151
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
152
|
Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17742-17755. [PMID: 29733569 DOI: 10.1021/acsami.8b05293] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current treatment approaches for spinal cord injuries (SCIs) are mainly based on cellular transplantation. Induced pluripotent stem cells (iPSCs) without supply constraints and ethical concerns have emerged as a viable treatment option for repairing neurological disorders. However, the primarily limitations in the neuroregeneration field are uncontrolled cell differentiation, and low cell viability caused by the ischemic environment. The mechanical property of three-dimensional (3D) hydrogel can be easily controlled and shared similar characteristics with nerve tissue, thus promoting cell survival and controlled cell differentiation. We propose the combination of a 3D gelatin methacrylate (GelMA) hydrogel with iPSC-derived NSCs (iNSCs) to promote regeneration after SCI. In vitro, the iNSCs photoencapsulated in the 3D GelMA hydrogel survived and differentiated well, especially in lower-moduli hydrogels. More robust neurite outgrowth and more neuronal differentiation were detected in the soft hydrogel group. To further evaluate the in vivo neuronal regeneration effect of the GelMA hydrogels, a mouse spinal cord transection model was generated. We found that GelMA/iNSC implants significantly promoted functional recovery. Further histological analysis showed that the cavity areas were significantly reduced, and less collagen was deposited in the GelMA/iNSC group. Furthermore, the GelMA and iNSC combined transplantation decreased inflammation by reducing activated macrophages/microglia (CD68-positive cells). Additionally, GelMA/iNSC implantation showed striking therapeutic effects of inhibiting GFAP-positive cells and glial scar formation while simultaneously promoting axonal regeneration. Undoubtedly, use of this 3D hydrogel stem cell-loaded system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Lei Fan
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Can Liu
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| | - Xiuxing Chen
- State Key Laboratory of Oncology in South China , Sun Yat-sen University Cancer Center , Guangzhou 510630 , Guangdong Province , China
| | - Yan Zou
- Department of Radiology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| | - Zhengnan Zhou
- Institute of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , Guangdong Province , China
| | - Chenkai Lin
- Department of Orthopedics , The Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen 510275 , Guangdong Province , China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , Guangdong Province , China
| | - Lei Zhou
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Chenyun Ning
- College of Materials Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong Province , China
| | - Qiyou Wang
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , Guangdong Province , China
| |
Collapse
|
153
|
Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott WE, Ferreira AM. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:236-246. [PMID: 30033251 DOI: 10.1016/j.msec.2018.04.101] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 12/22/2022]
Abstract
Hydrogels based on natural polymers offer a range of properties to mimic the native extracellular matrix, and provide microenvironments to preserve cellular function and encourage tissue formation. A tri-component hydrogel using collagen, alginate and fibrin (CAF) was developed and investigated at three collagen concentrations for application as a functional extracellular matrix analogue. Physical-chemical characterization of CAF hydrogels demonstrated a thermo-responsive crosslinking capacity at physiological conditions with stiffness similar to native soft tissues. CAF hydrogels were also assessed for cytocompatibility using L929 murine fibroblasts, pancreatic MIN6 β-cells and human mesenchymal stem cells (hMSCs); and demonstrated good cell viability, proliferation and metabolic activity after 7 days of in vitro culture. CAF hydrogels, especially with 2.5% w/v collagen, increased alkaline phosphatase production in hMSCs indicating potential for the promotion of osteogenic activity. Moreover, CAF hydrogels also increased metabolic activity of MIN6 β-cells and promoted the reconstitution of spherical pseudoislets with sizes ranging between 50 and 150 μm at day 7, demonstrating potential in diabetic therapeutic applications.
Collapse
Affiliation(s)
- G Montalbano
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; Department of Applied Science and Technology, Politecnico di Torino, Turin 10129, Italy
| | - S Toumpaniari
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; Cambridge Centre for Medical Materials, University of Cambridge, Cambridge CB3 0FS, UK
| | - A Popov
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - P Duan
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - J Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - K Dalgarno
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - W E Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - A M Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
154
|
Ma C, Gerhard E, Lu D, Yang J. Citrate chemistry and biology for biomaterials design. Biomaterials 2018; 178:383-400. [PMID: 29759730 DOI: 10.1016/j.biomaterials.2018.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA.
| |
Collapse
|
155
|
Zheng G, Guan B, Hu P, Qi X, Wang P, Kong Y, Liu Z, Gao P, Li R, Zhang X, Wu X, Sui L. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation. Cell Prolif 2018; 51:e12460. [PMID: 29701270 DOI: 10.1111/cpr.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. MATERIALS AND METHODS Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. RESULTS The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. CONCLUSIONS Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Guoying Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Binbin Guan
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Penghui Hu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xingying Qi
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Pingting Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Yu Kong
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zihao Liu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Ping Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
156
|
Patel M, Lee HJ, Park S, Kim Y, Jeong B. Injectable thermogel for 3D culture of stem cells. Biomaterials 2018; 159:91-107. [DOI: 10.1016/j.biomaterials.2018.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022]
|
157
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
158
|
Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells. Front Cell Neurosci 2018; 11:417. [PMID: 29354032 PMCID: PMC5758595 DOI: 10.3389/fncel.2017.00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Carsten Schulte
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| |
Collapse
|
159
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
160
|
Kwon BJ, Wang X, Kang ML, You J, Lee SJ, Kim WS, Yoon YS, Park JC, Sung HJ. Design of Polymeric Culture Substrates to Promote Proangiogenic Potential of Stem Cells. Macromol Biosci 2017; 18. [PMID: 29285899 DOI: 10.1002/mabi.201700340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/05/2017] [Indexed: 11/11/2022]
Abstract
Stem cells are a promising cell source for regenerative medicine due to their differentiation and self-renewal capacities. In the field of regenerative medicine and tissue engineering, a variety of biomedical technologies have been tested to improve proangiogenic activities of stem cells. However, their therapeutic effect is found to be limited in the clinic because of cell loss, senescence, and insufficient therapeutic activities. To address this type of issue, advanced techniques for biomaterial synthesis and fabrication have been approached to mimic proangiogenic microenvironment and to direct proangiogenic activities. This review highlights the types of polymers and design strategies that have been studied to promote proangiogenic activities of stem cells. In particular, scaffolds, hydrogels, and surface topographies, as well as insight into their underlying mechanisms to improve proangiogenic activities are the focuses. The strategy to promote angiogenic activities of hMSCs by controlling substrate repellency is introduced, and the future direction is proposed.
Collapse
Affiliation(s)
- Byeong-Ju Kwon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Xintong Wang
- Revenue Analytics, Inc., Atlanta, GA, 30339, USA
| | - Mi-Lan Kang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin You
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Shin-Jeong Lee
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won Shik Kim
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hak-Joon Sung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
161
|
Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Biomed Mater Eng 2017; 28:671-685. [DOI: 10.3233/bme-171703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Didarul B. Bhuiyan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Rina Tannenbaum
- Department of Materials Science and Engineering, Program in Chemical and Molecular Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Timothy M. Wick
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
162
|
Liu C, Zhou Y, Sun M, Li Q, Dong L, Ma L, Cheng K, Weng W, Yu M, Wang H. Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36513-36524. [PMID: 28984126 DOI: 10.1021/acsami.7b07202] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Well-organized orientation of cells and anisotropic extracellular matrix (ECM) are crucial in engineering biomimetic tissues, such as muscles, arteries, and nervous system, and so on. This strategy, however, is only beginning to be explored. Here, we demonstrated a light-induced cell alignment and harvest for anisotropic cell sheets (ACS) technology using light-responsive TiO2 nanodots film (TNF) and photo-cross-linkable gelatin methacrylate (GelMA). Cell initial behaviors on TNF might be controlled by micropatterns of light-induced distinct surface hydroxyl features, owing to a sensing mechanism of myosin II-driven retraction of lamellipodia. Further light treatment allowed ACS detachment from TNF surface while simultaneously solidified the GelMA, realizing the automatic transference of ACS. Moreover, two detached ACS were successfully stacked into a 3D bilayer construct with controllable orientation of individual layer and maintained cell alignment for more than 7 days. Interestingly, the anisotropic HFF-1 cell sheets could further induce the HUVECs to form anisotropic capillary-like networks via upregulating VEGFA and ANGPT1 and producing anisotropic ECM. This developed integrated-functional ACS technology therefore provides a novel route to produce complex tissue constructs with well-defined orientations and may have a profound impact on regenerative medicine.
Collapse
Affiliation(s)
- Chao Liu
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Ying Zhou
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Miao Sun
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Qi Li
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Liang Ma
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Kui Cheng
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Wenjian Weng
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
163
|
Zhang D, Lee J, Kilian KA. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Adv Healthc Mater 2017; 6. [PMID: 28841770 DOI: 10.1002/adhm.201700535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Junmin Lee
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
164
|
Shin J, Choi EJ, Cho JH, Cho AN, Jin Y, Yang K, Song C, Cho SW. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules 2017; 18:3060-3072. [PMID: 28876908 DOI: 10.1021/acs.biomac.7b00568] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrically conductive hyaluronic acid (HA) hydrogels incorporated with single-walled carbon nanotubes (CNTs) and/or polypyrrole (PPy) were developed to promote differentiation of human neural stem/progenitor cells (hNSPCs). The CNT and PPy nanocomposites, which do not easily disperse in aqueous phases, dispersed well and were efficiently incorporated into catechol-functionalized HA (HA-CA) hydrogels by the oxidative catechol chemistry used for hydrogel cross-linking. The prepared electroconductive HA hydrogels provided dynamic, electrically conductive three-dimensional (3D) extracellular matrix environments that were biocompatible with hNSPCs. The HA-CA hydrogels containing CNT and/or PPy significantly promoted neuronal differentiation of human fetal neural stem cells (hfNSCs) and human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with improved electrophysiological functionality when compared to differentiation of these cells in a bare HA-CA hydrogel without electroconductive motifs. Calcium channel expression was upregulated, depolarization was activated, and intracellular calcium influx was increased in hNSPCs that were differentiated in 3D electroconductive HA-CA hydrogels; these data suggest a potential mechanism for stem cell neurogenesis. Overall, our bioinspired, electroconductive HA hydrogels provide a promising cell-culture platform and tissue-engineering scaffold to improve neuronal regeneration.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Eun Jung Choi
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
165
|
Macgregor M, Williams R, Downes J, Bachhuka A, Vasilev K. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1081. [PMID: 28906470 PMCID: PMC5615735 DOI: 10.3390/ma10091081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Melanie Macgregor
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rachel Williams
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Joni Downes
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Akash Bachhuka
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
166
|
Cantini M, Gomide K, Moulisova V, González‐García C, Salmerón‐Sánchez M. Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks. ADVANCED BIOSYSTEMS 2017; 1:1700047. [PMID: 29497701 PMCID: PMC5822048 DOI: 10.1002/adbi.201700047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/05/2017] [Indexed: 01/09/2023]
Abstract
Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.
Collapse
Affiliation(s)
- Marco Cantini
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Karina Gomide
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Vladimira Moulisova
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Cristina González‐García
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Manuel Salmerón‐Sánchez
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| |
Collapse
|
167
|
Three-Dimensional Organoid System Transplantation Technologies in Future Treatment of Central Nervous System Diseases. Stem Cells Int 2017; 2017:5682354. [PMID: 28904534 PMCID: PMC5585580 DOI: 10.1155/2017/5682354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, scientists have made great achievements in understanding the development of human brain and elucidating critical elements of stepwise spatiotemporal control strategies in neural stem cell specification lineage, which facilitates successful induction of neural organoid in vitro including the cerebral cortex, cerebellar, neural tube, hippocampus cortex, pituitary, and optic cup. Besides, emerging researches on neural organogenesis promote the application of 3D organoid system transplantation in treating central nervous system (CNS) diseases. Present review will categorize current researches on organogenesis into three approaches: (a) stepwise, direct organization of region-specific or population-enriched neural organoid; (b) assemble and direct distinct organ-specific progenitor cells or stem cells to form specific morphogenesis organoid; and (c) assemble embryoid bodies for induction of multilayer organoid. However, the majority of these researches focus on elucidating cellular and molecular mechanisms involving in brain organogenesis or disease development and only a few of them conducted for treating diseases. In this work, we will compare three approaches and also analyze their possible indications for diseases in future treatment on the basis of their distinct characteristics.
Collapse
|
168
|
Vasilevich AS, Carlier A, de Boer J, Singh S. How Not To Drown in Data: A Guide for Biomaterial Engineers. Trends Biotechnol 2017; 35:743-755. [PMID: 28693857 DOI: 10.1016/j.tibtech.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 01/20/2023]
Abstract
High-throughput assays that produce hundreds of measurements per sample are powerful tools for quantifying cell-material interactions. With advances in automation and miniaturization in material fabrication, hundreds of biomaterial samples can be rapidly produced, which can then be characterized using these assays. However, the resulting deluge of data can be overwhelming. To the rescue are computational methods that are well suited to these problems. Machine learning techniques provide a vast array of tools to make predictions about cell-material interactions and to find patterns in cellular responses. Computational simulations allow researchers to pose and test hypotheses and perform experiments in silico. This review describes approaches from these two domains that can be brought to bear on the problem of analyzing biomaterial screening data.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Shantanu Singh
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
169
|
Li Y, Dai X, Bai Y, Liu Y, Wang Y, Liu O, Yan F, Tang Z, Zhang X, Deng X. Electroactive BaTiO 3 nanoparticle-functionalized fibrous scaffolds enhance osteogenic differentiation of mesenchymal stem cells. Int J Nanomedicine 2017; 12:4007-4018. [PMID: 28603415 PMCID: PMC5457183 DOI: 10.2147/ijn.s135605] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been proven that the surface topographic cues of fiber arrangement can induce osteogenic differentiation of mesenchymal stem cells. However, this effect alone is weak and insufficient to meet the needs of regenerative medicine. In this work, electroactivity concept was introduced to enhance the osteoinductivity of fibrous scaffolds. The randomly oriented and aligned electroactive fibrous scaffolds of poly-(l-lactic acid) (PLLA) with incorporation of ferroelectric ceramic BaTiO3 (BTO) nanoparticles (NPs) were fabricated by electrospinning. Physicochemical properties, including fiber morphology, microstructure, composition, thermal stability, surface roughness, and surface wettability, of these fibrous scaffolds were studied. The dielectric properties of the scaffolds were evaluated. The results showed that the randomly oriented BTO/PLLA composite fibrous scaffolds had the highest dielectric permittivity of 1.19, which is of the same order of magnitude as the natural bone. The combined effects of fiber orientation and electrical activity on the osteogenic responses of bone marrow mesenchymal stem cells (BM-MSCs) were specifically investigated. Randomly oriented composite fibrous scaffolds significantly promoted polygonal spreading and encouraged early osteogenic differentiation in BM-MSCs, whereas aligned composite fibrous scaffolds promoted cell elongation and discouraged osteogenic differentiation. These results evidenced that randomly fiber orientation and biomimetic electric activity have combining effects on osteogenic differentiation of BM-MSCs. Our findings indicate that coupling effects of multi-physical properties should be paid more attention to mimic the microenvironment for enhancing osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
- Yiping Li
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha.,Department of Geriatric Dentistry
| | - Xiaohan Dai
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | | | - Yun Liu
- Department of Geriatric Dentistry
| | - Yuehong Wang
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Ousheng Liu
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Fei Yan
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Zhangui Tang
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology.,National Engineering Laboratory for Digital and Material Technology of Stomatology.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry.,National Engineering Laboratory for Digital and Material Technology of Stomatology.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
170
|
Schlötzer-Schrehardt U, Freudenberg U, Kruse FE. Zukunftstechnologie Tissue-Engineering. Ophthalmologe 2017; 114:327-340. [DOI: 10.1007/s00347-017-0468-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
171
|
Kaushik G, Leijten J, Khademhosseini A. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 2017; 35:51-60. [PMID: 27641724 PMCID: PMC6527109 DOI: 10.1002/stem.2502] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023]
Abstract
Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Jeroen Leijten
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
172
|
Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 2016; 8:384-395. [PMID: 27928465 PMCID: PMC5120243 DOI: 10.4252/wjsc.v8.i11.384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics.
METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases.
RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin.
CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling.
Collapse
|
173
|
Jones EA, Giannoudis PV, Kouroupis D. Bone repair with skeletal stem cells: rationale, progress to date and clinical application. Ther Adv Musculoskelet Dis 2016; 8:57-71. [PMID: 27247633 DOI: 10.1177/1759720x16642372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow (BM) contains stem cells for both hematopoietic and nonhematopoietic lineages. Hematopoietic stem cells enable hematopoiesis to occur in a controlled manner in order to accurately compensate for the loss of short- as well as long-lived mature blood cells. The physiological role of nonhematopoietic BM stem cells, often referred to as multipotential stromal cells or skeletal stem cells (SSCs), is less understood. According to an authoritative current opinion, the main function of SSCs is to give rise to cartilage, bone, marrow fat and hematopoiesis-supportive stroma, in a specific sequence during embryonic and postnatal development. This review outlines recent advances in the understanding of origins and homeostatic functions of SSCs in vivo and highlights current and future SSC-based treatments for skeletal and joint disorders.
Collapse
Affiliation(s)
- Elena A Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Room 5.24 Clinical Sciences Building, Leeds, West Yorkshire LS9 7TF, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Leeds General Infirmary, Leeds, UK NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Dimitrios Kouroupis
- Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, University Campus of Ioannina, Ioannina, Greece
| |
Collapse
|
174
|
Salmerón-Sánchez M, Dalby MJ. Synergistic growth factor microenvironments. Chem Commun (Camb) 2016; 52:13327-13336. [DOI: 10.1039/c6cc06888j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper focuses on developments in materials to stimulate growth factors effects by engineering presentation in synergy with integrins.
Collapse
Affiliation(s)
- Manuel Salmerón-Sánchez
- Division of Biomedical Engineering
- School of Engineering
- University of Glasgow
- Rankine Building
- Glasgow G12 8LT
| | - Matthew J. Dalby
- Center for Cell Engineering
- Institute of Molecular Cell and Systems Biology
- University of Glasgow
- Glasgow G12 8QQ
- UK
| |
Collapse
|