151
|
Interleukin-17 Is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa. Infect Immun 2016; 84:3507-3516. [PMID: 27698020 PMCID: PMC5116727 DOI: 10.1128/iai.00717-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic pulmonary infection with Pseudomonas aeruginosa is a feature of cystic fibrosis (CF) and other chronic lung diseases. Cytokines of the interleukin-17 (IL-17) family have been proposed as important in the host response to P. aeruginosa infection through their role in augmenting antibacterial immune responses, although their proinflammatory effect may contribute to lung damage that occurs as a result of chronic infection. We set out to explore the role of IL-17 in the host response to chronic P. aeruginosa infection. We used a murine model of chronic pulmonary infection with CF-related strains of P. aeruginosa. We demonstrate that IL-17 cytokine signaling is essential for mouse survival and prevention of chronic infection at 2 weeks postinoculation using two different P. aeruginosa strains. Following infection, there was a marked expansion of cells within mediastinal lymph nodes, comprised mainly of innate lymphoid cells (ILCs); ∼90% of IL-17-producing (IL-17+) cells had markers consistent with group 3 ILCs. A smaller percentage of IL-17+ cells had markers consistent with a B1 phenotype. In lung homogenates harvested 14 days following infection, there was a significant expansion of IL-17+ cells; about 50% of these were CD3+, split equally between CD4+ Th17 cells and γδ T cells, while the CD3− IL-17+ cells were almost exclusively group 3 ILCs. Further experiments with B cell-deficient mice showed that B cell production of IL-17 or natural antibodies did not provide any defense against chronic P. aeruginosa infection. Thus, IL-17 rather than antibody is a key element in host defense against chronic pulmonary infection with P. aeruginosa.
Collapse
|
152
|
Thomann A, Brengel C, Börger C, Kail D, Steinbach A, Empting M, Hartmann RW. Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release ofPseudomonas aeruginosa. ChemMedChem 2016; 11:2522-2533. [DOI: 10.1002/cmdc.201600419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Carsten Börger
- PharmBioTec GmbH; Science Park 1 66123 Saarbrücken Germany
| | - Dagmar Kail
- PharmBioTec GmbH; Science Park 1 66123 Saarbrücken Germany
| | - Anke Steinbach
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
- Saarland University; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Campus C 2.3 66123 Saarbrücken Germany
| |
Collapse
|
153
|
Sinha S, Shen X, Gallazzi F, Li Q, Zmijewski JW, Lancaster JR, Gates KS. Generation of Reactive Oxygen Species Mediated by 1‑Hydroxyphenazine, a Virulence Factor of Pseudomonas aeruginosa. Chem Res Toxicol 2016; 28:175-81. [PMID: 25590513 DOI: 10.1021/tx500259s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1-Hydroxyphenazine (1-HP) is a virulence factor produced by Pseudomonas aeruginosa. In this study,supercoiled plasmid DNA was employed as an analytical tool for the detection of ROS generation mediated by 1-HP. These assays provided evidence that 1-HP, in conjunction with NADPH alone or NADPH and the enzyme NADPH:cytochrome P450 reductase, mediated the production of superoxide radical under physiological conditions. Experiments with murine macrophage RAW264.7 cells and profluorescent ROS probes dichlorodihydrofluorescein or dihydroethidine provided preliminary evidence that 1-HP mediates the generation of intracellular oxidants. Generation of reactive oxygen species may contribute to the virulence properties of 1-HP in P. aeruginosa infections.
Collapse
|
154
|
Grassi VM, Arena V, Oliva A. Green pus in the subdural space and within the ventricles: an uncommon finding but a straightforward macroscopic diagnosis. Forensic Sci Med Pathol 2016; 12:517-519. [PMID: 27572894 DOI: 10.1007/s12024-016-9807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Vincenzo M Grassi
- Institute of Public Health, Legal Medicine Section, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Vincenzo Arena
- Institute of Pathological Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Oliva
- Institute of Public Health, Legal Medicine Section, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
155
|
Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins (Basel) 2016; 8:toxins8080236. [PMID: 27517959 PMCID: PMC4999852 DOI: 10.3390/toxins8080236] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems.
Collapse
|
156
|
Baig N, Polisetti S, Morales-Soto N, Dunham SJB, Sweedler JV, Shrout JD, Bohn PW. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9930:993004. [PMID: 29670306 PMCID: PMC5901720 DOI: 10.1117/12.2236695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.
Collapse
Affiliation(s)
- Nameera Baig
- Department of Chemistry & Biochemistry and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sneha Polisetti
- Department of Chemistry & Biochemistry and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, USA
| | - Sage J B Dunham
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, USA
| | - Paul W Bohn
- Department of Chemistry & Biochemistry and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
157
|
Heine D, Sundaram S, Beudert M, Martin K, Hertweck C. A widespread bacterial phenazine forms S-conjugates with biogenic thiols and crosslinks proteins. Chem Sci 2016; 7:4848-4855. [PMID: 30155132 PMCID: PMC6016718 DOI: 10.1039/c6sc00503a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023] Open
Abstract
Phenazines are redox-active compounds produced by a range of bacteria, including many pathogens. Endowed with various biological activities, these ubiquitous N-heterocycles are well known for their ability to generate reactive oxygen species by redox cycling. Phenazines may lead to an irreversible depletion of glutathione, but a detailed mechanism has remained elusive. Furthermore, it is not understood why phenazines have so many protein targets and cause protein misfolding as well as their aggregation. Here we report the discovery of unprecedented conjugates (panphenazines A, B) of panthetheine and phenazine-1-carboxylic (PCA) acid from a Kitasatospora sp., which prompted us to investigate their biogenesis. We found that PCA reacts with diverse biogenic thiols under radical-forming conditions, which provides a plausible model for irreversible glutathione depletion. To evaluate the scope of the reaction in cells we designed biotin and rhodamine conjugates for protein labelling and examined their covalent fusion with model proteins (ketosynthase, carbonic anhydrase III, albumin). Our results reveal important, yet overlooked biological roles of phenazines and show for the first time their function in protein conjugation and crosslinking.
Collapse
Affiliation(s)
- D Heine
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - S Sundaram
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Matthias Beudert
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - K Martin
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - C Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
- Friedrich Schiller University , 07737 Jena , Germany
| |
Collapse
|
158
|
Kratochvil MJ, Welsh MA, Manna U, Ortiz BJ, Blackwell HE, Lynn DM. Slippery Liquid-Infused Porous Surfaces that Prevent Bacterial Surface Fouling and Inhibit Virulence Phenotypes in Surrounding Planktonic Cells. ACS Infect Dis 2016; 2:509-17. [PMID: 27626103 PMCID: PMC5198836 DOI: 10.1021/acsinfecdis.6b00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfaces that can both prevent bacterial biofouling and inhibit the expression of virulence phenotypes in surrounding planktonic bacteria are of interest in a broad range of contexts. Here, we report new slippery-liquid infused porous surfaces (SLIPS) that resist bacterial colonization (owing to inherent "slippery" surface character) and also attenuate virulence phenotypes in non-adherent cells by gradually releasing small-molecule quorum sensing inhibitors (QSIs). QSIs active against Pseudomonas aeruginosa can be loaded into SLIPS without loss of their slippery and antifouling properties, and imbedded agents can be released into surrounding media over hours to days depending on the structures of the loaded agent. This controlled-release approach is useful for inhibiting virulence factor production and can also inhibit bacterial biofilm formation on nearby, non-SLIPS-coated surfaces. Finally, we demonstrate that this approach is compatible with the simultaneous release of more than one type of QSI, enabling greater control over virulence and suggesting new opportunities to tune the antifouling properties of these slippery surfaces.
Collapse
Affiliation(s)
- Michael J Kratochvil
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael A Welsh
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Uttam Manna
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Benjamín J Ortiz
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemistry and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
159
|
The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 2016; 113:E3538-47. [PMID: 27274079 DOI: 10.1073/pnas.1600424113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.
Collapse
|
160
|
Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, Wierre-Gore N, Alton EWFW, Bundy JG, Connett G, Faust SN, Filloux A, Freemont P, Jones A, Khoo V, Morales S, Murphy R, Pabary R, Simbo A, Schelenz S, Takats Z, Webb J, Williams HD, Davies JC. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med 2016; 10:685-97. [PMID: 27175979 DOI: 10.1080/17476348.2016.1177460] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.
Collapse
Affiliation(s)
- Helena Lund-Palau
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Andrew R Turnbull
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| | - Andrew Bush
- b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK.,c National Heart and Lung Institute, Imperial College , London , UK
| | - Emmanuelle Bardin
- d Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College , London , UK
| | - Loren Cameron
- e Department of Medicine , Imperial College , London , UK
| | - Odel Soren
- f Biological Sciences, Institute for Life Sciences , University of Southampton , Southampton , UK
| | | | - Eric W F W Alton
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Jacob G Bundy
- c National Heart and Lung Institute, Imperial College , London , UK
| | - Gary Connett
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Saul N Faust
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Alain Filloux
- h Department of Life Sciences , Imperial College , London , UK
| | - Paul Freemont
- e Department of Medicine , Imperial College , London , UK
| | - Andy Jones
- i Department of Respiratory Medicine , Royal Brompton Hospital , London , UK
| | - Valerie Khoo
- c National Heart and Lung Institute, Imperial College , London , UK
| | | | - Ronan Murphy
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Rishi Pabary
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Ameze Simbo
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Silke Schelenz
- k Department of Microbiology , Royal Brompton Hospital , London UK
| | - Zoltan Takats
- d Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College , London , UK
| | - Jeremy Webb
- k Department of Microbiology , Royal Brompton Hospital , London UK
| | - Huw D Williams
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Jane C Davies
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| |
Collapse
|
161
|
Yang ZS, Ma LQ, Zhu K, Yan JY, Bian L, Zhang KQ, Zou CG. Pseudomonas toxin pyocyanin triggers autophagy: Implications for pathoadaptive mutations. Autophagy 2016; 12:1015-28. [PMID: 27159636 DOI: 10.1080/15548627.2016.1170256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Zhong-Shan Yang
- a Key State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University , Kunming , Yunnan , China.,b Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine , Kunming , Yunnan , China
| | - Lan-Qing Ma
- c Yunnan Institute of Digestive Disease, Department of Digestive Diseases, The First Affiliated Hospital, Kunming Medical University , Kunming , Yunnan , China
| | - Kun Zhu
- d Institute of Microbiology, Chinese Academy of Science , Beijing , China
| | - Jin-Yuan Yan
- a Key State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University , Kunming , Yunnan , China
| | - Li Bian
- e Department of Pathology , The First Affiliated Hospital, Kunming Medical University , Kunming , Yunnan , China
| | - Ke-Qin Zhang
- a Key State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University , Kunming , Yunnan , China
| | - Cheng-Gang Zou
- a Key State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University , Kunming , Yunnan , China
| |
Collapse
|
162
|
GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1. mSphere 2016; 1:mSphere00020-16. [PMID: 27303730 PMCID: PMC4894688 DOI: 10.1128/msphere.00020-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023] Open
Abstract
Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales. Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales.
Collapse
|
163
|
A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:3016-24. [PMID: 26953208 DOI: 10.1128/aac.02986-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell.
Collapse
|
164
|
Locke LW, Myerburg MM, Weiner DJ, Markovetz MR, Parker RS, Muthukrishnan A, Weber L, Czachowski MR, Lacy RT, Pilewski JM, Corcoran TE. Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung. Eur Respir J 2016; 47:1392-401. [PMID: 27009167 DOI: 10.1183/13993003.01880-2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/03/2016] [Indexed: 01/05/2023]
Abstract
Airway surface liquid hyperabsorption and mucus accumulation are key elements of cystic fibrosis lung disease that can be assessed in vivo using functional imaging methods. In this study we evaluated experimental factors affecting measurements of mucociliary clearance (MCC) and small-molecule absorption (ABS) and patient factors associated with abnormal absorption and mucus clearance.Our imaging technique utilises two radiopharmaceutical probes delivered by inhalation. Measurement repeatability was assessed in 10 adult cystic fibrosis subjects. Experimental factors were assessed in 29 adult and paediatric cystic fibrosis subjects (51 scans). Patient factors were assessed in a subgroup with optimal aerosol deposition (37 scans; 24 subjects). Paediatric subjects (n=9) underwent initial and 2-year follow-up scans. Control subjects from a previously reported study are included for comparison.High rates of central aerosol deposition influenced measurements of ABS and, to a lesser extent, MCC. Depressed MCC in cystic fibrosis was only detectable in subjects with previous Pseudomonas aeruginosa infection. Cystic fibrosis subjects without P. aeruginosa had similar MCC to control subjects. Cystic fibrosis subjects had consistently higher ABS rates.We conclude that the primary experimental factor affecting MCC/ABS measurements is central deposition percentage. Depressed MCC in cystic fibrosis is associated with P. aeruginosa infection. ABS is consistently increased in cystic fibrosis.
Collapse
Affiliation(s)
- Landon W Locke
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Weiner
- Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R Markovetz
- Dept of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S Parker
- Dept of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA Dept of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA Dept of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ashok Muthukrishnan
- Dept of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lawrence Weber
- Dept of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Ryan T Lacy
- Dept of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Pilewski
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA Dept of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy E Corcoran
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA Dept of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA Dept of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
165
|
Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. SENSORS 2016; 16:s16030408. [PMID: 27007376 PMCID: PMC4813983 DOI: 10.3390/s16030408] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.
Collapse
|
166
|
Tan H, Zhang L, Weng Y, Chen R, Zhu F, Jin Y, Cheng Z, Jin S, Wu W. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa. Front Microbiol 2016; 7:317. [PMID: 27014238 PMCID: PMC4792872 DOI: 10.3389/fmicb.2016.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM.
Collapse
Affiliation(s)
- Hao Tan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, GainesvilleFL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
167
|
Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 2016; 7:e2127. [PMID: 26938301 PMCID: PMC4823927 DOI: 10.1038/cddis.2015.409] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress.
Collapse
Affiliation(s)
- E Datan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S G Roy
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Germain
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - N Zali
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - J E McLean
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Golshan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S Harbajan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - R A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - Z Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| |
Collapse
|
168
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
169
|
Pastells C, Pascual N, Sanchez-Baeza F, Marco MP. Immunochemical Determination of Pyocyanin and 1-Hydroxyphenazine as Potential Biomarkers of Pseudomonas aeruginosa Infections. Anal Chem 2016; 88:1631-8. [DOI: 10.1021/acs.analchem.5b03490] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Carme Pastells
- Nanobiotechnology for Diagnostics (Nb4D), IQAC−CSIC, ‡Networking Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Spain, Jordi
Girona, 18-26, 08034 Barcelona, Spain
| | - Nuria Pascual
- Nanobiotechnology for Diagnostics (Nb4D), IQAC−CSIC, ‡Networking Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Spain, Jordi
Girona, 18-26, 08034 Barcelona, Spain
| | - Francisco Sanchez-Baeza
- Nanobiotechnology for Diagnostics (Nb4D), IQAC−CSIC, ‡Networking Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Spain, Jordi
Girona, 18-26, 08034 Barcelona, Spain
| | - M.-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), IQAC−CSIC, ‡Networking Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Spain, Jordi
Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
170
|
Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:1-15. [PMID: 26819549 PMCID: PMC4718088 DOI: 10.4137/pmc.s13209] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Collapse
Affiliation(s)
- Kerstin Reuter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.; Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Department of Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
171
|
Cui Q, Lv H, Qi Z, Jiang B, Xiao B, Liu L, Ge Y, Hu X. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0144447. [PMID: 26735915 PMCID: PMC4703396 DOI: 10.1371/journal.pone.0144447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Qinna Cui
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Huinan Lv
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Zhuangzhuang Qi
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bo Xiao
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Linde Liu
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
- * E-mail: (YG); (XH)
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YG); (XH)
| |
Collapse
|
172
|
Ishihara T, Shibui M, Hoshi T, Mizushima T. Scavenging of superoxide anions by lecithinized superoxide dismutase in HL-60 cells. MOLECULAR BIOSYSTEMS 2016; 12:274-82. [DOI: 10.1039/c5mb00631g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superoxide dismutase covalently bound to four lecithin molecules (PC-SOD) on plasma membrane has been found to have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Tsutomu Ishihara
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Misaki Shibui
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Takaya Hoshi
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Tohru Mizushima
- Department of Analytical Chemistry
- Faculty of Pharmacy
- Keio University
- Tokyo 105-8512
- Japan
| |
Collapse
|
173
|
Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M, Boyle B, Molinaro A, Kukavica-Ibrulj I, Tümmler B, Levesque RC, Bragonzi A. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015; 16:1105. [PMID: 26714629 PMCID: PMC4696338 DOI: 10.1186/s12864-015-2276-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/06/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.
Collapse
Affiliation(s)
- Irene Bianconi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Marcella Facchini
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
174
|
Tayabali AF, Coleman G, Nguyen KC. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology. PLoS One 2015; 10:e0143604. [PMID: 26619347 PMCID: PMC4664251 DOI: 10.1371/journal.pone.0143604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.
Collapse
Affiliation(s)
- Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Ontario, Canada
| | - Gordon Coleman
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Ontario, Canada
| | - Kathy C. Nguyen
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
175
|
Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Rocco PRM, Castro-Faria MV, Castro-Faria-Neto HC. Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Int J Med Microbiol 2015; 306:20-8. [PMID: 26652129 DOI: 10.1016/j.ijmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance.
Collapse
Affiliation(s)
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Velho Castro-Faria
- Laboratório Integrado de Nefrologia, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
176
|
Moore JE, Rendall JC, Downey DG. Pseudomonas aeruginosa displays an altered phenotype in vitro when grown in the presence of mannitol. Br J Biomed Sci 2015; 72:115-9. [PMID: 26510267 DOI: 10.1080/09674845.2015.11666807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
D-mannitol has been approved in dry powder formulation as an effective antimucolytic agent in patients with cystic fibrosis. What is not known is the effect of adding a metabolisable sugar on the biology of chronic bacterial pathogens in the CF lung. Therefore, a series of simple in vitro experiments were performed to examine the effect of adding D-mannitol on the phenotype of the CF respiratory pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia. Clinical isolates (n = 86) consisting of P. aeruginosa (n = 51), B. cenocepacia (n = 26), P. putida (n = 4), Stenotrophomonas maltophila (n = 3) and Pseudomonas spp. (n = 2) were examined by supplementing basal nutrient agar with varying concentrations of D-mannitol (0-20% [w/v]) and subsequently examining for any change in microbial phenotype. The effect of supplementation with mannitol was four-fold, namely i) To increase the proliferation and increase in cell density of all CF organisms examined, with an optimal concentration of 2-4% (w/v) D-mannitol. No such increase in cell proliferation was observed when mannitol was substituted with sodium chloride. ii) Enhanced pigment production was observed in 2/51 (3.9%) of the P. aeruginosa isolates examined, in one of the P. putida isolates, and in 3/26 (11.5%) of the B. cenocepacia isolates examined. iii). When examined at 4.0% (w/v) supplementation with mannitol, 11/51 (21.6%) P. aeruginosa isolates and 3/26 (11.5%) B. cenocepacia isolates were seen to exhibit the altered adhesion phenotype. iv). With respect to the altered mucoid phenotype, 5/51 (9.8%) P. aeruginosa produced this phenotype when grown at 4% mannitol. Mucoid production was greatest at 4%, was poor at 10% and absent at 20% (w/v) mannitol. The altered mucoid phenotype was not observed in the B. cenocepacia isolates or any of the other clinical taxa examined. Due consideration therefore needs to be given, where there is altered physiology within the small airways, leading to a potentially altered biological state of the colonising microorganisms in novel inhaled pharmaceutical interventions in CF, particularly those, which are not designated as antimicrobial agents.
Collapse
|
177
|
Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. J Mol Biol 2015; 427:3628-45. [DOI: 10.1016/j.jmb.2015.08.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
178
|
Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms. J Proteome Res 2015; 14:4524-37. [PMID: 26378716 DOI: 10.1021/acs.jproteome.5b00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs show that drug-binding cytoplasmic proteins and porins are potentially shuttled from the whole cell into the OMVs and may contribute to the antibiotic resistance of P. aeruginosa whole cells within biofilms.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Matthew D Surette
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Christopher Bandoro
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Paul Taylor
- SPARC BioCentre, The Hospital for Sick Children , Toronto, Ontario, Canada , M5G 0A4
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada , N1G 2W1
| |
Collapse
|
179
|
Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. MICROBIOLOGY-SGM 2015; 161:2298-309. [PMID: 26419906 DOI: 10.1099/mic.0.000193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. P. aeruginosa also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether P. aeruginosa pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of P. aeruginosa PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered P. aeruginosa more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment.
Collapse
Affiliation(s)
- Viviana T Orlandi
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Fabrizio Bolognese
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Luca Chiodaroli
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Tim Tolker-Nielsen
- 2Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Barbieri
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
180
|
Hempenstall A, Grant GD, Anoopkumar-Dukie S, Johnson PJ. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries. Clin Exp Pharmacol Physiol 2015; 42:186-91. [PMID: 25399964 DOI: 10.1111/1440-1681.12340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/23/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
The effects of the Pseudomonas aeruginosa virulence factor pyocyanin (PCN) on the contractile function of porcine coronary arteries was investigated in vitro. Artery rings (5 mm) were suspended in organ baths containing Krebs' solution for the measurement of isometric tension. The effect of PCN on resting and precontracted coronary arteries was initially investigated with various agents. Arteries were precontracted with prostaglandin (PG) F2α or potassium chloride and endothelium-dependent relaxations were induced by various agents in the presence of PCN. Pyocyanin (0.1-10 μmol/L) evoked small-amplitude, dose-dependent contractions in resting porcine coronary arteries. In addition, PCN amplified the contractile response to PGF2α , but did not alter responses to carbachol. Pyocyanin (0.1-10 μmol/L) significantly inhibited endothelium-dependent relaxations evoked by neurokinin A. Pyocyanin also inhibited relaxations evoked by diethylamine nitric oxide (a nitric oxide donor), forskolin (an adenylate cyclase activator), dibuytyryl-cAMP (a cAMP analogue), 8-bromo-cGMP (a cGMP analogue) and P1075 (a KATP channel activator), but not isoprenaline (β-adrenoceceptor agonist). These results indicate that physiological concentrations of PCN interfere with multiple intracellular processes involved in vascular smooth muscle relaxation, in particular pathways downstream of nitric oxide release. Thus, PCN may alter normal vascular function in patients infected with P. aeruginosa.
Collapse
|
181
|
Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS One 2015; 10:e0138209. [PMID: 26390435 PMCID: PMC4577073 DOI: 10.1371/journal.pone.0138209] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition of QS and mechanisms by which this may occur.
Collapse
Affiliation(s)
- Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Sonal Patil
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - P. J. Cullen
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
- * E-mail:
| |
Collapse
|
182
|
Mai-Prochnow A, Bradbury M, Ostrikov K, Murphy AB. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. PLoS One 2015; 10:e0130373. [PMID: 26114428 PMCID: PMC4483161 DOI: 10.1371/journal.pone.0130373] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Mark Bradbury
- CSIRO Food and Nutrition Flagship, 11 Julius Ave, North Ryde, NSW 2113, Australia
| | - Kostya Ostrikov
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
- Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Earth Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony B. Murphy
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
| |
Collapse
|
183
|
van ‘t Wout EFA, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, Marciniak SJ, Hiemstra PS. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog 2015; 11:e1004946. [PMID: 26083346 PMCID: PMC4471080 DOI: 10.1371/journal.ppat.1004946] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/11/2015] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. Pseudomonas aeruginosa causes a devastating infection when it affects patients with cystic fibrosis or other chronic lung diseases. It often causes chronic infection due to its resistance to antibiotic treatment and its ability to form biofilms in these patients. The toxic effects of P. aeruginosa are largely mediated by secreted virulence factors. Efficient functioning of the endoplasmic reticulum is crucial for cell survival and appropriate immune responses, while its dysfunction causes stress and activation of the unfolded protein response. In this study, we found that virulence factors secreted by P. aeruginosa trigger the unfolded protein response in human cells by causing endoplasmic reticulum stress. In addition, secreted virulence factors activate the integrated stress response via a parallel independent pathway. Both stress pathways lead to the induction of the protein GADD34, which appears to provide protection against the toxic effects of the secreted virulence factors.
Collapse
Affiliation(s)
- Emily F. A. van ‘t Wout
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | | | - Ria van Boxtel
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Lucy E. Dalton
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Hanna J. Clarke
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Jan Tommassen
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
184
|
Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 2015; 22:1097-110. [PMID: 25686490 PMCID: PMC4403017 DOI: 10.1089/ars.2014.5979] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. RESULTS Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. INNOVATION These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. CONCLUSION These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.
Collapse
|
185
|
Rumbaugh KP. Genomic complexity and plasticity ensure Pseudomonas success. FEMS Microbiol Lett 2015; 356:141-3. [PMID: 25060810 DOI: 10.1111/1574-6968.12517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
186
|
Kumar L, Chhibber S, Kumar R, Kumar M, Harjai K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia 2015; 102:84-95. [PMID: 25704369 DOI: 10.1016/j.fitote.2015.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
187
|
Welsh MA, Eibergen NR, Moore JD, Blackwell HE. Small molecule disruption of quorum sensing cross-regulation in pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 2015; 137:1510-9. [PMID: 25574853 DOI: 10.1021/ja5110798] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits-Las, Rhl, and Pqs-to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
188
|
Park SJ, Kim SK, So YI, Park HY, Li XH, Yeom DH, Lee MN, Lee BL, Lee JH. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Mol Microbiol 2014; 94:1298-314. [PMID: 25315216 DOI: 10.1111/mmi.12830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/25/2022]
Abstract
In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Pharmacy, Pusan National University, Pusan, 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O'Toole GA, Harwood CS, Dietrich LEP, Hogan DA. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 2014; 10:e1004480. [PMID: 25340349 PMCID: PMC4207824 DOI: 10.1371/journal.ppat.1004480] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis. In many human infections, several species of microbes are often present. This is typically the case with the disease cystic fibrosis, characterized by thick mucus in the lungs that is colonized by bacteria and fungi. Here, we show evidence that interactions between the bacterium Pseudomonas aeruginosa and the fungus Candida albicans result in attributes of infection that are worse for the human host. We found that ethanol, such as that produced by C. albicans, causes increased levels of a signaling molecule in P. aeruginosa that promotes biofilm formation. Biofilm formation by P. aeruginosa is associated with infections that are more difficult to treat. Ethanol stimulated P. aeruginosa colonization of plastic surfaces and airway cells, and we identified components of this mechanism. Fungally-produced ethanol also changes the spectrum of phenazine toxins produced by P. aeruginosa, and phenazines are associated with worse lung function in people with cystic fibrosis. In light of the fact that phenazines interact with C. albicans to promote ethanol production, we propose a positive feedback loop between C. albicans and P. aeruginosa that contributes to worse disease. Our findings could have implications for the study and treatment of multi-species infections.
Collapse
Affiliation(s)
- Annie I. Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Colleen E. Harty
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Yuriy Golub
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sandy Thao
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dae Gon Ha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sven D. Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caroline S. Harwood
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
190
|
Mendis N, Lin YR, Faucher SP. Comparison of virulence properties of Pseudomonas aeruginosa exposed to water and grown in rich broth. Can J Microbiol 2014; 60:777-81. [PMID: 25352257 DOI: 10.1139/cjm-2014-0519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can infect susceptible patients suffering from cystic fibrosis, immunosuppression, and severe burns. Nosocomial- and community-acquired infection is likely due to contact with water sources contaminated with P. aeruginosa. Most of what is known about the virulence properties of P. aeruginosa was derived from studies using fairly rich broths, which do not represent conditions found in water, such as low nutrient concentrations. Here, we compare biofilm production, invasion of epithelial cells, cytotoxicity, and pyocyanin production of P. aeruginosa in water with P. aeruginosa grown in rich broth. Since tap water is variable, we used a defined water medium, Fraquil, to ensure reproducibility of the results. We found that P. aeruginosa does not readily form biofilm in Fraquil. Pseudomonas aeruginosa is equally able to attach to and invade epithelial cells but is more cytotoxic after incubation in water for 30 days than when it is grown in rich broth. Moreover, P. aeruginosa produces less pyocyanin when exposed to water. Our results show that P. aeruginosa seems to have different properties when exposed to water than when grown in rich broth.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | | |
Collapse
|
191
|
Blankenfeldt W, Parsons JF. The structural biology of phenazine biosynthesis. Curr Opin Struct Biol 2014; 29:26-33. [PMID: 25215885 DOI: 10.1016/j.sbi.2014.08.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis.
Collapse
Affiliation(s)
- Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | - James F Parsons
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|
192
|
Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa. Infect Immun 2014; 82:4746-57. [PMID: 25156741 DOI: 10.1128/iai.01915-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ΔpolB and ΔPA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections.
Collapse
|
193
|
AhR sensing of bacterial pigments regulates antibacterial defence. Nature 2014; 512:387-92. [PMID: 25119038 DOI: 10.1038/nature13684] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/17/2014] [Indexed: 12/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.
Collapse
|
194
|
Rahman S, Gadjeva M. Does NETosis Contribute to the Bacterial Pathoadaptation in Cystic Fibrosis? Front Immunol 2014; 5:378. [PMID: 25157250 PMCID: PMC4127480 DOI: 10.3389/fimmu.2014.00378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/24/2014] [Indexed: 01/14/2023] Open
Abstract
Significant advances in our understanding of neutrophil biology were made in the past several years. The exciting discovery that neutrophils deploy neutrophil extracellular traps (NETs) to catch pathogens paved the way for a series of additional studies to define the molecular mechanisms of NET generation and the biological significance of NETosis in acute and chronic pathologic conditions. This review highlights the latest knowledge regarding NET structures, deployment, and function, with an emphasis on current understanding of NET proteomes, their conservation, and significance in the context of cystic fibrosis (CF), a condition characterized by excessive extracellular DNA/NET presence. We also discuss how our understanding of NETosis yields novel therapeutic approaches and their applicability to CF.
Collapse
Affiliation(s)
- Samir Rahman
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Mihaela Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
195
|
Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr CM, Schneider M. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 2014; 192:131-40. [PMID: 24997276 DOI: 10.1016/j.jconrel.2014.06.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives.
Collapse
Affiliation(s)
- Noha Nafee
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ayman Husari
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Christine K Maurer
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Cenbin Lu
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Chiara de Rossi
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
196
|
Wu X, Chen J, Li X, Zhao Y, Zughaier SM. Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1863-70. [PMID: 24832961 DOI: 10.1016/j.nano.2014.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Pseudomonas aeruginosa can cause major infection in immunocompromised patients, and successful antibiotic treatment of the infection relies on accurate and rapid identification of the infectious agents. Here, we reported a culture-free diagnostic method based on the surface-enhanced Raman spectroscopy (SERS) of pyocyanin (PCN), a major biomarker of P. aeruginosa. This platform can detect PCN as low as 5 ppb or 2.38 × 10(-8) mol L(-1) in both aqueous solutions and spiked clinical sputum samples. It has also been used to dynamically monitor the excretion of PCN by P. aeruginosa during its growth. The presence of PCN has been detected by SERS in 15 clinical sputum samples, which indicates P. aeruginosa infection, with 95.6% sensitivity and 93.3% specificity. The system can advantageously process multiple specimens rapidly, overcomes the need for bacterial culture and diagnostic microbiology assays, and have widespread implications in the early detection of P. aeruginosa infection. FROM THE CLINICAL EDITOR A surface enhanced Raman spectroscopy method optimized for the detection of P. aureginosa infections is presented in this paper. The presence of pyocyanin, a marker of this bacterium has been detected in 15 clinical sputum samples utilizing this method. A sensitivity of 95.6% and 93.3% specificity was reported, which suggests that the method may enable culture-free high throughput rapid detection of this infection.
Collapse
Affiliation(s)
- Xiaomeng Wu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA; Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, USA.
| | - Jing Chen
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA; Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, USA
| | - Xibo Li
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China; Department of Physics and Astronomy, University of Georgia, Athens, GA, USA; Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA, USA; Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, USA
| | - Susu M Zughaier
- Department of Microbiology and Immunology, Emory University School of Medicine, and Veterans Affair Medical Center, Atlanta, GA, USA.
| |
Collapse
|
197
|
Rada B, Boudreau HE, Park JJ, Leto TL. Histamine stimulates hydrogen peroxide production by bronchial epithelial cells via histamine H1 receptor and dual oxidase. Am J Respir Cell Mol Biol 2014; 50:125-34. [PMID: 23962049 DOI: 10.1165/rcmb.2013-0254oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of bronchial asthma. Besides granulocytes, the airway epithelium can produce large amounts of reactive oxygen species and can contribute to asthma-related oxidative stress. Histamine is a major inflammatory mediator present in large quantities in asthmatic airways. Whether histamine triggers epithelium-derived oxidative stress is unknown. We therefore aimed at characterizing human airway epithelial H2O2 production stimulated by histamine. We found that air-liquid interface cultures of primary human bronchial epithelial cells (BECs) and an immortalized BEC model (Cdk4/hTERT HBEC) produce H2O2 in response to histamine. The main source of airway epithelial H2O2 is an NADPH dual oxidase, Duox1. Out of the four histamine receptors (H1R-H4R), H1R has the highest expression in BECs and mediates the H2O2-producing effects of histamine. IL-4 induces Duox1 gene and protein expression levels and enhances histamine-induced H2O2 production by epithelial cells. Using HEK-293 cells expressing Duox1 or Duox2 and endogenous H1R, histamine triggers an immediate intracellular calcium signal and H2O2 release. Overexpression of H1R further increases the oxidative output of Duox-expressing HEK-293 cells. Our observations show that BECs respond to histamine with Duox-mediated H2O2 production. These findings reveal a mechanism that could be an important contributor to oxidative stress characteristic of asthmatic airways, suggesting novel therapeutic targets for treating asthmatic airway disease.
Collapse
Affiliation(s)
- Balázs Rada
- 1 Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia; and
| | | | | | | |
Collapse
|
198
|
Yoo DG, Winn M, Pang L, Moskowitz SM, Malech HL, Leto TL, Rada B. Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. THE JOURNAL OF IMMUNOLOGY 2014; 192:4728-38. [PMID: 24740504 DOI: 10.4049/jimmunol.1301589] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) airways are characterized by bacterial infections, excess mucus production, and robust neutrophil recruitment. The main CF airway pathogen is Pseudomonas aeruginosa. Neutrophils are not capable of clearing the infection. Neutrophil primary granule components, myeloperoxidase (MPO) and human neutrophil elastase (HNE), are inflammatory markers in CF airways, and their increased levels are associated with poor lung function. Identifying the mechanism of MPO and HNE release from neutrophils is of high clinical relevance for CF. In this article, we show that human neutrophils release large amounts of neutrophil extracellular traps (NETs) in the presence of P. aeruginosa. Bacteria are entangled in NETs and colocalize with extracellular DNA. MPO, HNE, and citrullinated histone H4 are all associated with DNA in Pseudomonas-triggered NETs. Both laboratory standard strains and CF isolates of P. aeruginosa induce DNA, MPO, and HNE release from human neutrophils. The increase in peroxidase activity of neutrophil supernatants after Pseudomonas exposure indicates that enzymatically active MPO is released. P. aeruginosa induces a robust respiratory burst in neutrophils that is required for extracellular DNA release. Inhibition of the cytoskeleton prevents Pseudomonas-initiated superoxide production and DNA release. NADPH oxidase inhibition suppresses Pseudomonas-induced release of active MPO and HNE. Blocking MEK/ERK signaling results in only minimal inhibition of DNA release induced by Pseudomonas. Our data describe in vitro details of DNA, MPO, and HNE release from neutrophils activated by P. aeruginosa. We propose that Pseudomonas-induced NET formation is an important mechanism contributing to inflammatory conditions characteristic of CF airways.
Collapse
Affiliation(s)
- Dae-goon Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | | | | | | | |
Collapse
|
199
|
Ortiz-Castro R, Pelagio-Flores R, Méndez-Bravo A, Ruiz-Herrera LF, Campos-García J, López-Bucio J. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:364-78. [PMID: 24224532 DOI: 10.1094/mpmi-08-13-0219-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defective in pyocyanin production showed decreased root growth inhibition concomitant with an increased phytostimulation. Treatment with pyocyanin modulates root system architecture, inhibiting primary root growth and promoting lateral root and root hair formation without affecting meristem viability or causing cell death. These effects correlated with altered proportions of hydrogen peroxide and superoxide in root tips and with an inhibition of cell division and elongation. Mutant analyses showed that pyocyanin modulation of root growth was likely independent of auxin, cytokinin, and abscisic acid but required ethylene signaling because the Arabidopsis etr1-1, ein2-1, and ein3-1 ethylene-related mutants were less sensitive to pyocyanin-induced root stoppage and reactive oxygen species (ROS) distribution. Our findings suggest that pyocyanin is an important factor modulating the interplay between ROS production and root system architecture by an ethylene-dependent signaling.
Collapse
|
200
|
Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 2014; 160:186-94. [PMID: 24670966 DOI: 10.1016/j.imlet.2014.03.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/28/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways.
Collapse
Affiliation(s)
- Dae-goon Yoo
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, 501 DW Brooks Drive, Athens, GA 30602, USA
| | - Madison Floyd
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, 501 DW Brooks Drive, Athens, GA 30602, USA
| | - Matthew Winn
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, 501 DW Brooks Drive, Athens, GA 30602, USA
| | - Samuel M Moskowitz
- Massachusetts General Hospital, Department of Pediatrics, 175 Cambridge Street, Boston, MA 02114, USA; Harvard Medical School, Department of Pediatrics, 25 Shattuck Street, Boston, MA 02115 USA
| | - Balázs Rada
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|