151
|
Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS One 2014; 9:e102091. [PMID: 25057798 PMCID: PMC4109920 DOI: 10.1371/journal.pone.0102091] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/13/2014] [Indexed: 01/19/2023] Open
Abstract
Environmental compounds including fungicides, plastics, pesticides, dioxin and hydrocarbons can promote the epigenetic transgenerational inheritance of adult-onset disease in future generation progeny following ancestral exposure during the critical period of fetal gonadal sex determination. This study examined the actions of the pesticide methoxychlor to promote the epigenetic transgenerational inheritance of adult-onset disease and associated differential DNA methylation regions (i.e. epimutations) in sperm. Gestating F0 generation female rats were transiently exposed to methoxychlor during fetal gonadal development (gestation days 8 to 14) and then adult-onset disease was evaluated in adult F1 and F3 (great-grand offspring) generation progeny for control (vehicle exposed) and methoxychlor lineage offspring. There were increases in the incidence of kidney disease, ovary disease, and obesity in the methoxychlor lineage animals. In females and males the incidence of disease increased in both the F1 and the F3 generations and the incidence of multiple disease increased in the F3 generation. There was increased disease incidence in F4 generation reverse outcross (female) offspring indicating disease transmission was primarily transmitted through the female germline. Analysis of the F3 generation sperm epigenome of the methoxychlor lineage males identified differentially DNA methylated regions (DMR) termed epimutations in a genome-wide gene promoters analysis. These epimutations were found to be methoxychlor exposure specific in comparison with other exposure specific sperm epimutation signatures. Observations indicate that the pesticide methoxychlor has the potential to promote the epigenetic transgenerational inheritance of disease and the sperm epimutations appear to provide exposure specific epigenetic biomarkers for transgenerational disease and ancestral environmental exposures.
Collapse
Affiliation(s)
- Mohan Manikkam
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - M. Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
152
|
Guerrero-Bosagna C, Weeks S, Skinner MK. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One 2014; 9:e100194. [PMID: 24937757 PMCID: PMC4061094 DOI: 10.1371/journal.pone.0100194] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
A variety of environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. The process involves exposure of a gestating female and the developing fetus to environmental factors that promote permanent alterations in the epigenetic programming of the germline. The molecular aspects of the phenomenon involve epigenetic modifications (epimutations) in the germline (e.g. sperm) that are transmitted to subsequent generations. The current study integrates previously described experimental epigenomic transgenerational data and web-based bioinformatic analyses to identify genomic features associated with these transgenerationally transmitted epimutations. A previously identified genomic feature associated with these epimutations is a low CpG density (<12/100bp). The current observations suggest the transgenerational differential DNA methylation regions (DMR) in sperm contain unique consensus DNA sequence motifs, zinc finger motifs and G-quadruplex sequences. Interaction of molecular factors with these sequences could alter chromatin structure and accessibility of proteins with DNA methyltransferases to alter de novo DNA methylation patterns. G-quadruplex regions can promote the opening of the chromatin that may influence the action of DNA methyltransferases, or factors interacting with them, for the establishment of epigenetic marks. Zinc finger binding factors can also promote this chromatin remodeling and influence the expression of non-coding RNA. The current study identified genomic features associated with sperm epimutations that may explain in part how these sites become susceptible for transgenerational programming.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Physics, Biology and Chemistry, Linköping University, Linköping, Sweden
| | - Shelby Weeks
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
153
|
Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev 2014; 26:79-88. [PMID: 25104619 PMCID: PMC4252707 DOI: 10.1016/j.gde.2014.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022]
Abstract
Decreasing male fertility has been observed for the past fifty years. Examples of affected reproductive parameters include decreases in sperm count and sperm quality and increases in testicular cancer, cryptorchidism and hypospadias. Exposures to environmental toxicants during fetal development and early postnatal life have been shown to promote infertility. Environmental exposures inducing epigenetic changes related to male infertility range from life style, occupational exposures, environmental toxicants and nutrition. Exposures during fetal gonadal sex determination have been shown to alter the epigenetic programming of the germline that then can transmit this altered epigenetic information to subsequent generations in the absence of any exposures. This environmentally induced epigenetic transgenerational inheritance of disease will be a component of the etiology of male infertility.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Avian Behaviourial Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States.
| |
Collapse
|
154
|
|
155
|
Kopras E, Potluri V, Bermudez ML, Williams K, Belcher S, Kasper S. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocr Relat Cancer 2014; 21:T1-12. [PMID: 24280134 PMCID: PMC11037424 DOI: 10.1530/erc-13-0360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development and fate of the stem cell are regulated by extrinsic signals from the environment. Endocrine-disrupting chemicals which perturb hormonal signaling in utero and during early childhood may cause deregulation of multiple developmental processes, ranging from breakdown of stem cell niche architecture, developmental reprograming and altered stem cell fate to impaired organ and gonad development and sexual differentiation. Therefore, study of the environmental effects on stem cell integrity and normal development is a new and emerging focus for developmental biologists and cell toxicologists. When combined with new human and mouse stem cell-based models, stem cell differentiation dynamics can be studied in more biologically relevant ways. In this study, we review the current status of our understanding of the molecular mechanisms by which endocrine disruptors alter embryonic stem cell and adult stem/progenitor cell fate, organ development, cancer stem cell activity, and tumorigenesis.
Collapse
Affiliation(s)
- Elizabeth Kopras
- Department of Environmental Heath, University of Cincinnati, 3223 Eden Avenue, Cincinnati, Ohio 45267-0056, USA Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
156
|
Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM. Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays 2014; 36:491-502. [DOI: 10.1002/bies.201300116] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katharina Gapp
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Lukas von Ziegler
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Ry Yves Tweedie-Cullen
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| |
Collapse
|
157
|
Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 2014; 36:359-71. [PMID: 24431278 PMCID: PMC4047566 DOI: 10.1002/bies.201300113] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.
Collapse
Affiliation(s)
- Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
158
|
Fernández AF, Toraño EG, Urdinguio RG, Lana AG, Fernández IA, Fraga MF. The Epigenetic Basis of Adaptation and Responses to Environmental Change: Perspective on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:97-117. [DOI: 10.1007/978-1-4939-0820-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
159
|
Dere E, Anderson LM, Hwang K, Boekelheide K. Biomarkers of chemotherapy-induced testicular damage. Fertil Steril 2013; 100:1192-202. [PMID: 24182554 DOI: 10.1016/j.fertnstert.2013.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022]
Abstract
Increasing numbers of men are having or wanting children after chemotherapy treatment. This can be attributed to improvements in cancer therapies that increase survival. However, a side effect of most chemotherapy drugs is disruption of spermatogenesis and a drastic reduction in sperm count and quality. Although many men eventually recover reproductive function, as indicated by normal semen analyses, there is no clinical test that can assess sperm quality at a high level of sensitivity. Sperm fluorescent in situ hybridization (i.e., FISH) and several different tests for deoxyribonucleic acid (DNA) fragmentation have been used infrequently in clinical assessment. Animal models of chemotherapy-induced testicular damage are currently being used to identify potential molecular biomarkers that may be translatable to humans-these include sperm messenger RNAs, microRNAs, histone modifications, and DNA methylation patterns. Changes in these molecular measurements are quantitative and sensitive, potentially making them important clinical biomarkers of testicular function after chemotherapy treatment.
Collapse
Affiliation(s)
- Edward Dere
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | |
Collapse
|
160
|
Damaschke NA, Yang B, Bhusari S, Svaren JP, Jarrard D. Epigenetic susceptibility factors for prostate cancer with aging. Prostate 2013; 73:1721-30. [PMID: 23999928 PMCID: PMC4237278 DOI: 10.1002/pros.22716] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing age is a significant risk factor for prostate cancer. The prostate is exposed to environmental and endogenous stress that may underlie this remarkable incidence. DNA methylation, genomic imprinting, and histone modifications are examples of epigenetic factors known to undergo change in the aging and cancerous prostate. In this review we examine the data linking epigenetic alterations in the prostate with aging to cancer development. METHODS An online search of current and past peer reviewed literature on epigenetic changes with cancer and aging was performed. Relevant articles were analyzed. RESULTS Epigenetic changes are responsible for modifying expression of oncogenes and tumor suppressors. Several of these changes may represent a field defect that predisposes to cancer development. Focal hypermethylation occurs at CpG islands in the promoters of certain genes including GSTP1, RARβ2, and RASSF1A with both age and cancer, while global hypomethylation is seen in prostate cancer and known to occur in the colon and other organs. A loss of genomic imprinting is responsible for biallelic expression of the well-known Insulin-like Growth Factor 2 (IGF2) gene. Loss of imprinting (LOI) at IGF2 has been documented in cancer and is also known to occur in benign aging prostate tissue marking the presence of cancer. Histone modifications have the ability to dictate chromatin structure and direct gene expression. CONCLUSIONS Epigenetic changes with aging represent molecular mechanisms to explain the increased susceptibly of the prostate to develop cancer in older men. These changes may provide an opportunity for diagnostic and chemopreventive strategies given the epigenome can be modified.
Collapse
Affiliation(s)
- N. A. Damaschke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B. Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - S. Bhusari
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - J. P. Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53972
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, Wisconsin
| | - D.F. Jarrard
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, Wisconsin
- Environmental and Molecular Toxicology, University of Wisconsin, Madison, Wisconsin
- Correspondence to: D.F. Jarrard, MD, 7037 Wisconsin Institutes of Medical Research, 1111 Highland Avenue, Madison, WI 53792.
| |
Collapse
|
161
|
Susztak K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J Am Soc Nephrol 2013; 25:10-7. [PMID: 24179169 DOI: 10.1681/asn.2013050461] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cells in a human body have identical DNA sequences, yet the body has >200 cell types with different phenotypes. The basis for this nongenetic cellular memory, which records developmental and environmental cues, is epigenetics. The epigenome includes covalent modifications of the DNA and its associated proteins and defines DNA accessibility to the transcriptional machinery. Notably, the epigenome has emerged as an important mediator of the long-term programming effect of environmental exposure, and multiple lines of evidence point to the epigenome as an important missing link in our understanding of CKD development. For example, recent studies identified epigenetic differences in the enhancer regions of fibrosis-related genes in diseased human kidney samples. Furthermore, chromatin profiling and epigenome analysis are powerful tools for annotating gene regulatory regions that can be harnessed to interpret disease-causing polymorphisms for complex traits such as CKD. This review highlights the results of studies investigating the renal epigenome and discusses the significance of these findings and future directions in the context of novel diagnostic and treatment strategies for CKD.
Collapse
Affiliation(s)
- Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
162
|
Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One 2013; 8:e66318. [PMID: 23869203 PMCID: PMC3712023 DOI: 10.1371/journal.pone.0066318] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022] Open
Abstract
A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Guth LM, Ludlow AT, Witkowski S, Marshall MR, Lima LCJ, Venezia AC, Xiao T, Ting Lee ML, Spangenburg EE, Roth SM. Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mouse offspring. Exp Physiol 2013; 98:1469-84. [PMID: 23771910 DOI: 10.1113/expphysiol.2012.070300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early life and preconception environmental stimuli can affect adult health-related phenotypes. Exercise training is an environmental stimulus affecting many systems throughout the body and appears to alter offspring phenotypes. The aim of this study was to examine the influence of parental exercise training, or 'exercise ancestry', on morphological and metabolic phenotypes in two generations of mouse offspring. The F0 C57BL/6 mice were exposed to voluntary exercise (EX) or sedentary lifestyle (SED) and bred with like-exposed mates to produce an F1 generation. The F1 mice of both ancestries were sedentary and killed at 8 weeks or bred with littermates to produce an F2 generation, which was also sedentary and killed at 8 weeks. Small but broad generation- and sex-specific effects of exercise ancestry were observed for body mass, fat and muscle mass, serum insulin, glucose tolerance and muscle gene expression. The F1 EX females were lighter than F1 SED females and had lower absolute tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females compared with F1 SED females. The F2 EX females had impaired glucose tolerance compared with F2 SED females. Analysis of skeletal muscle mRNA levels revealed several generation- and sex-specific differences in mRNA levels for multiple genes, especially those related to metabolic genes (e.g. F1 EX males had lower mRNA levels of Hk2, Ppard, Ppargc1a, Adipoq and Scd1 than F1 SED males). These results provide preliminary evidence that parental exercise training can influence health-related phenotypes in mouse offspring.
Collapse
Affiliation(s)
- Lisa M Guth
- S. M. Roth: Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 2013; 88:112. [PMID: 23536373 DOI: 10.1095/biolreprod.112.106104] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evidence has linked human phthalate exposure to abnormal reproductive and hormonal effects. Phthalates are plasticizers that confer flexibility and transparency to plastics, but they readily contaminate the body and the environment. In this study, timed pregnant CD1 outbred mice were treated with di-(2-ethylhexyl) phthalate (DEHP) from Embryonic Day 7 (E7) to E14. The subsequent generation (F1) offspring were then bred to produce the F2, F3, and F4 offspring, without any further DEHP treatment. This exposure scheme disrupted testicular germ cell association and decreased sperm count and motility in F1 to F4 offspring. By spermatogonial transplantation techniques, the exposure scheme also disrupted spermatogonial stem cell (SSC) function of F3 offspring. The W/W(V) recipient testes transplanted with F3 offspring germ cells from the DEHP-treated group had a dramatically lower percentage of donor germ cell-derived spermatogenic recovery in seminiferous tubules when compared to the recipient testes transplanted with CD1 control germ cells. Further characterization showed that the major block of donor germ cell-derived spermatogenesis was before the appearance of undifferentiated spermatogonia. Interestingly, the testes transplanted with the F3 offspring germ cells from the DEHP-treated group, when regenerated, replicated testis morphology similar to that observed in the testes from the F1 to F3 offspring of the DEHP-treated group, suggesting that the germ cell disorganization phenotype originates from the stem cells of F3 offspring. In conclusion, embryonic exposure to DEHP was found to disrupt testicular germ cell organization and SSC function in a transgenerational manner.
Collapse
Affiliation(s)
- Timothy J Doyle
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
165
|
Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod Toxicol 2013; 36:104-16. [PMID: 23453003 PMCID: PMC3587983 DOI: 10.1016/j.reprotox.2012.11.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/16/2012] [Accepted: 11/23/2012] [Indexed: 02/08/2023]
Abstract
Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/metabolism
- Abnormalities, Drug-Induced/pathology
- Abnormalities, Multiple/chemically induced
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Animals
- DNA Methylation/drug effects
- Epigenesis, Genetic/drug effects
- Female
- Genitalia, Male/abnormalities
- Genitalia, Male/drug effects
- Genitalia, Male/metabolism
- Genitalia, Male/pathology
- Hydrocarbons/toxicity
- Infertility, Female/chemically induced
- Infertility, Female/genetics
- Infertility, Female/metabolism
- Infertility, Female/pathology
- Infertility, Male/chemically induced
- Infertility, Male/genetics
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Male
- Maternal Exposure/adverse effects
- Mutagens/toxicity
- Mutation/drug effects
- Obesity/chemically induced
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Ovary/abnormalities
- Ovary/drug effects
- Ovary/metabolism
- Ovary/pathology
- Paternal Exposure/adverse effects
- Pregnancy
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Spermatozoa/drug effects
- Spermatozoa/metabolism
- Spermatozoa/pathology
Collapse
Affiliation(s)
- Rebecca Tracey
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | | | | | | |
Collapse
|
166
|
Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 2013; 8:e55387. [PMID: 23359474 PMCID: PMC3554682 DOI: 10.1371/journal.pone.0055387] [Citation(s) in RCA: 568] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/28/2012] [Indexed: 12/26/2022] Open
Abstract
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1–F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the “plastics” or “lower dose plastics” mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures.
Collapse
|
167
|
Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 2013. [PMID: 23359474 DOI: 10.1371/journal.pone.0055387\rpone-d-12-15587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1-F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the "plastics" or "lower dose plastics" mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures.
Collapse
Affiliation(s)
- Mohan Manikkam
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | | | | |
Collapse
|
168
|
Holzman DC. Organic food conclusions don't tell the whole story. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A458. [PMID: 23211213 PMCID: PMC3546364 DOI: 10.1289/ehp.120-a458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
169
|
Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS One 2012; 7:e46249. [PMID: 23049995 PMCID: PMC3458876 DOI: 10.1371/journal.pone.0046249] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/30/2012] [Indexed: 01/05/2023] Open
Abstract
Environmental compounds can promote epigenetic transgenerational inheritance of adult-onset disease in subsequent generations following ancestral exposure during fetal gonadal sex determination. The current study examined the ability of dioxin (2,3,7,8-tetrachlorodibenzo[p]dioxin, TCDD) to promote epigenetic transgenerational inheritance of disease and DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to dioxin during fetal day 8 to 14 and adult-onset disease was evaluated in F1 and F3 generation rats. The incidences of total disease and multiple disease increased in F1 and F3 generations. Prostate disease, ovarian primordial follicle loss and polycystic ovary disease were increased in F1 generation dioxin lineage. Kidney disease in males, pubertal abnormalities in females, ovarian primordial follicle loss and polycystic ovary disease were increased in F3 generation dioxin lineage animals. Analysis of the F3 generation sperm epigenome identified 50 differentially DNA methylated regions (DMR) in gene promoters. These DMR provide potential epigenetic biomarkers for transgenerational disease and ancestral environmental exposures. Observations demonstrate dioxin exposure of a gestating female promotes epigenetic transgenerational inheritance of adult onset disease and sperm epimutations.
Collapse
Affiliation(s)
- Mohan Manikkam
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rebecca Tracey
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
170
|
Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod Toxicol 2012; 34:708-19. [PMID: 22975477 DOI: 10.1016/j.reprotox.2012.08.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/16/2022]
Abstract
Environmental compounds are known to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a "pesticide mixture" (pesticide permethrin and insect repellent N,N-diethyl-meta-toluamide, DEET) promotes epigenetic transgenerational inheritance of disease and associated DNA methylation epimutations in sperm. Gestating F0 generation female rats were exposed during fetal gonadal sex determination and the incidence of disease evaluated in F1 and F3 generations. There were significant increases in the incidence of total diseases in animals from pesticide lineage F1 and F3 generation animals. Pubertal abnormalities, testis disease, and ovarian disease (primordial follicle loss and polycystic ovarian disease) were increased in F3 generation animals. Analysis of the pesticide lineage F3 generation sperm epigenome identified 363 differential DNA methylation regions (DMR) termed epimutations. Observations demonstrate that a pesticide mixture (permethrin and DEET) can promote epigenetic transgenerational inheritance of adult onset disease and potential sperm epigenetic biomarkers for ancestral environmental exposures.
Collapse
Affiliation(s)
- Mohan Manikkam
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | | | | | | |
Collapse
|
171
|
Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 2012; 7:e31901. [PMID: 22389676 PMCID: PMC3289630 DOI: 10.1371/journal.pone.0031901] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/15/2012] [Indexed: 11/23/2022] Open
Abstract
Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm) that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET), a plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8). After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation). Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR) were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.
Collapse
Affiliation(s)
| | | | | | | | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|