa Alvarez-Zúñiga
- Department of Food Science and Biotechnology, Faculty of Chemistry, National Autonomous University of Mexico, Coyoacan, Mexico
| | | | | |
Collapse
|
161
|
iTRAQ-Based Protein Profiling Provides Insights into the Mechanism of Light-Induced Anthocyanin Biosynthesis in Chrysanthemum ( Chrysanthemum × morifolium). Genes (Basel) 2019; 10:genes10121024. [PMID: 31835383 PMCID: PMC6947405 DOI: 10.3390/genes10121024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum 'Purple Reagan' were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.
Collapse
|
162
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
163
|
Ktata A, Krayem N, Aloulou A, Bezzine S, Sayari A, Chamkha M, Karray A. Purification, biochemical and molecular study of lipase producing from a newly thermoalkaliphilic Aeribacillus pallidus for oily wastewater treatment. J Biochem 2019; 167:89-99. [DOI: 10.1093/jb/mvz083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/08/2019] [Indexed: 11/12/2022] Open
Abstract
AbstractTreatment of oily wastewater is constantly a challenge; biological wastewater treatment is an effective, cheap and eco-friendly technology. A newly thermostable, haloalkaline, solvent tolerant and non-induced lipase from Aeribacillus pallidus designated as GPL was purified and characterized of biochemical and molecular study for apply in wastewater treatment. The GPL showed a maximum activity at 65°C and pH 10 after 22 h of incubation, with preference to TC4 substrates. Pure enzyme was picked up after one chromatographic step. It displayed an important resistance at high temperature, pH, NaCl, at the presence of detergents and organic solvents. In fact, GPL exhibited a prominent stability in wide range of organic solvents at 50% (v/v) concentration for 2 h of incubation. The efficiency of the GPL in oil wastewater hydrolysis was established at 50°C for 1 h, the oil removal efficiency was established at 96, 11% and the oil biodegradation was confirmed through fourier transform infrared (FT-IR) spectroscopy. The gene that codes for this lipase was cloned and sequenced and its open reading frame encoded 236 amino acid residues. The deduced amino acids sequence of the GPL shows an important level of identity with Geobacillus lipases.
Collapse
Affiliation(s)
- Ameni Ktata
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| | - Ahmed Aloulou
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| | - Sofiane Bezzine
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| | - Mohamed Chamkha
- Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6, BP 1177 3018 Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, km 3.5, université de Sfax-Tunisie, BP 1173 3038 Sfax, Tunisia
| |
Collapse
|
164
|
A novel enantioselective SGNH family esterase (NmSGNH1) from Neisseria meningitides: Characterization, mutational analysis, and ester synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1438-1448. [DOI: 10.1016/j.bbalip.2019.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 11/18/2022]
|
165
|
Kaur J, Kaur J. Rv0518, a nutritive stress inducible GDSL lipase of Mycobacterium tuberculosis, enhanced intracellular survival of bacteria by cell wall modulation. Int J Biol Macromol 2019; 135:180-195. [DOI: 10.1016/j.ijbiomac.2019.05.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
|
166
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
167
|
Han X, Li S, Zhang M, Yang L, Liu Y, Xu J, Zhang S. Regulation of GDSL Lipase Gene Expression by the MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factors in Arabidopsis Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:673-684. [PMID: 30598046 DOI: 10.1094/mpmi-06-18-0171-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades serve as unified signaling modules in plant development and defense response. Previous reports demonstrated an essential role of Arabidopsis GLIP1, a member of the GDSL-like-motif lipase family, in both local and systemic resistance. GLIP1 expression is highly induced by pathogen attack. However, the one or more signaling pathways involved are unknown. Here, we report that two pathogen-responsive MAPKs, MPK3 and MPK6, are implicated in regulating gene expression of GLIP1 as well as GLIP3 and GLIP4. After gain-of-function activation, MPK3 and MPK6 can strongly induce the expression of GLIP1, GLIP3, and GLIP4. Both GLIP1 and GLIP3 contribute to the plant resistance to Botrytis cinerea. WRKY33, a MPK3/MPK6 substrate, is essential for the MPK3/MPK6-dependent GLIP1 induction. In addition, WRKY2 and WRKY34, two close homologs of WRKY33, have a minor effect in MPK3/MPK6-regulated GLIP1 expression in B. cinerea-infected plants. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis demonstrated that the GLIP1 gene is a direct target of WRKY33. In addition, we demonstrated that MPK3/MPK6-induced GLIP1 expression is independent of ethylene and jasmonic acid, two important hormones in plant defense. Our results provide insights into the regulation of the GLIP family at the transcriptional level in plant immunity.
Collapse
Affiliation(s)
- Xiaofei Han
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Sen Li
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Miao Zhang
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Liuyi Yang
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Yidong Liu
- 2 Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Juan Xu
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Shuqun Zhang
- 2 Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
168
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
169
|
Ma J, Qin N, Cai B, Chen G, Ding P, Zhang H, Yang C, Huang L, Mu Y, Tang H, Liu Y, Wang J, Qi P, Jiang Q, Zheng Y, Liu C, Lan X, Wei Y. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1363-1373. [PMID: 30680420 DOI: 10.1007/s00122-019-03283-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/10/2019] [Indexed: 05/24/2023]
Abstract
A major, likely novel stripe rust resistance QTL for all-stage resistance on chromosome arm 1BL identified in a 1.76-cM interval using a saturated linkage map was validated in four populations with different genetic backgrounds. Stripe rust is a globally important disease of wheat. Identification and utilization of new resistance genes are essential for breeding resistant cultivars. Wheat line 20828 has exhibited high levels of stripe rust resistance for over a decade. However, the genetics of stripe rust resistance in this line has not been studied. A set of 199 recombinant inbred lines (RILs) were developed from a cross between 20828 and a susceptible cultivar Chuannong 16. The RIL population was genotyped with the Wheat55K SNP (single nucleotide polymorphism) array and SSR (simple sequence repeat) markers and evaluated in four environments with current predominant Puccinia striiformis f. sp. tritici t races including CYR32, CYR33 and CYR34. Four stable QTL were located on chromosomes 1B (2 QTL), 4A and 6A. Among them, the major QTL, QYr.sicau-1B.1 (LOD = 23-28, PVE = 16-39%), was localized to a 1.76-cM interval flanked by SSR markers Xwmc216 and Xwmc156 on chromosome 1BL. Eight resistance genes were previously identified in the physical interval of QYr.sicau-1B.1. Compared with previous studies, QYr.sicau-1B.1 is a new gene for resistant to stripe rust. It was further verified by analysis of the closely linked SSR markers Xwmc216 and Xwmc156 in four other populations with different genetic backgrounds. QYr.sicau-1B.1 reduced the stripe rust disease index by up to 82.8%. Three minor stable QTL (located on chromosomes 1B, 4A and 6A, respectively) also added to the resistance level of QYr.sicau-1B.1. Our results provide valuable information for further fine mapping and cloning as well as molecular-assisted breeding with QYr.sicau-1B.1.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Nana Qin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ben Cai
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Han Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Congcong Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
170
|
Yang D, He X, Li S, Liu J, Stabenow J, Zalduondo L, White S, Kong Y. Rv1075c of Mycobacterium tuberculosis is a GDSL-Like Esterase and Is Important for Intracellular Survival. J Infect Dis 2019; 220:677-686. [DOI: 10.1093/infdis/jiz169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractMycobacterium tuberculosis lipid metabolism pathways facilitate access to carbon and energy sources during infection. M. tuberculosis gene Rv1075c was annotated as a conserved hypothetical protein. We identified that Rv1075c amino acid sequence shares similarities with other bacterial lipase/esterases and we demonstrated that it has esterase activity, with preference for short-chain fatty acids, particularly acetate, with highest activity at 45°C, pH 9. Site-direct mutagenesis revealed its activity triad as Ser80, Asp244, and His247. We further determined that rRv1075c hydrolyzed triacetin and tributyrin, and it was mainly distributed in cell wall and membrane. Its expression was induced at pH 4.5, mimicking the acidic phagosome of macrophages. Mutation of Rv1075c led to reduced bacterial growth in THP-1 cells and human peripheral blood mononuclear cell-derived macrophages, and attenuated M. tuberculosis infection in mice. Our data suggest that Rv1075c is involved in ester and fatty acid metabolism inside host cells.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| | - Xiaoping He
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Shaoji Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| | - Jiawang Liu
- Medicinal Chemistry Core, University of Tennessee Health Science Center, Memphis
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis
| | - Stephen White
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
171
|
Li H, Han X, Qiu W, Xu D, Wang Y, Yu M, Hu X, Zhuo R. Identification and expression analysis of the GDSL esterase/lipase family genes, and the characterization of SaGLIP8 in Sedum alfredii Hance under cadmium stress. PeerJ 2019; 7:e6741. [PMID: 31024765 PMCID: PMC6474334 DOI: 10.7717/peerj.6741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
Background The herb Sedum alfredii (S. alfredii) Hance is a hyperaccumulator of heavy metals (cadmium (Cd), zinc (Zn) and lead (Pb)); therefore, it could be a candidate plant for efficient phytoremediation. The GDSL esterase/lipase protein (GELP) family plays important roles in plant defense and growth. Although the GELP family members in a variety of plants have been cloned and analyzed, there are limited studies on the family's responses to heavy metal-stress conditions. Methods Multiple sequence alignments and phylogenetic analyses were performed according to the criteria described. A WGCNA was used to construct co-expression regulatory networks. The roots of S. alfredii seedlings were treated with 100 µM CdCl2 for qRT-PCR to analyze expression levels in different tissues. SaGLIP8 was transformed into the Cd sensitive mutant strain yeast Δycf1 to investigate its role in resistance and accumulation to Cd. Results We analyzed GELP family members from genomic data of S. alfredii. A phylogenetic tree divided the 80 identified family members into three clades. The promoters of the 80 genes contained certain elements related to abiotic stress, such as TC-rich repeats (defense and stress responsiveness), heat shock elements (heat stress) and MYB-binding sites (drought-inducibility). In addition, 66 members had tissue-specific expression patterns and significant responses to Cd stress. In total, 13 hub genes were obtained, based on an existing S. alfredii transcriptome database, that control 459 edge genes, which were classified into five classes of functions in a co-expression subnetwork: cell wall and defense function, lipid and esterase, stress and tolerance, transport and transcription factor activity. Among the hub genes, Sa13F.102 (SaGLIP8), with a high expression level in all tissues, could increase Cd tolerance and accumulation in yeast when overexpressed. Conclusion Based on genomic data of S. alfredii, we conducted phylogenetic analyses, as well as conserved domain, motif and expression profiling of the GELP family under Cd-stress conditions. SaGLIP8 could increase Cd tolerance and accumulation in yeast. These results indicated the roles of GELPs in plant responses to heavy metal exposure and provides a theoretical basis for further studies of the SaGELP family's functions.
Collapse
Affiliation(s)
- He Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China.,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Ying Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xianqi Hu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
172
|
Hong LG, Jian SL, Huo YY, Cheng H, Hu XJ, Li J, Cui HL, Xu XW. A novel SGNH family hydrolase Ali5 with thioesterase activity and a GNSL motif but without a classic GDSL motif from Altererythrobacter ishigakiensis. Biotechnol Lett 2019; 41:591-604. [DOI: 10.1007/s10529-019-02662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
|
173
|
Oda Y, Saito K, Nakata M. Structural analyses of a hemolytic compound found in an extract of Hypsizygus marmoreus fruiting bodies at a low pH. Biosci Trends 2019; 13:86-90. [PMID: 30700653 DOI: 10.5582/bst.2019.01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study determined the structure of a hemolytic compound found in an extract from the fruiting bodies of the edible mushroom Hypsizygus marmoreus when its pH was lowered. The hemolytic compound was purified using the modified Bligh and Dyer method followed by chromatography using reversed phase and silica gel columns. Structural analyses of the purified hemolytic compound were performed using NMR and ESI-MS. The deduced structure indicated a trans,trans-5,8-docosadienoic acid calcium salt. Although numerous proteinous hemolysins from various mushrooms have been described, the current study is the first to report on a low-molecular-weight hemolytic compound derived from an H. marmoreus extract.
Collapse
Affiliation(s)
- Yoshiki Oda
- Technology Joint Management Office, Research Promotion Division, Tokai University
| | - Kohsuke Saito
- Department of Applied Biochemistry, Tokai University
| | | |
Collapse
|
174
|
An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, Hou Q, Bao J, Zhang S, Li Z, Wang Y, Yan T, Sun X, Zhang Y, Li J, Wan X. ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize. MOLECULAR PLANT 2019; 12:343-359. [PMID: 30684599 DOI: 10.1016/j.molp.2019.01.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
Genic male sterility (GMS) is very useful for hybrid vigor utilization and hybrid seed production. Although a large number of GMS genes have been identified in plants, little is known about the roles of GDSL lipase members in anther and pollen development. Here, we report a maize GMS gene, ZmMs30, which encodes a novel type of GDSL lipase with diverged catalytic residues. Enzyme kinetics and activity assays show that ZmMs30 has lipase activity and prefers to substrates with a short carbon chain. ZmMs30 is specifically expressed in maize anthers during stages 7-9. Loss of ZmMs30 function resulted in defective anther cuticle, irregular foot layer of pollen exine, and complete male sterility. Cytological and lipidomics analyses demonstrate that ZmMs30 is crucial for the aliphatic metabolic pathway required for pollen exine formation and anther cuticle development. Furthermore, we found that male sterility caused by loss of ZmMs30 function was stable in various inbred lines with different genetic background, and that it didn't show any negative effect on maize heterosis and production, suggesting that ZmMs30 is valuable for cross-breeding and hybrid seed production. We then developed a new multi-control sterility system using ZmMs30 and its mutant line, and demonstrated it is feasible for generating desirable GMS lines and valuable for hybrid maize seed production. Taken together, our study sheds new light on the mechanisms of anther and pollen development, and provides a valuable male-sterility system for hybrid breeding maize.
Collapse
Affiliation(s)
- Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Quancan Hou
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jianxi Bao
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Simiao Zhang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yanbo Wang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Tingwei Yan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Xiaojing Sun
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Yuwen Zhang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
175
|
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat Commun 2019; 10:905. [PMID: 30796211 PMCID: PMC6385246 DOI: 10.1038/s41467-019-08812-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022] Open
Abstract
β-Mannans are plant cell wall polysaccharides that are commonly found in human diets. However, a mechanistic understanding into the key populations that degrade this glycan is absent, especially for the dominant Firmicutes phylum. Here, we show that the prominent butyrate-producing Firmicute Roseburia intestinalis expresses two loci conferring metabolism of β-mannans. We combine multi-“omic” analyses and detailed biochemical studies to comprehensively characterize loci-encoded proteins that are involved in β-mannan capturing, importation, de-branching and degradation into monosaccharides. In mixed cultures, R. intestinalis shares the available β-mannan with Bacteroides ovatus, demonstrating that the apparatus allows coexistence in a competitive environment. In murine experiments, β-mannan selectively promotes beneficial gut bacteria, exemplified by increased R. intestinalis, and reduction of mucus-degraders. Our findings highlight that R. intestinalis is a primary degrader of this dietary fiber and that this metabolic capacity could be exploited to selectively promote key members of the healthy microbiota using β-mannan-based therapeutic interventions. How dietary β-mannans are utilized by gut Gram-positive bacteria is unclear. Here, the authors uncover the enzymatic pathway for β-mannan metabolism in Roseburia intestinalis and show that these polysaccharides promote beneficial gut bacteria, highlighting a potential for β-mannan-based therapeutic interventions.
Collapse
|
176
|
Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review. Molecules 2019; 24:molecules24030616. [PMID: 30744203 PMCID: PMC6384989 DOI: 10.3390/molecules24030616] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Lipases are enzymes responsible for the conversion of triglycerides and other esterified substrates, they are involved in the basic metabolism of a wide number of organisms, from a simple microorganism and to mammals. They also have broad applicability in many fields from which industrial biotechnology, the production of cleaning agents, and pharmacy are the most important. The use of lipases in analytical chemistry where it can serve as a part of biosensors or bioassays is an application of growing interest and has become another important use. This review is focused on the description of lipases chemistry, their current applications and the methods for their assay measurement. Examples of bioassays and biosensors, including their physical and chemical principles, performance for specific substrates, and discussion of their relevance, are given in this work.
Collapse
|
177
|
Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, Zhu KM, Wang Z, Tan XL. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. PLANT CELL REPORTS 2019; 38:243-253. [PMID: 30535511 DOI: 10.1007/s00299-018-2365-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 05/19/2023]
Abstract
Seed germination rate and oil content can be regulated at theGDSL transcriptional level by eitherAtGDSL1 orBnGDSL1 inB. napus. Gly-Asp-Ser-Leu (GDSL)-motif lipases represent an important subfamily of lipolytic enzymes, which play important roles in lipid metabolism, seed development, abiotic stress, and pathogen defense. In the present study, two closely related GDSL-motif lipases, Brassica napus GDSL1 and Arabidopsis thaliana GDSL1, were characterized as functioning in regulating germination rate and seed oil content in B. napus. AtGDSL1 and BnGDSL1 overexpression lines showed an increased seed germination rate and improved seedling establishment compared with wild type. Meanwhile, the constitutive overexpression of AtGDSL1 and BnGDSL1 promoted lipid catabolism and decreased the seed oil content. While RNAi-mediated suppression of BnGDSL1 (Bngdsl1) in B. napus improved the seed oil content and decreased seed germination rate. Moreover, the Bngdsl1 transgenic seeds showed changes in the fatty acid (FA) composition, featuring an increase in C18:1 and a decrease in C18:2 and C18:3. The transcriptional levels of six related core enzymes involved in FA mobilization were all elevated in the AtGDSL1 and BnGDSL1 overexpression lines, but strongly suppressed in the Bngdsl1 transgenic line. These results suggest that improving the seed germination and seed oil content in B. napus could be achieved by regulating the GDSL transcriptional level.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Su-Zhen Yan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
178
|
Lee HJ, Park OK. Lipases associated with plant defense against pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:51-58. [PMID: 30709493 DOI: 10.1016/j.plantsci.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
When facing microbe invaders, plants activate genetic and metabolic defense mechanisms and undergo extracellular and intracellular changes to obtain a certain level of host resistance. Dynamic adjustment and adaptation occur in structures containing lipophilic compounds and cellular metabolites. Lipids encompassing fatty acids, fatty acid-based polymers, and fatty acid derivatives are part of the fundamental architecture of cells and tissues and are essential compounds in numerous biological processes. Lipid-associated plant defense responses are mostly facilitated by the activation of lipases (lipid hydrolyzing proteins), which cleave or transform lipid substrates in various subcellular compartments. In this review, several types of plant defense-associated lipases are described, including their molecular aspects, enzymatic actions, cellular functions, and possible functional relevance in plant defense. Defensive roles are discussed considering enzyme properties, lipid metabolism, downstream regulation, and phenotypic traits in loss-of-function mutants.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Ohkmae K Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
179
|
Sharaf A, Oborník M, Hammad A, El-Afifi S, Marei E. Characterization and comparative genomic analysis of virulent and temperate Bacillus megaterium bacteriophages. PeerJ 2018; 6:e5687. [PMID: 30581654 PMCID: PMC6292376 DOI: 10.7717/peerj.5687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies provide unique possibilities for the comprehensive assessment of the environmental diversity of bacteriophages. Several Bacillus bacteriophages have been isolated, but very few Bacillus megaterium bacteriophages have been characterized. In this study, we describe the biological characteristics, whole genome sequences, and annotations for two new isolates of the B. megaterium bacteriophages (BM5 and BM10), which were isolated from Egyptian soil samples. Growth analyses indicated that the phages BM5 and BM10 have a shorter latent period (25 and 30 min, respectively) and a smaller burst size (103 and 117 PFU, respectively), in comparison to what is typical for Bacillus phages. The genome sizes of the phages BM5 and BM10 were 165,031 bp and 165,213 bp, respectively, with modular organization. Bioinformatic analyses of these genomes enabled the assignment of putative functions to 97 and 65 putative ORFs, respectively. Comparative analysis of the BM5 and BM10 genome structures, in conjunction with other B. megaterium bacteriophages, revealed relatively high levels of sequence and organizational identity. Both genomic comparisons and phylogenetic analyses support the conclusion that the sequenced phages (BM5 and BM10) belong to different sub-clusters (L5 and L7, respectively), within the L-cluster, and display different lifestyles (lysogenic and lytic, respectively). Moreover, sequenced phages encode proteins associated with Bacillus pathogenesis. In addition, BM5 does not contain any tRNA sequences, whereas BM10 genome codes for 17 tRNAs.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Adel Hammad
- Department of Microbiology, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Sohair El-Afifi
- Department of Agricultural Microbiology, Virology Laboratory, Ain Shams University, Cairo, Egypt
| | - Eman Marei
- Department of Agricultural Microbiology, Virology Laboratory, Ain Shams University, Cairo, Egypt
| |
Collapse
|
180
|
Duong VT, Unhelkar MH, Kelly JE, Kim SH, Butts CT, Martin RW. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Integr Biol (Camb) 2018; 10:768-779. [PMID: 30516771 PMCID: PMC6336102 DOI: 10.1039/c8ib00140e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In plants, esterase/lipases perform transesterification reactions, playing an important role in the synthesis of useful molecules, such as those comprising the waxy coatings of leaf surfaces. Plant genomes and transcriptomes have provided a wealth of data about expression patterns and the circumstances under which these enzymes are upregulated, e.g. pathogen defense and response to drought; however, predicting their functional characteristics from genomic or transcriptome data is challenging due to weak sequence conservation among the diverse members of this group. Although functional sequence blocks mediating enzyme activity have been identified, progress to date has been hampered by the paucity of information on the structural relationships among these regions and how they affect substrate specificity. Here we present methodology for predicting overall protein flexibility and active site flexibility based on molecular modeling and analysis of protein structure networks (PSNs). We define two new types of specialized PSNs: sequence region networks (SRNs) and active site networks (ASNs), which provide parsimonious representations of molecular structure in reference to known features of interest. Our approach, intended as an aid to target selection for poorly characterized enzyme classes, is demonstrated for 26 previously uncharacterized esterase/lipases from the genome of the carnivorous plant Drosera capensis and validated using a case/control design. Analysis of the network relationships among functional blocks and among the chemical moieties making up the catalytic triad reveals potentially functionally significant differences that are not apparent from sequence analysis alone.
Collapse
Affiliation(s)
- Vy T. Duong
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| | | | | | | | - Carter T. Butts
- Departments of Sociology, Statistics, and Electrical Engineering & Computer Science, UC Irvine
| | - Rachel W. Martin
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| |
Collapse
|
181
|
Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteomics 2018; 193:10-26. [PMID: 30576833 DOI: 10.1016/j.jprot.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Oats are an important cereal crop worldwide, and they also serve as a phytoremediation crop to ameliorate salinized and alkalized soils. However, the mechanism of the oat response to alkali remains unclear. Physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate the mechanism of the oat response to alkali stress. Physiological and phenotypic data showed that oat root growth was inhibited more severely than shoot growth after alkali stress. In total, 164 proteins were up-regulated and 241 proteins were down-regulated in roots, and 93 proteins were up-regulated and 139 proteins were down-regulated in shoots. Under high pH stress, transmembrane proton transporters were down-regulated; conversely, organic acid synthesis related enzymes were increased. Transporters of N, P, Fe, Cu and Ca in addition to N assimilation enzymes in the root were highly increased. This result revealed that higher efficiency of P, Fe, Cu and Ca transport, especially higher efficiency of N intake and assimilation, greatly promoted oat root resistance to alkali stress. Furthermore, many resistance proteins, such as late embryogenesis abundant (LEA) mainly in shoots, GDSL esterase lipase mainly in roots, and WD40-like beta propeller repeat families, greatly accumulated to contribute to oat resistance to alkali stress. SIGNIFICANCE: In this study, physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate oats early seedlings in response to alkali stress. Many difference expression proteins were found involving in oats response to alkali stress. Also, higher efficiency transport of P, Fe, Cu, Ca and N greatly promoted oat resistance to alkali stress.
Collapse
|
182
|
Akoh CC. Conducting Research at the Interface of Food Science and Nutrition. J Food Sci 2018; 83:2692-2696. [PMID: 30412306 DOI: 10.1111/1750-3841.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Casimir C Akoh
- Distinguished Research Professor, Dept. of Food Science and Technology, The Univ. of Georgia, Athens, GA 30602-2610, https://site.caes.uga.edu/lbcap/
| |
Collapse
|
183
|
Radford D, Strange P, Lepp D, Hernandez M, Rehman MA, Diarra MS, Balamurugan S. Genomic and Proteomic Analyses of Salmonella enterica Serovar Enteritidis Identifying Mechanisms of Induced de novo Tolerance to Ceftiofur. Front Microbiol 2018; 9:2123. [PMID: 30250458 PMCID: PMC6139387 DOI: 10.3389/fmicb.2018.02123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
With the alarming proliferation of antibiotic resistance, it is important to understand the de novo development of bacterial adaptation to antibiotics in formerly susceptible lineages, in the absence of external genetic input from existing resistance pools. A strain of ceftiofur susceptible Salmonella enterica serovar Enteritidis ABB07-SB3071 (MIC = 1.0 μg/ml) was successively exposed to sub-MIC of ceftiofur to allow its adaptation for tolerance to a concentration of 2.0 μg/ml of this antibiotic. Genomic and proteomic comparative analyses of the parental strain and induced tolerant derived lineages were performed to characterize underlying mechanisms of de novo adaptation (tolerance). Expression and localization of specific drug-, heme-, sugar-, amino acid-, and sulfate-transporters were altered, as was the localization of the cell membrane stabilizing protein OsmY in the tolerant strains adapted to 2.0 μg/ml compared to the parental isolate lines. This redistribution of existing transporters acts to minimize the concentrations of ceftiofur in the periplasm, by decreasing facilitated import and increasing active efflux and cytosolic sequestration as determined by high performance liquid chromatography quantification of residual total and extracellular ceftiofur after growth. Genetic, subcellular localization, and abundance changes of specific regulators of transcription, translation, and post-translational dynamics in the derived ceftiofur tolerant lineages decrease metabolic strain on cell walls and enhance periplasmic envelop stability against stress. This produces slower growing, more tolerant populations, which deplete free ceftiofur concentrations significantly more than susceptible parental populations (P < 0.05), as measured by recoverable levels of ceftiofur from cultures of equivalent cellular density incubated with equal ceftiofur concentrations. Genetic and abundance changes to specific carbon and nitrogen metabolism enzymes, not traditionally associated with beta-lactam metabolism, establish an enzymatic framework with the potential to detoxify/degrade ceftiofur, while mutations and changes in subcellular localization in specific cell surface factors enhance the stability of the Gram-negative cell envelop despite the compromising effect of ceftiofur. The observed changes highlight generalizable mechanisms of de novo tolerance without horizontal gene transfer, and thus can inform policies to combat antibiotic tolerance and minimize induction of de novo tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - S. Balamurugan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
184
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
185
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
186
|
Mazlan SNHS, Ali MSM, Rahman RNZRA, Sabri S, Jonet MA, Leow TC. Crystallization and structure elucidation of GDSL esterase of Photobacterium sp. J15. Int J Biol Macromol 2018; 119:1188-1194. [PMID: 30102982 DOI: 10.1016/j.ijbiomac.2018.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
GDSL esterase J15 (EstJ15) is a member of Family II of lipolytic enzyme. The enzyme was further classified in subgroup SGNH hydrolase due to the presence of highly conserve motif, Ser-Gly-Asn-His in four conserved blocks I, II, III, and V, respectively. X-ray quality crystal of EstJ15 was obtained from optimized formulation containing 0.10 M ammonium sulphate, 0.15 M sodium cacodylate trihydrate pH 6.5, and 20% PEG 8000. The crystal structure of EstJ15 was solved at 1.38 Å with one molecule per asymmetric unit. The structure exhibits α/β hydrolase fold and shared low amino acid sequence identity of 23% with the passenger domain of the autotransporter EstA of Pseudomonas aeruginosa. The active site is located at the centre of the structure, formed a narrow tunnel that hinder long substrates to be catalysed which was proven by the protein-ligand docking analysis. This study facilitates the understanding of high substrate specificity of EstJ15 and provide insights on its catalytic mechanism.
Collapse
Affiliation(s)
- Sharifah Nur Hidayah Syed Mazlan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology Research Center, Malaysia.
| |
Collapse
|
187
|
Cloning and characterization of EgGDSL, a gene associated with oil content in oil palm. Sci Rep 2018; 8:11406. [PMID: 30061629 PMCID: PMC6065316 DOI: 10.1038/s41598-018-29492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Oil palm (Elaeis guineensis, Jacq.) is a key tropical oil crop, which provides over one third of the global vegetable oil production, but few genes related to oil yield have been characterized. In this study, a GDSL esterase/lipase gene, which was significantly associated with oil content, was isolated from oil palm and designated as EgGDSL. Its functional characterization was carried out through ectopic expression in Arabidopsis ecotype Col-0. It was shown that expression of EgGDSL in Arabidopsis led to the increased total fatty acid content by 9.5% compared with the wild type. Further analysis of the fatty acid composition revealed that stearic acid (18:0) increased in the seeds of the transgenic lines, but the levels of linoleic acid (18:2) plus 11-eicosenoic acid drastically declined. Quantitative real-time PCR (qPCR) revealed that in oil palm, EgGDSL was highly expressed in mesocarp followed by leaf, and the expression level was very low in the root. The expression level of EgGDSL gene began to increase at two months after flowering (MAF) and reached its peak by four MAF, then declined rapidly, and reached its lowest level during the mature period (6 MAF). The EgGDSL gene was more highly expressed in oil palm trees with high oil content than that with low oil content, demonstrating that the transcription level of EgGDSL correlated with the amount of oil accumulation. The gene may be valuable for engineering fatty acid metabolism in crop improvement programmes and for marker-assisted breeding.
Collapse
|
188
|
Li X, Pan Y, Hu H. Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
189
|
Cao Y, Han Y, Meng D, Abdullah M, Yu J, Li D, Jin Q, Lin Y, Cai Y. Expansion and evolutionary patterns of GDSL-type esterases/lipases in Rosaceae genomes. Funct Integr Genomics 2018; 18:673-684. [DOI: 10.1007/s10142-018-0620-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023]
|
190
|
Yu N, Yang JC, Yin GT, Li RS, Zou WT, He C. Identification and characterization of a novel esterase from Thauera sp. Biotechnol Appl Biochem 2018; 65:748-755. [PMID: 29633344 DOI: 10.1002/bab.1659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
Abstract
A novel esterase gene TLip was identified from the strain Thauera sp. and expressed at high levels in Escherichia coli. The TLip protein shared the highest identity (48%) to esterase TesA from Pseudomonas aeruginosa when compared to enzymes with reported properties. Phylogenetic analysis showed that TLip belongs to the GDSL family of bacterial lipolytic enzymes. TLip was an alkaline esterase with a broad optimal temperature range 37-50 °C and an optimal pH of 8.0. Substrate specificity assays showed that TLip preferred medium chain p-nitrophenyl esters (C6 -C12 ). Besides, the activity of TLip was strongly inhibited by Cu2+ but greatly enhanced by Triton X-100 and Tween 80. Thermostability assay revealed that TLip was stable without loss of activity at 37 °C and still retained 69% activity at 50 °C after 2 H of incubation. Together, these provided a good candidate for further exploration of TLip as a promising biocatalyst in industry.
Collapse
Affiliation(s)
- Niu Yu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Jin-Chang Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Guang-Tian Yin
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Rong-Sheng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Wen-Tao Zou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Chang He
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, People's Republic of China
| |
Collapse
|
191
|
Kim JY, Wang Y, Uddin Z, Song YH, Li ZP, Jenis J, Park KH. Competitive neutrophil elastase inhibitory isoflavones from the roots of Flemingia philippinensis. Bioorg Chem 2018; 78:249-257. [PMID: 29614436 DOI: 10.1016/j.bioorg.2018.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Flemingia philippinensis has been used throughout history to cure rheumatism associated with neutrophil elastase (NE). In this study, we isolated sixteen NE inhibitory flavonoids (1-16), including the most potent and abundant prenyl isoflavones (1-9), from the F. philippinensis plant. These prenyl isoflavones (2, 3, 5, 7, and 9) competitively inhibited NE, with IC50 values of 1.3-12.0 μM. In addition, they were reversible, simple, slow-binding inhibitors according to their respective parameters. Representative compound 3 had an IC50 = 1.3 μM, k3 = 0.04172 μM-1 min-1, k4 = 0.0064 min-1, and Kiapp = 0.1534 μM. The Kik/Kiv ratios (18.5 ∼ 24.6) for compound 3 were consistent with typical competitive inhibitors. The prenyl functionality of isoflavones significantly affected inhibitory potencies and mechanistic behavior by shifting the competitive mode to a noncompetitive one. The remaining flavonoids (10-16) were confirmed as mixed type I inhibitors that preferred to bind free enzyme rather than the enzyme-substrate complex. Fluorescence quenching analyses indicated that the inhibitory potency (IC50) closely followed the binding affinity (KSV).
Collapse
Affiliation(s)
- Jeong Yoon Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yan Wang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zia Uddin
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Hun Song
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zuo Peng Li
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Janar Jenis
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
192
|
Lajis AFB. Realm of Thermoalkaline Lipases in Bioprocess Commodities. J Lipids 2018; 2018:5659683. [PMID: 29666707 PMCID: PMC5832097 DOI: 10.1155/2018/5659683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
Collapse
Affiliation(s)
- Ahmad Firdaus B. Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
193
|
Müller AO, Ischebeck T. Characterization of the enzymatic activity and physiological function of the lipid droplet-associated triacylglycerol lipase AtOBL1. THE NEW PHYTOLOGIST 2018; 217:1062-1076. [PMID: 29178188 DOI: 10.1111/nph.14902] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/17/2017] [Indexed: 05/04/2023]
Abstract
Similar to seeds, pollen tubes contain lipid droplets that store triacylglycerol (TAG), but the fate of this TAG as well as the enzymes involved in its breakdown are unknown. Therefore, two potential TAG lipases from tobacco and Arabidopsis, NtOBL1 (Oil body lipase 1) and AtOBL1, were investigated, especially with respect to their importance for pollen tube growth. We expressed NtOBL1 and AtOBL1 as fluorescent fusion proteins to study their localization by confocal microscopy. Furthermore, we overexpressed AtOBL1 in Nicotiana benthamiana leaves to characterize it enzymatically. The obl1 mutant was studied in respect to its pollen tube growth in vivo and its seed germination. Both NtOBL1 and AtOBL1 localized to lipid droplets. AtOBL1 was abundant in pollen tubes and seedlings, and acted as a lipase on TAG, diacylglycerol and 1-monoacylglycerol at a pH optimum of 5.5. The obl1 mutant was hampered in pollen tube growth, whereas seedling establishment was not affected under optimal conditions, even though AtOBL1 accounted for a major lipase activity in seeds. TAG could be a direct precursor for the synthesis of membrane lipids in pollen tubes and proteins of the OBL family involved in the flux of acyl groups.
Collapse
Affiliation(s)
- Anna Ophelia Müller
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| |
Collapse
|
194
|
Ding J, Zhu H, Ye Y, Li J, Han N, Wu Q, Huang Z, Meng Z. A thermostable and alkaline GDSL-motif esterase from Bacillus sp. K91: crystallization and X-ray crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:117-121. [PMID: 29400322 PMCID: PMC5947683 DOI: 10.1107/s2053230x18000353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/06/2018] [Indexed: 11/11/2022]
Abstract
Purification, crystallization and X-ray crystallographic analysis were employed to determine the catalytic mechanism of Est8, a GDSL-motif esterase from Bacillus sp. K91. The esterase Est8 from the thermophilic bacterium Bacillus sp. K91 belongs to the GDSL family and is active on a variety of acetylated compounds, including 7-aminocephalosporanic acid. In contrast to other esterases of the GDSL family, the catalytic residues Asp182 and His185 were more pivotal for the catalytic activity of Est8 than the Ser11 residue. To better understand the biochemical and enzymatic properties of Est8, recombinant Est8 protein was purified and crystallized. Crystals of Est8 were obtained by the hanging-drop vapour-diffusion method using 2.0 M ammonium sulfate, 5%(v/v) 2-propanol as the crystallization solution. X-ray diffraction data were collected to a resolution of 2.30 Å with an Rmerge of 16.4% from a crystal belonging to space group P41212 or P43212, with unit-cell parameters a = b = 68.50, c = 79.57 Å.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Centre of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, 768 Juxian Road, Kunming, Yunnan 650500, People's Republic of China
| | - Hujie Zhu
- Engineering Research Centre of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, 768 Juxian Road, Kunming, Yunnan 650500, People's Republic of China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 1168 Chunrong West Road, Kunming, Yunnan 650500, People's Republic of China
| | - Jie Li
- Fudan University Shanghai Centre, Institute of Biomedical Science, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Nanyu Han
- Engineering Research Centre of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, 768 Juxian Road, Kunming, Yunnan 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Centre of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, 768 Juxian Road, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Centre of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, 768 Juxian Road, Kunming, Yunnan 650500, People's Republic of China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 1168 Chunrong West Road, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
195
|
Xu Y, Huang B. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 2018; 19:70. [PMID: 29357827 PMCID: PMC5778672 DOI: 10.1186/s12864-018-4437-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background Heat stress is the primary abiotic stress limiting growth of cool-season grass species. The objective of this study was to determine molecular factors and metabolic pathways associated with superior heat tolerance in thermal bentgrass (Agrostis scabra) by comparative analysis of transcriptomic profiles with its co-generic heat-sensitive species creeping bentgrass (A. stolonifera). Results Transcriptomic profiling by RNA-seq in both heat-sensitive A. stolonifera (cv. ‘Penncross’) and heat-tolerant A. scabra exposed to heat stress found 1393 (675 up- and 718 down-regulated) and 1508 (777 up- and 731 down-regulated) differentially-expressed genes, respectively. The superior heat tolerance in A. scabra was associated with more up-regulation of genes in oxidative protection, proline biosynthesis, lipid hydrolysis, hemicellulose and lignin biosynthesis, compared to heat-sensitive A. stolonifera. Several transcriptional factors (TFs), such as high mobility group B protein 7 (HMGB7), dehydration-responsive element-binding factor 1a (DREB1a), multiprotein-bridging factor 1c (MBF1c), CCCH-domain containing protein 47 (CCCH47), were also found to be up-regulated in A. scabra under heat stress. Conclusions The unique TFs and genes identified in thermal A. scabra could be potential candidate genes for genetic modification of cultivated grass species for improving heat tolerance, and the associated pathways could contribute to the transcriptional regulation for superior heat tolerance in bentgrass species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4437-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
196
|
Abstract
LPS is a potent bacterial endotoxin that triggers the innate immune system. Proper recognition of LPS by pattern-recognition receptors requires a full complement of typically six acyl chains in the lipid portion. Acyloxyacyl hydrolase (AOAH) is a host enzyme that removes secondary (acyloxyacyl-linked) fatty acids from LPS, rendering it immunologically inert. This activity is critical for recovery from immune tolerance that follows Gram-negative infection. To understand the molecular mechanism of AOAH function, we determined its crystal structure and its complex with LPS. The substrate's lipid moiety is accommodated in a large hydrophobic pocket formed by the saposin and catalytic domains with a secondary acyl chain inserted into a narrow lateral hydrophobic tunnel at the active site. The enzyme establishes dispensable contacts with the phosphate groups of LPS but does not interact with its oligosaccharide portion. Proteolytic processing allows movement of an amphipathic helix possibly involved in substrate access at membranes.
Collapse
|
197
|
A novel galactolipase from a green microalga Chlorella kessleri: purification, characterization, molecular cloning, and heterologous expression. Appl Microbiol Biotechnol 2018; 102:1711-1723. [PMID: 29299622 PMCID: PMC5794828 DOI: 10.1007/s00253-017-8713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022]
Abstract
We have identified an enzyme, galactolipase (ckGL), which hydrolyzes the acyl ester bond of galactolipids such as digalactosyldiacylglycerol (DGDG), in the microalga Chlorella kessleri. Following purification of the enzyme to electrophoretic homogeneity from cell-free extract, the maximum activity toward DGDG was observed at pH 6.5 and 37 °C. ckGL was Ca2+-dependent enzyme and displayed an apparent molecular mass of approx. 53 kDa on SDS-PAGE. The substrate specificity was in the order: DGDG (100%) > monogalactosyldiacylglycerol ≈ phosphatidylglycerol (~ 40%) > sulfoquinovosyldiacylglycerol (~ 20%); the enzyme exhibited almost no activity toward glycerides and other phospholipids. Gas chromatography analysis demonstrated that ckGL preferably hydrolyzed the sn-1 acyl ester bond in the substrates. The genomic DNA sequence (5.6 kb) containing the ckGL gene (designated glp1) was determined and the cDNA was cloned. glp1 was composed of 10 introns and 11 exons, and the 1608-bp full-length cDNA encoded a mature ckGL containing 475 amino acids (aa), with a presequence (60 aa) containing a potential chloroplast transit peptide. Recombinant functional ckGL was produced in Escherichia coli. Although the deduced aa sequence of ckGL contained the typical GXSXG motif of serine hydrolases together with conserved histidine and aspartate residues which would form part of the catalytic triad of α/β-hydrolases, ckGL showed no significant overall similarity with known lipases including GLs from Chlamydomonas reinhardtii and Aspergillus japonicus, indicating that ckGL is a novel GL. ckGL, with high specificity for DGDG, could be applicable to food processing as an enzyme capable of improving material textures.
Collapse
|
198
|
Casas-Godoy L, Gasteazoro F, Duquesne S, Bordes F, Marty A, Sandoval G. Lipases: An Overview. Methods Mol Biol 2018; 1835:3-38. [PMID: 30109644 DOI: 10.1007/978-1-4939-8672-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipases are ubiquitous enzymes, widespread in nature. They were first isolated from bacteria in the early nineteenth century, and the associated research continuously increased due to the characteristics of these enzymes. This chapter reviews the main sources, structural properties, and industrial applications of these highly studied enzymes.
Collapse
Affiliation(s)
- Leticia Casas-Godoy
- Cátedras CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
| | - Francisco Gasteazoro
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Sophie Duquesne
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Florence Bordes
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP; LISBP, Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | - Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
199
|
Johnson MC, Sena-Velez M, Washburn BK, Platt GN, Lu S, Brewer TE, Lynn JS, Stroupe ME, Jones KM. Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome. J Struct Biol 2017; 200:343-359. [DOI: 10.1016/j.jsb.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
|
200
|
Lang C, Hiller M, Flieger A. Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci Rep 2017; 7:16313. [PMID: 29176577 PMCID: PMC5701174 DOI: 10.1038/s41598-017-12796-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
L. pneumophila, an important facultative intracellular bacterium, infects the human lung and environmental protozoa. At least fifteen phospholipases A (PLA) are encoded in its genome. Three of which, namely PlaA, PlaC, and PlaD, belong to the GDSL lipase family abundant in bacteria and higher plants. PlaA is a lysophospholipase A (LPLA) that destabilizes the phagosomal membrane in absence of a protective factor. PlaC shows PLA and glycerophospholipid: cholesterol acyltransferase (GCAT) activities which are activated by zinc metalloproteinase ProA via cleavage of a disulphide loop. In this work, we compared GDSL enzyme activities, their secretion, and activation of PlaA. We found that PlaA majorly contributed to LPLA, PlaC to PLA, and both substrate-dependently to GCAT activity. Western blotting revealed that PlaA and PlaC are type II-secreted and both processed by ProA. Interestingly, ProA steeply increased LPLA but diminished GCAT activity of PlaA. Deletion of 20 amino acids within a predicted disulfide loop of PlaA had the same effect. In summary, we propose a model by which ProA processes PlaA via disulfide loop cleavage leading to a steep increase in LPLA activity. Our results help to further characterize the L. pneumophila GDSL hydrolases, particularly PlaA, an enzyme acting in the Legionella-containing phagosome.
Collapse
Affiliation(s)
- Christina Lang
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany.
| |
Collapse
|