151
|
Lin Y, Chen J, Mai Y, Chen L, Chen Z, Wang G, Deng L, Xu P, Yuan C, Jiang L, Huang M. Double-Grafted PET Fiber Material to Remove Airborne Bacteria with High Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47003-47013. [PMID: 36214495 DOI: 10.1021/acsami.2c13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Air pollution caused by bacteria and viruses has posed a serious threat to public health. Commercial air purifiers based on dense fibrous filters can remove particulate matter, including airborne pathogens, but do not kill them efficiently. Here, we developed a double-grafted antibacterial fiber material for the high-efficiency capture and inactivation of airborne microorganisms. Tetracarboxyl phthalocyanine zinc, a photosensitizer, was first grafted onto the polyester (PET) fiber, followed by coating with chitosan on the surface of PET fiber to make a double-grafted fiber material. Under the irradiation of light with a specific wavelength (680 nm), double-grafted fiber materials killed up to 99.99% of Gram-positive bacteria and Gram-negative bacteria and had a significant antibacterial effect on drug-resistant bacteria. The double-grafted PET fiber showed broad-spectrum antibacterial activities and was capable to inactivate drug-resistant bacteria. Notably, in filtration experiments for airborne bacteria, this double-grafted PET fiber demonstrated a high bacteria capture efficiency (95.68%) better than the untreated PET fiber (64.87%). Besides, the double-grafted PET fiber was capable of efficiently killing airborne bacteria. This work provides a new idea for the development of air filtration materials that can efficiently kill airborne pathogen and has good biosafety.
Collapse
Affiliation(s)
- Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian350108, China
| |
Collapse
|
152
|
Polyimidazolium Protects against an Invasive Clinical Isolate of Salmonella Typhimurium. Antimicrob Agents Chemother 2022; 66:e0059722. [PMID: 36094258 PMCID: PMC9578408 DOI: 10.1128/aac.00597-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent outbreaks of Salmonella Typhimurium infection, in both animal and human populations and with the potential for zoonotic transmission, pose a significant threat to the public health sector. The rapid emergence and spread of more invasive multidrug-resistant clinical isolates of Salmonella further highlight the need for the development of new drugs with effective broad-spectrum bactericidal activities. The synthesis and evaluation of main-chain cationic polyimidazolium 1 (PIM1) against several Gram-positive and Gram-negative bacteria have previously demonstrated the efficacy profile of PIM1. The present study focuses on the antibacterial and anti-biofilm activities of PIM1 against Salmonella in both in vitro and in ovo settings. In vitro, PIM1 exhibited bactericidal activity against three strains of Salmonella at a low dosage of 8 μg/mL. The anti-biofilm activity of PIM1 was evident by its elimination of planktonic cells within preformed biofilms in a dose-dependent manner. During the host cell infection process, PIM1 reduces the extracellular bacterial load, which reduces adhesion and invasion to limit the establishment of infection. Once intracellular, Salmonella strains were tolerant and protected from PIM1 treatment. In a chicken egg infection model, PIM1 exhibited therapeutic activity for both Salmonella strains, using stationary-phase and exponential-phase inocula. Moreover, PIM1 showed a remarkable efficacy against the stationary-phase inocula of drug-resistant Salmonella by eliminating the bacterial burden in >50% of the infected chicken egg embryos. Collectively, our results highlight the potential for PIM1 as a replacement therapy for existing antibiotic applications on the poultry farm, given the efficiency and low toxicity profile demonstrated in our agriculturally relevant chicken embryo model.
Collapse
|
153
|
Liang W, Yu Q, Zheng Z, Liu J, Cai Q, Liu S, Lin S. Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens. J Med Chem 2022; 65:14221-14236. [PMID: 36256884 DOI: 10.1021/acs.jmedchem.2c01437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39-1.56 μg/mL), low hemolytic activity (HC50 > 200 μg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wanxin Liang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zixian Zheng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiayong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiongna Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouping Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
154
|
Vertillo Aluisio G, Spitale A, Bonifacio L, Privitera GF, Stivala A, Stefani S, Santagati M. Streptococcus salivarius 24SMBc Genome Analysis Reveals New Biosynthetic Gene Clusters Involved in Antimicrobial Effects on Streptococcus pneumoniae and Streptococcus pyogenes. Microorganisms 2022; 10:microorganisms10102042. [PMID: 36296318 PMCID: PMC9610097 DOI: 10.3390/microorganisms10102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Streptococcus salivarius 24SMBc is an oral probiotic with antimicrobial activity against the otopathogens Streptococcus pyogenes and Streptococcus pneumoniae. Clinical studies have reinforced its role in reducing the recurrence of upper respiratory tract infections (URTIs) and rebalancing the nasal microbiota. In this study, for the first time, we characterized 24SMBc by whole genome sequencing and annotation; likewise, its antagonistic activity vs. Streptococcus pneumoniae and Streptococcus pyogenes was evaluated by in vitro co-aggregation and competitive adherence tests. The genome of 24SMBc comprises 2,131,204 bps with 1933 coding sequences (CDS), 44 tRNA, and six rRNA genes and it is categorized in 319 metabolic subsystems. Genome mining by BAGEL and antiSMASH tools predicted three novel biosynthetic gene clusters (BGCs): (i) a Blp class-IIc bacteriocin biosynthetic cluster, identifying two bacteriocins blpU and blpK; (ii) an ABC-type bacteriocin transporter; and (iii) a Type 3PKS (Polyketide synthase) involved in the mevalonate pathway for the isoprenoid biosynthetic process. Further analyses detected two additional genes for class-IIb bacteriocins and 24 putative adhesins and aggregation factors. Finally, in vitro assays of 24SMBc showed significant anti-adhesion and co-aggregation effects against Streptococcus pneumoniae strains, whereas it did not act as strongly against Streptococcus pyogenes. In conclusion, we identified a novel blpU-K bacteriocin-encoding BGC and two class-IIb bacteriocins involved in the activity against Streptococcus pneumoniae and Streptococcus pyogenes; likewise the type 3PKS pathway could have beneficial effects for the host including antimicrobial activity. Furthermore, the presence of adhesins and aggregation factors might be involved in the marked in vitro activity of co-aggregation with pathogens and competitive adherence, showing an additional antibacterial activity not solely related to metabolite production. These findings corroborate the antimicrobial activity of 24SMBc, especially against Streptococcus pneumoniae belonging to different serotypes, and further consolidate the use of this strain in URTIs in clinical settings.
Collapse
|
155
|
Yang L, Chen S, Wei H, Luo Y, Cong F, Li W, Hong L, Su J. Low-Temperature Photothermal Therapy Based on Borneol-Containing Polymer-Modified MXene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45178-45188. [PMID: 36178205 DOI: 10.1021/acsami.2c12839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noninvasive photothermal therapy (PTT) is an emerging strategy for eliminating multidrug-resistant (MDR) bacteria that achieve sterilization by generating temperatures above 50 °C; however, such a high temperature also causes collateral damage to healthy tissues. In this study, we developed a low-temperature PTT based on borneol-containing polymer-modified MXene nanosheets (BPM) with bacteria-targeting capabilities. BPM was fabricated through the electrostatic coassembly of negatively charged two-dimensional MXene nanosheets (2DM) and positively charged quaternized α-(+)-borneol-poly(N,N-dimethyl ethyl methacrylate) (BPQ) polymers. Integrating BPQ with 2DM improved the stability of 2DM in physiological environments and enabled the bacterial membrane to be targeted due to the presence of a borneol group and the partially positive charge of BPQ. With the aid of near-infrared irradiation, BPM was able to effectively eliminate methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) through targeted photothermal hyperthermia. More importantly, BPM effectively eradicated more than 99.999% (>5 orders of magnitude) of MRSA by localized heating at a temperature that is safe for the human body (≤40 °C). Together, these findings suggest that BPM has good biocompatibility and that membrane-targeting low-temperature PTT could have great therapeutic potential against MDR infections.
Collapse
Affiliation(s)
- Liu Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Siyu Chen
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Hongxin Wei
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yinzhu Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Feng Cong
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Wende Li
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animal Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou 510700, China
- Guangdong Huaqingyuan Biotechnology Co., Ltd., Meizhou 514600, China
| |
Collapse
|
156
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
157
|
Moda-Silva LS, Oliveira VC, Silva-Lovato CH, Fernández-Barat L, Watanabe E. Phage-based therapy: promising applicability in the control of oral dysbiosis and respiratory infections. Future Microbiol 2022; 17:1349-1352. [PMID: 36169344 DOI: 10.2217/fmb-2022-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Letícia S Moda-Silva
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Human Exposome & Infectious Diseases Network (HEID), Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviane C Oliveira
- Department of Dental Materials & Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Human Exposome & Infectious Diseases Network (HEID), Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cláudia H Silva-Lovato
- Department of Dental Materials & Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Evandro Watanabe
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Human Exposome & Infectious Diseases Network (HEID), Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
158
|
Hervet C, Bussy F, Le Goff C, Ménard D, Collén PN, Goff ML, Meurens F, Bertho N. Marine-Sulfated Polysaccharides Extracts Exhibit Contrasted Time-Dependent Immunomodulatory and Antiviral Properties on Porcine Monocytes and Alveolar Macrophages. Animals (Basel) 2022; 12:ani12192576. [PMID: 36230315 PMCID: PMC9559208 DOI: 10.3390/ani12192576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Algal extracts have a real potential in terms of animal health, strengthening the interest in this natural resource. In pigs, respiratory complex syndrome significantly alters the wellbeing of the animals and threatens the economical sustainability of the sector. In the current study, we assessed various marine-sulfated polysaccharides (MSP®) extracts on two relevant cell populations in pigs, i.e., porcine monocytes and alveolar macrophages. Then, we analyzed the impact of the extracts on the infections of the cells by two important viruses. A modulation of the inflammatory response as well as some inhibitions of viral replication were observed. The type of effect observed was dependent on the extract, the experiment set-up, and the virus. The results obtained prompt us to further decipher the effects of algal extracts on the porcine health and open the door to future experiments, particularly in vivo experiments. Abstract Porcine respiratory complex syndrome has a strong economic impact on the swine breeding sector, as well as a clear repercussion on the wellbeing of the animals, leading to overuse of antimicrobial molecules. Algal extracts used in short-term treatments are empirically recognized by farmers as having a positive effect on pigs’ health, however, their mechanisms of action are not well known and more research is needed. Herein we studied the short and median term impact of three algal extracts, in vitro, on the pro-inflammatory and antiviral responses of porcine primary blood monocytes and alveolar macrophages, as well as the susceptibility of the treated cells to infection by Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) and the Aujeszky’s Disease Virus (ADV). All extracts presented a pro-inflammatory short-term effect, associated for two of them, with an inhibition of the PRRSV replication. Conversely, the three extracts presented an anti-inflammatory median term effect, with no impact on PRRSV replication. The observed immune modulation prompts us to test, in vivo, the anti-PRRSV action of algal extracts and strengthen the interest for this natural resource.
Collapse
Affiliation(s)
| | | | | | | | | | | | - François Meurens
- BIOEPAR, INRAE, Oniris, 44300 Nantes, France
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Correspondence: (F.M.); (N.B.); Tel.: +33-240-68-77-02 (F.M.); +33-240-68-77-03 (N.B.)
| | - Nicolas Bertho
- BIOEPAR, INRAE, Oniris, 44300 Nantes, France
- Correspondence: (F.M.); (N.B.); Tel.: +33-240-68-77-02 (F.M.); +33-240-68-77-03 (N.B.)
| |
Collapse
|
159
|
Bacterial Membrane Vesicles as a Novel Strategy for Extrusion of Antimicrobial Bismuth Drug in Helicobacter pylori. mBio 2022; 13:e0163322. [PMID: 36154274 PMCID: PMC9601102 DOI: 10.1128/mbio.01633-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial antibiotic resistance is a major threat to human health. A combination of antibiotics with metals is among the proposed alternative treatments. Only one such combination is successfully used in clinics; it associates antibiotics with the metal bismuth to treat infections by Helicobacter pylori. This bacterial pathogen colonizes the human stomach and is associated with gastric cancer, killing 800,000 individuals yearly. The effect of bismuth in H. pylori treatment is not well understood in particular for sublethal doses such as those measured in the plasma of treated patients. We addressed this question and observed that bismuth induces the formation of homogeneously sized membrane vesicles (MVs) with unique protein cargo content enriched in bismuth-binding proteins, as shown by quantitative proteomics. Purified MVs of bismuth-exposed bacteria were strongly enriched in bismuth as measured by inductively coupled plasma optical emission spectrometry (ICP-OES), unlike bacterial cells from which they originate. Thus, our results revealed a novel function of MVs in bismuth detoxification, where secreted MVs act as tool to discard bismuth from the bacteria. Bismuth also induces the formation of intracellular polyphosphate granules that are associated with changes in nucleoid structure. Nucleoid compaction in response to bismuth was established by immunogold electron microscopy and refined by the first chromosome conformation capture (Hi-C) analysis of H. pylori. Our results reveal that even low doses of bismuth induce profound changes in H. pylori physiology and highlight a novel defense mechanism that involves MV-mediated bismuth extrusion from the bacteria and a probable local DNA protective response where polyphosphate granules are associated with nucleoid compaction.
Collapse
|
160
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
161
|
Seukep AJ, Mbuntcha HG, Kuete V, Chu Y, Fan E, Guo MQ. What Approaches to Thwart Bacterial Efflux Pumps-Mediated Resistance? Antibiotics (Basel) 2022; 11:antibiotics11101287. [PMID: 36289945 PMCID: PMC9598416 DOI: 10.3390/antibiotics11101287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022] Open
Abstract
An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic’s effects, yet given their great adaptability, unexpected mechanisms are still to be discovered. Over-expression of efflux pumps (EPs) constitutes the leading strategy of bacterial resistance, and it is also a primary driver in the establishment of multidrug resistance (MDR). Extensive efforts are being made to develop antibiotic resistance breakers (ARBs) with the ultimate goal of re-sensitizing bacteria to medications to which they have become unresponsive. EP inhibitors (EPIs) appear to be the principal group of ARBs used to impair the efflux system machinery. Due to the high toxicity of synthetic EPIs, there is a growing interest in natural, safe, and innocuous ones, whereby plant extracts emerge to be excellent candidates. Besides EPIs, further alternatives are being explored including the development of nanoparticle carriers, biologics, and phage therapy, among others. What roles do EPs play in the occurrence of MDR? What weapons do we have to thwart EP-mediated resistance? What are the obstacles to their development? These are some of the core questions addressed in the present review.
Collapse
Affiliation(s)
- Armel Jackson Seukep
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea P.O. Box 63, Cameroon
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Helene Gueaba Mbuntcha
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- College of Life Sciences, Linyi University, Linyi 276005, China
- Correspondence: (E.F.); (M.-Q.G.)
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (E.F.); (M.-Q.G.)
| |
Collapse
|
162
|
Sheikh BA, Bhat BA, Mir MA. Antimicrobial resistance: new insights and therapeutic implications. Appl Microbiol Biotechnol 2022; 106:6427-6440. [PMID: 36121484 DOI: 10.1007/s00253-022-12175-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance has not been a new phenomenon. Still, the number of resistant organisms, the geographic areas affected by emerging drug resistance, and the magnitude of resistance in a single organism are enormous and mounting. Disease and disease-causing agents formerly thought to be contained by antibiotics are now returning in new forms resistant to existing therapies. Antimicrobial resistance is one of the most severe and complicated health issues globally, driven by interrelated dynamics in humans, animals, and environmental health sectors. Coupled with various epidemiological factors and a limited pipeline for new antimicrobials, all these misappropriations allow the transmission of drug-resistant organisms. The problem is likely to worsen soon. Antimicrobial resistance in general and antibiotic resistance in particular is a shared global problem. Actions taken by any single country can adversely or positively affect the other country. Targeted coordination and prevention strategies are critical in stopping the spread of antibiotic-resistant organisms and hence its overall management. This article has provided in-depth knowledge about various methods that can help mitigate the emergence and spread of antimicrobial resistance globally. KEY POINTS: • Overview of antimicrobial resistance as a global challenge and explain various reasons for its rapid progression. • Brief about the intrinsic and acquired resistance to antimicrobials and development of antibiotic resistance in bacteria. • Systematically organized information is provided on different strategies for tackling antimicrobial resistance for the welfare of human health.
Collapse
Affiliation(s)
- Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
163
|
Zhou L, Lian K, Wang M, Jing X, Zhang Y, Cao J. The antimicrobial effect of a novel peptide LL-1 on Escherichia coli by increasing membrane permeability. BMC Microbiol 2022; 22:220. [PMID: 36117157 PMCID: PMC9484052 DOI: 10.1186/s12866-022-02621-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background The widespread use of antibiotics has led to the emergence of many drug-resistant strains; thus, the development of new antibacterial drugs is essential with antimicrobial peptides becoming the focus of research. This study assessed the antibacterial effect of a novel antimicrobial peptide, named LL-1 on Escherichia coli (E.coli) by determining the minimum inhibitory concentration (MIC) and the antibacterial curve. The interaction between LL-1 and E. coli DNA was then detected by nucleic acid gel electrophoresis. The effect of LL-1 on the E. coli cell membrane was assessed by detecting the leakage of β-galactosidase, nucleic acid and protein. The influence of LL-1 on the intracellular ATP of E. coli was analysed by determining the concentration of intracellular ATP. Finally, the bacteria and colonies of E. coli treated with LL-1 were observed using scanning and transmission electron microscopy. Results The results suggested that the MIC value was 3.125 µg/ml, and the antibacterial effect was dose-dependent. LL-1 dose-dependently combined with E. coli DNA. LL-1 resulted in the leakage of intracellular β-galactosidase, nucleic acid and protein, and decreased intracellular ATP concentrations of E. coli. Two MIC of LL-1 caused E. coli to shrink, resulting in a rough surface, plasmolysis, and bacterial adhesion. Conclusion This study indicated that LL-1 had a good bactericidal effect on E. coli by mainly increasing the permeability of the cell membrane, leading to leakage of the intracellular content. This will lay the foundation for an in-depth study on the antibacterial mechanism of LL-1 against E. coli and its clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02621-y.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Kaiqi Lian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, 455000, Henan, People's Republic of China
| | - Mengting Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Xueyi Jing
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China
| | - Yuanchen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, People's Republic of China.,Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, 456550, Henan, People's Republic of China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
164
|
Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14091937. [PMID: 36145681 PMCID: PMC9503518 DOI: 10.3390/pharmaceutics14091937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-derived peptide, Androctonus amoreuxi Antimicrobial Peptide 1 (AamAP1), has been proved to have broad-spectrum antimicrobial properties. However, AamAP1 can induce hemolysis and shows strong toxicity against mammalian cells. Herein, the antimicrobial activity and mechanism of a novel synthetic antimicrobial peptide, GK-19, derived from AamAP1 and its derivatives, was evaluated. Five bacteria and three fungi were used to evaluate the antimicrobial effects of GK-19 in vitro. Scalded mice models combined with skin and soft tissue infections (SSTIs) were used to evaluate its applicability. The results indicated that GK-19 could not only inhibit Gram-positive and Gram-negative bacterial growth, but also kill fungi by disrupting the microbial cell membrane. Meanwhile, GK-19 showed negligible toxicity to mammalian cells, low hemolytic activity and high stability in plasma. Furthermore, in scalded mice models combined with SSTIs induced by either Methicillin-Resistant Staphylococcus aureus (MRSA) or Candida albicans, GK-19 showed significant antimicrobial and healing effects. Overall, it was demonstrated that GK-19 might be a promising drug candidate in the battle against drug-resistant bacterial and fungal infections.
Collapse
|
165
|
Effects of Medicinal Leech-Related Cationic Antimicrobial Peptides on Human Blood Cells and Plasma. Molecules 2022; 27:molecules27185848. [PMID: 36144584 PMCID: PMC9503446 DOI: 10.3390/molecules27185848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma. Eight CAMPs were included in the study. Hemolysis and lactate dehydrogenase assays showed that the potency to disrupt erythrocyte, neutrophil and mononuclear cell membranes descended in the order pept_1 > pept_3 ~ pept_5 > pept_2 ~ pept_4. Pept_3 caused both cell lysis and aggregation. Blood plasma and albumin inhibited the CAMP-induced hemolysis. The chemiluminescence method allowed the detection of pept_3-mediated neutrophil activation. In plasma coagulation assays, pept_3 prolonged the activated partial thromboplastin time (APTT) and prothrombin time (at 50 μM by 75% and 320%, respectively). Pept_3 was also capable of causing fibrinogen aggregation. Pept_6 prolonged APTT (at 50 μM by 115%). Pept_2 was found to combine higher bactericidal activity with lower effects on cells and coagulation. Our data emphasize the necessity of investigating CAMP interaction with plasma.
Collapse
|
166
|
Zhou Y, Luo Y, Yu B, Zheng P, Yu J, Huang Z, Mao X, Luo J, Yan H, He J. Agrobacterium sp. ZX09 β-Glucan Attenuates Enterotoxigenic Escherichia coli-Induced Disruption of Intestinal Epithelium in Weaned Pigs. Int J Mol Sci 2022; 23:ijms231810290. [PMID: 36142202 PMCID: PMC9499454 DOI: 10.3390/ijms231810290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
To explore the protective effect of dietary β-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.
Collapse
Affiliation(s)
- Yuankang Zhou
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Yuheng Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Bing Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Ping Zheng
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jie Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Zhiqing Huang
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Xiangbing Mao
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Junqiu Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Hui Yan
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jun He
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
- Correspondence:
| |
Collapse
|
167
|
Wang Y, Cao C, Zhu Y, Fan H, Liu Q, Liu Y, Chen K, Wu Y, Liang S, Li M, Li L, Liu X, Zhang Y, Wu C, Lu G, Wu M. TREM2/β-catenin attenuates NLRP3 inflammasome-mediated macrophage pyroptosis to promote bacterial clearance of pyogenic bacteria. Cell Death Dis 2022; 13:771. [PMID: 36068223 PMCID: PMC9448748 DOI: 10.1038/s41419-022-05193-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2) is considered a protective factor to protect host from bacterial infection, while how it elicits this role is unclear. In the present study, we demonstrate that deficiency of triggering receptors expressed on myeloid cells 2 (TREM2) significantly enhanced macrophage pyroptosis induced by four common pyogenic bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Escherichia coli. TREM2 deficiency also decreased bacterial killing ratio of macrophage, while Caspase-1 or GSDMD inhibition promoted macrophage-mediated clearance to these bacteria. Further study demonstrated that the effect of TREM2 on macrophage pyroptosis and bacterial eradication mainly dependents on the activated status of NLRP3 inflammasome. Moreover, as the key downstream of TREM2, β-catenin phosphorylated at Ser675 by TREM2 signal and accumulated in nucleus and cytoplasm. β-catenin mediated the effect of TREM2 on NLRP3 inflammasome and macrophage pyroptosis by reducing NLRP3 expression, and inhibiting inflammasome complex assembly by interacting with ASC. Collectively, TREM2/β-catenin inhibits NLRP3 inflammasome to regulate macrophage pyroptosis, and enhances macrophage-mediated pyogenic bacterial clearance.
Collapse
Affiliation(s)
- Yi Wang
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Can Cao
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yanting Zhu
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Huifeng Fan
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yiting Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Kang Chen
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongjian Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Siping Liang
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Meiyu Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Lexi Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Liu
- grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuanqing Zhang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chenglin Wu
- grid.12981.330000 0001 2360 039XOrgan Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gen Lu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XGuangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
168
|
Liu J, Li H, He Q, Chen K, Chen Y, Zhong R, Li H, Fang S, Liu S, Lin S. Design, synthesis, and biological evaluation of tetrahydroquinoline amphiphiles as membrane-targeting antimicrobials against pathogenic bacteria and fungi. Eur J Med Chem 2022; 243:114734. [PMID: 36088756 DOI: 10.1016/j.ejmech.2022.114734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
The rising prevalence of drug-resistant pathogens is one of the biggest threats to human health. The development of new antibiotics that can overcome drug resistance is in urgent need. Herein, we designed and synthesized a series of amphiphilic tetrahydroquinoline derivatives as small-molecule-based antimicrobial peptidomimetics. Two lead compounds 36 and 52 which contained the tetrahydroquinoline core, hydrophobic alkyl chains (n-nonyl or isoprenyl group), different spacer lengths (n = 4 or 8), and cationic guanidine moiety, showed poor hemolytic activity, low cytotoxicity, and potent broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi. The further biological evaluation revealed that compounds 36 and 52 can kill bacteria and fungi rapidly via membrane-targeting action and avoid drug resistance development. More importantly, compounds 36 and 52 exhibited similarly potent in vivo antimicrobial activities in a murine corneal infection caused by Staphylococcus aureus ATCC29213 or Pseudomonas aeruginosa ATCC9027, as compared to vancomycin or gatifloxacin. These results suggest that compounds 36 and 52 have great potential as new broad-spectrum antimicrobial agents to combat microbial resistance.
Collapse
Affiliation(s)
- Jiayong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qile He
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kaiting Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rongcui Zhong
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanfang Fang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
169
|
Bartolomeu M, Vieira C, Dias M, Conde T, Couto D, Lopes D, Neves B, Melo T, Rey F, Alves E, Silva J, Abreu H, Almeida A, Domingues MR. Bioprospecting antibiotic properties in photodynamic therapy of lipids from Codium tomemtosum and Chlorella vulgaris. Biochimie 2022; 203:32-39. [DOI: 10.1016/j.biochi.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
|
170
|
Woźniak A, Grinholc M. Combined Antimicrobial Blue Light and Antibiotics as a Tool for Eradication of Multidrug-Resistant Isolates of Pseudomonas aeruginosa and Staphylococcus aureus: In Vitro and In Vivo Studies. Antioxidants (Basel) 2022; 11:antiox11091660. [PMID: 36139734 PMCID: PMC9495928 DOI: 10.3390/antiox11091660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Increased development of resistance to antibiotics among microorganisms promotes the evaluation of alternative approaches. Within this study, we examined the efficacy of antimicrobial blue light (aBL) with routinely used antibiotics against multidrug-resistant isolates of Pseudomonas aeruginosa and Staphylococcus aureus as combined alternative treatment. In vitro results of this study confirm that both S. aureus and P. aeruginosa can be sensitized to antibiotics, such as chloramphenicol, linezolid, fusidic acid or colistin, fosfomycin and ciprofloxacin, respectively. The assessment of increased ROS production upon aBL exposure and the changes in cell envelopes permeability were also goals that were completed within the current study. Moreover, the in vivo experiment revealed that, indeed, the synergy between aBL and antibiotic (chloramphenicol) occurs, and the results in the reduced bioluminescence signal of the S. aureus Xen31 strain used to infect the animal wounds. To conclude, we are the first to present the possible mechanism explaining the observed synergies among photoinactivation with blue light and antibiotics in the term of Gram-positive and Gram-negative representatives.
Collapse
|
171
|
Morales-Martínez A, Bertrand B, Hernández-Meza JM, Garduño-Juárez R, Silva-Sanchez J, Munoz-Garay C. Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8. Biophys J 2022; 121:3034-3048. [PMID: 35842753 PMCID: PMC9463648 DOI: 10.1016/j.bpj.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 12/29/2022] Open
Abstract
Ascaphins are cationic antimicrobial peptides that have been shown to have potential in the treatment of infectious diseases caused by multidrug-resistant pathogens (MDR). However, to date, their principal molecular target and mechanism of action are unknown. Results from peptide prediction software and molecular dynamics simulations confirmed that ascaphin-8 is an alpha-helical peptide. For the first time, the peptide was described as membranotrophic using biophysical approaches including calcein liposome leakage, Laurdan general polarization, and dynamic light scattering. Ascaphin-8's activity and selectivity were modulated by rearranging the spatial distribution of lysine (Var-K5), aspartic acid (Var-D4) residues, or substitution of phenylalanine with tyrosine (Var-Y). The parental peptide and its variants presented high affinity toward the bacterial membrane model (≤2 μM), but lost activity in sterol-enriched membranes (mammal and fungal models, with cholesterol and ergosterol, respectively). The peptide-induced pore size was estimated to be >20 nm in the bacterial model, with no difference among peptides. The same pattern was observed in membrane fluidity (general polarization) assays, where all peptides reduced membrane fluidity of the bacterial model but not in the models containing sterols. The peptides also showed high activity toward MDR bacteria. Moreover, peptide sensitivity of the artificial membrane models compared with pathogenic bacterial isolates were in good agreement.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México
| | - Jesús Silva-Sanchez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
172
|
Abstract
Urinary tract infection (UTI) is among the most common infections treated worldwide each year and is caused primarily by uropathogenic Escherichia coli (UPEC). Rising rates of antibiotic resistance among uropathogens have spurred a consideration of alternative treatment strategies, such as bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary environment are poorly defined. Here, we assess the activity of two phages, namely, HP3 and ES17, against clinical UPEC isolates using in vitro and in vivo models of UTI. In both bacteriologic medium and pooled human urine, we identified phage resistance arising within the first 6 to 8 h of coincubation. Whole-genome sequencing revealed that UPEC strains resistant to HP3 and ES17 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. Phage-resistant strains displayed several in vitro phenotypes, including alterations to adherence to and invasion of human bladder epithelial HTB-9 cells and increased biofilm formation in some isolates. Interestingly, these phage-resistant UPEC isolates demonstrated reduced growth in pooled human urine, which could be partially rescued by nutrient supplementation and were more sensitive to several outer membrane-targeting antibiotics than parental strains. Additionally, phage-resistant UPEC isolates were attenuated in bladder colonization in a murine UTI model. In total, our findings suggest that while resistance to phages, such as HP3 and ES17, may arise readily in the urinary environment, phage resistance is accompanied by fitness costs which may render UPEC more susceptible to host immunity or antibiotics. IMPORTANCE UTI is one of the most common causes of outpatient antibiotic use, and rising antibiotic resistance threatens the ability to control UTI unless alternative treatments are developed. Bacteriophage (phage) therapy is gaining renewed interest; however, much like with antibiotics, bacteria can readily become resistant to phages. For successful UTI treatment, we must predict how bacteria will evade killing by phage and identify the downstream consequences of phage resistance during bacterial infection. In our current study, we found that while phage-resistant bacteria quickly emerged in vitro, these bacteria were less capable of growing in human urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have implications for developing cocktails of phage with multiple different bacterial targets, of which each is evaded only at the cost of bacterial fitness.
Collapse
|
173
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
174
|
Liang Q, Liu G, Guo Z, Wang Y, Xu Z, Ren Y, Zhang Q, Cui M, Zhao X, Xu D. Application of potential probiotic strain Streptomyces sp. SH5 on anti-Aeromonas infection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:375-385. [PMID: 35777708 DOI: 10.1016/j.fsi.2022.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Pre-treatment of Streptomyces sp. SH5 on zebrafish lead to a significant enhancement of larvae survival upon Aeromonas hydrophila challenging. SH5 was able to colonize in zebrafish approximately at 1 × 102.6 cells per fish for at least seven days. The presence of SH5 strongly repelled the A. hydrophila colonization in zebrafish, and maximally, a 67.53% reduction rate was achieved. A more diversified flora was discovered in the SH5-treated zebrafish larvae at both phylum and genus levels. The expression of immune response genes of SH5-treated zebrafish, including TLR3, lysozyme and NOS2α, were enhanced at initial stage, while, that of various inflammatory stimuli genes including 1L-1β, 1L-6 and MyD88 were decreased at all tested timepoints. SH5 was shown to inhibit virulence factors production and the expression of corresponding virulence genes in A. hydrophila, suggesting its quorum sensing inhibitory potential. These results indicated favorable application perspectives of SH5 in resisting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qiting Liang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, PR China
| | - Ganxing Liu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zheng Guo
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yuting Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zhongheng Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yuxian Ren
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
175
|
Bhattacharjee B, Mukherjee S, Mukherjee R, Haldar J. Easy Fabrication of a Polymeric Transparent Sheet to Combat Microbial Infection. ACS APPLIED BIO MATERIALS 2022; 5:3951-3959. [PMID: 35912488 DOI: 10.1021/acsabm.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surges in infectious diseases and their transmission in households and commercial and healthcare settings have increased the use of polymeric materials as protective covers. Despite ongoing efforts, conventional polymeric materials still pose the threat of surface-associated transmission of pathogens due to the fact that they lack antimicrobial properties. Here, we have developed an easy-to-fabricate polymeric sheet [quaternary polymeric transparent sheet (QPTS)] that shows an excellent antimicrobial property and is also transparent in nature, increasing its practical applications in a wide range of surfaces. The sheet was fabricated by combining cationic amphiphilic water-soluble polyethylenimine derivative (QPEINH-C6) and poly(vinyl alcohol) (PVA). The optimum composition (QPTS-3) exhibited a complete reduction of bacterial and fungal infection (∼3-4 log reduction) within 15 min. QPTS-3 also exhibited activity against antibiotic-insusceptible metabolically inactive bacterial cells. The sheet prevented the growth of MRSA biofilm even after 72 h of incubation, which was confirmed through electron microscopy on the QPTS sheet. Most importantly, ∼99.9% of the influenza viral load was reduced completely within 30 min of exposure of the sheet. Apart from the antimicrobial property, the sheet successfully retained its transparency (∼88%) and maintained a significant mechanical strength (∼15 N), highlighting its potential applications in commercial and healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, 560064 Karnataka, India
| |
Collapse
|
176
|
Large-Scale Identification of Multiple Classes of Host Defense Peptide-Inducing Compounds for Antimicrobial Therapy. Int J Mol Sci 2022; 23:ijms23158400. [PMID: 35955551 PMCID: PMC9368921 DOI: 10.3390/ijms23158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.
Collapse
|
177
|
A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochim Biophys Acta Gen Subj 2022; 1866:130218. [PMID: 35905923 DOI: 10.1016/j.bbagen.2022.130218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 μM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 μM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.
Collapse
|
178
|
Zhang Z, Wang J, Hu Y, Wang L. Microwaves, a potential treatment for bacteria: A review. Front Microbiol 2022; 13:888266. [PMID: 35958124 PMCID: PMC9358438 DOI: 10.3389/fmicb.2022.888266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023] Open
Abstract
Bacteria have brought great harm to the public, especially after the emergence of multidrug-resistant bacteria. This has rendered traditional antibiotic therapy ineffective. In recent years, hyperthermia has offered new treatments to remove bacteria. Microwaves (MW) are a component of the electromagnetic spectrum and can rapidly heat materials. Taking advantage of this characteristic of MW, related studies have shown that both thermal and non-thermal effects of MW can inactivate various bacteria. Even though the understanding of MW in the field of bacteria is not sufficient for widespread use at present, MW has performed well in dealing with microorganisms and controlling infection. This review will focus on the application of MW in bacteria and discuss the advantages, prospects and challenges of using MW in the bacterial field.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Long Wang,
| |
Collapse
|
179
|
High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel) 2022; 11:antibiotics11070933. [PMID: 35884187 PMCID: PMC9311565 DOI: 10.3390/antibiotics11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/02/2023] Open
Abstract
Enhancing the synthesis of endogenous host defense peptides (HDPs) has emerged as a novel antibiotic-free approach to infectious disease control and prevention. A number of epigenetic compounds have been identified as HDP inducers and several have proved beneficial in antimicrobial therapy. However, species-specific regulation of HDP synthesis is evident. In attempt to identify epigenetic compounds with potent HDP-inducing activity for poultry-specific application, we developed a stable luciferase reporter cell line, known as HTC/AvBD10-luc, following our earlier construction of HTC/AvBD9-luc. HTC/AvBD10-luc was developed through permanent integration of a chicken macrophage cell line, HTC, with a lentiviral luciferase reporter vector driven by a 4-Kb AvBD10 gene promoter. Using a high throughput screening assay based on the two stable cell lines, we identified 33 hits, mostly being histone deacetylase (HDAC) inhibitors, from a library of 148 epigenetic compounds. Among them, entinostat and its structural analog, tucidinostat, were particularly effective in promoting multiple HDP gene expression in chicken macrophages and jejunal explants. Desirably, neither compounds triggered an inflammatory response. Moreover, oral gavage of entinostat significantly enhanced HDP gene expression in the chicken intestinal tract. Collectively, the high throughput assay proves to be effective in identifying HDP inducers, and both entinostat and tucidinostat could be potentially useful as alternatives to antibiotics to enhance intestinal immunity and disease resistance.
Collapse
|
180
|
Antimicrobial and Anti-Inflammatory Activity of Low-Energy Assisted Nanohydrogel of Azadirachta indica Oil. Gels 2022; 8:gels8070434. [PMID: 35877519 PMCID: PMC9318572 DOI: 10.3390/gels8070434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-based bioactive compounds have been utilized to cure diseases caused by pathogenic microorganisms and as a substitute to reduce the side effects of chemically synthesized drugs. Therefore, in the present study, Azadirachta indica oil nanohydrogel was prepared to be utilized as an alternate source of the antimicrobial compound. The total phenolic compound in Azadirachta indica oil was quantified by chromatography analysis and revealed gallic acid (0.0076 ppm), caffeic acid (0.077 ppm), and syringic acid (0.0129 ppm). Gas chromatography−mass spectrometry analysis of Azadirachta indica oil revealed the presence of bioactive components, namely hexadecenoic acid, heptadecanoic acid, ç-linolenic acid, 9-octadecanoic acid (Z)-methyl ester, methyl-8-methyl-nonanoate, eicosanoic acid, methyl ester, and 8-octadecane3-ethyl-5-(2 ethylbutyl). The nanohydrogel showed droplet size of 104.1 nm and −19.3 mV zeta potential. The nanohydrogel showed potential antimicrobial activity against S. aureus, E. coli, and C. albicans with minimum inhibitory, bactericidal, and fungicidal concentrations ranging from 6.25 to 3.125 (µg/mL). The nanohydrogel showed a significantly (p < 0.05) higher (8.40 log CFU/mL) value for Gram-negative bacteria E. coli compared to Gram-positive S. aureus (8.34 log CFU/mL), and in the case of pathogenic fungal strain C. albicans, there was a significant (p < 0.05) reduction in log CFU/mL value (7.79−6.94). The nanohydrogel showed 50.23−82.57% inhibition in comparison to standard diclofenac sodium (59.47−92.32%). In conclusion, Azadirachta indica oil nanohydrogel possesses great potential for antimicrobial and anti-inflammatory activities and therefore can be used as an effective agent.
Collapse
|
181
|
Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022; 14:1425. [PMID: 35890320 PMCID: PMC9318951 DOI: 10.3390/pharmaceutics14071425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Pamela C. Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Andy J. Spakowitz
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| |
Collapse
|
182
|
Priya A, Aditya A, Budagavi DP, Chugh A. Tachyplesin and CyLoP-1 as efficient anti-mycobacterial peptides: A novel finding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183895. [PMID: 35271828 DOI: 10.1016/j.bbamem.2022.183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Mycobacterium tuberculosis is an etiological agent of tuberculosis (TB) known to be a highly contagious disease and is the major cause of mortality from a single infectious agent worldwide. Emergence of multi-drug resistant and extremely drug resistant strains of M. tuberculosis has made TB management extremely challenging eliciting the urgent need for alternative therapeutics. Peptide based therapeutic strategies are an emerging area that can be employed as a prospective alternative to the currently existing therapeutic regime for TB treatment. Here, we are reporting the anti-mycobacterial activity of two peptides, Tachyplesin and CyLoP-1, derived from marine horseshoe crab and snake toxin respectively, with potent anti-mycobacterial activity against various mycobacterium species. Both the peptides exhibit appreciable antimicrobial and anti-biofilm activities against mycobacterium species with minimum cytotoxicity towards macrophage cells. They are also effective in eliminating mycobacterium cells from infected macrophage cells. Tachyplesin acts on mycobacterium cells in a lytic manner with outer membrane disruption confirmed by propidium iodide uptake with slight membrane depolarization and reactive oxygen species (ROS) production. CyLoP-1, on the other hand, does not rupture the mycobacterium cells even at high concentrations. It seems to follow intracellular pathway of killing mycobacterium cells by production of more ROS and membrane depolarization. Both the peptides do not lead to apoptotic way of mycobacterium cell death. These results suggest an effective peptide-based antimicrobial strategy for development of future anti-TB therapeutics.
Collapse
Affiliation(s)
- Anjali Priya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Anusha Aditya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | | | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| |
Collapse
|
183
|
Crystal structure of the phage-encoded N-acetyltransferase in complex with acetyl-CoA, revealing a novel dimeric arrangement. J Microbiol 2022; 60:746-755. [DOI: 10.1007/s12275-022-2030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
|
184
|
Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms 2022; 10:microorganisms10071324. [PMID: 35889048 PMCID: PMC9324367 DOI: 10.3390/microorganisms10071324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health issue and antibiotic agents have lagged behind the rise in bacterial resistance. We are searching for a new method to combat AMR and phages are viruses that can effectively fight bacterial infections, which have renewed interest as antibiotic alternatives with their specificity. Large phage products have been produced in recent years to fight AMR. Using the “one health” approach, this review summarizes the phage products used in plant, food, animal, and human health. In addition, the advantages and disadvantages and future perspectives for the development of phage therapy as an antibiotic alternative to combat AMR are also discussed in this review.
Collapse
Affiliation(s)
- Yuanling Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhao Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
185
|
Kovačević Z, Vidović J, Erdeljan M, Cincović M, Ružić Z, Galić I, Kukurić T, Stojanac N, Horvat O. Veterinary Practitioners' Standpoints and Comprehension towards Antimicrobial Use-Are There Opportunities for Antimicrobial Stewardship Improvement? Antibiotics (Basel) 2022; 11:antibiotics11070867. [PMID: 35884121 PMCID: PMC9311883 DOI: 10.3390/antibiotics11070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
The main subject of the research is the assessment of the knowledge, attitudes and behaviors of veterinarians regarding the use of antibiotics (AMU) and antimicrobial resistance (AMR) through a questionnaire conducted among veterinarians in the northern region of Serbia. A total of 62 respondents completed the questionnaire, which represents a response rate of 44.3%. Male veterinarians are less likely to be in the group of veterinarians with insufficient knowledge (p < 0.05). Veterinarians engaged in mixed practice (small and large animals) (p < 0.001) and veterinarians who have over 100 patients per month (p < 0.005) are also less likely to be in the group with insufficient knowledge of antimicrobial resistance. The proportion of those with insufficient knowledge is growing among veterinarians whose source is the Internet (p < 0.01), while the proportion of those with insufficient knowledge about antimicrobial resistance is declining among veterinarians whose source of information is continuous education (p < 0.05). The majority of the respondents (n = 59, 95.2%) completely agreed that AMR is a very big issue in the global health sector right now. Unfortunately, there are crucial gaps in the knowledge and attitudes of the surveyed participants. They do not appear to be aware of the importance of AMU in veterinary medicine and its influence on overall AMR, or the crucial part that non-prescribed antibiotics have in all of it. Positively, many veterinarians use good practice AMU guidelines in their everyday practice and in line with the global trend of AMU reduction, respondents have also decreased their AMU compared to the previous year.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Jovana Vidović
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Mihajlo Erdeljan
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Marko Cincović
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Zoran Ružić
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
- Correspondence:
| | - Ivan Galić
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Tijana Kukurić
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Nenad Stojanac
- Department for Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.K.); (J.V.); (M.E.); (M.C.); (I.G.); (T.K.); (N.S.)
| | - Olga Horvat
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
186
|
Shen C, Lin Y, Mohammadi TN, Masuda Y, Honjoh KI, Miyamoto T. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate. Int J Food Microbiol 2022; 378:109802. [PMID: 35752018 DOI: 10.1016/j.ijfoodmicro.2022.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimurium) is one of the most prevalent foodborne pathogens responsible for food poisoning and is spread through the consumption of contaminated poultry products. In this study, four antimicrobial peptides (AMPs) with varying hydrophobicity and helical structure-forming tendencies were designed and synthesized based on the amino acid sequences of peptides from egg white hydrolysate. Two of these AMPs, P1R3 (KSWKKHVVSGFFLR) and P1C (KSWKKHVVSGFFLRLWVHKK), exhibited inhibitory activity against S. Typhimurium and compromised its biofilm-forming ability. Investigation of their modes of action revealed that P1R3 and P1C interact with and permeabilize the cytoplasmic membrane of bacteria, leading to membrane potential dissipation, damage to membrane integrity, and consequent bacterial death. P1R3 also bound to S. Typhimurium DNA, resulting in DNA aggregation or precipitation. Moreover, both peptides showed negligible cytotoxicity to Vero cells, and P1C displayed significant antimicrobial activity in chicken meat. Peptides P1R3 and P1C, therefore, have the potential to be developed as promising food preservatives, especially against pathogenic S. Typhimurium.
Collapse
Affiliation(s)
- Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
187
|
Dey R, Mukherjee R, Haldar J. Photo-crosslinked Antimicrobial Hydrogel Exhibiting Wound Healing Ability and Curing Infections In-vivo. Adv Healthc Mater 2022; 11:e2200536. [PMID: 35665490 DOI: 10.1002/adhm.202200536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Indexed: 11/12/2022]
Abstract
With the increasing focus on healthcare research in the current times, therapeutic and biomaterial interventions for healing of wounds and mitigation of wound-associated infections have seen expedited progress. Conventional approaches consist of release-active gels, which demonstrate leaching of antimicrobials, such as antibiotics, metal ions, etc. However, these systems suffer from the disadvantages of burst release, reservoir exhaustion, and associated toxicity. In this report, we have developed the intrinsically antimicrobial hydrogel (HyDex) by one-pot UV crosslinking of methacrylated dextran (Dex-MA), polyethylene glycol diacrylate (PEG-DA), and cationic lipophilic methacrylate (LipMA) with varied hydrophobic chain which displays broad-spectrum antimicrobial activity, hemostatic ability, and rapid wound closure efficacy. Optimized hydrogel exhibited potent antimicrobial efficacy against multi-drug resistant Gram-positive and Gram-negative bacteria as well as against pathogenic fungus Candida albicans. HyDex hydrogel showed rapid arrest of bleeding in mice liver puncture model. The hydrogel killed carbapenem-resistant Acinetobacter baumannii in a murine model of burn wound infection with >99% reduction in bacterial burden. Furthermore, this hydrogel displayed significant reduction in inflammatory responses, with accelerated wound healing in rat deep wound model. Collectively, these results implied the excellent promise held by lead hydrogel to be developed for tackling deep tissue wounds, notorious infections, and resulting inflammatory responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru Karnataka 560064 India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru Karnataka 560064 India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru Karnataka 560064 India
- School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru Karnataka 560064 India
| |
Collapse
|
188
|
Liu ZH, Chiang MT, Lin HY. Lytic Bacteriophage as a Biomaterial to Prevent Biofilm Formation and Promote Neural Growth. Tissue Eng Regen Med 2022; 19:987-1000. [PMID: 35648339 DOI: 10.1007/s13770-022-00462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although non-lytic filamentous bacteriophages have been made into biomaterial to guide tissue growth, they had limited ability to prevent bacterial infection. In this work a lytic bacteriophage was used to make an antibacterial biomaterial for neural tissue repair. METHODS Lytic phages were chemically bound to the surface of a chitosan film through glutaraldehyde crosslinking. After the chemical reaction, the contact angle of the sample surface and the remaining lytic potential of the phages were measured. The numbers of bacteria on the samples were measured and examined under scanning electron microscopy. Transmission electron microscopy (TEM) was used to observe the phages and phage-infected bacteria. A neuroblast cell line was cultured on the samples to evaluate the sample's biocompatibility. RESULTS The phages conjugated to the chitosan film preserved their lytic potential and reduced 68% of bacterial growth on the sample surface at 120 min (p < 0.001). The phage-linked surface had a significantly higher contact angle than that of the control chitosan (p < 0.05). After 120 min a bacterial biofilm appeared on the control chitosan, while the phage-linked sample effectively prevented biofilm formation. The TEM images demonstrated that the phage attached and lysed the bacteria on the phage-linked sample at 120 min. The phage-linked sample significantly promoted the neuroblast cell attachment (p < 0.05) and proliferation (p < 0.01). The neuroblast on the phage-linked sample demonstrated more cell extensions after day 1. CONCLUSION The purified lytic phages were proven to be a highly bioactive nanomaterial. The phage-chitosan composite material not only promoted neural cell proliferation but also effectively prevent bacterial growth, a major cause of implant failure and removal.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan
| | - Ming-Tse Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan.
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, 3, Zhongxiao E Rd, Taipei, 106, Taiwan.
| |
Collapse
|
189
|
Greve JM, Cowan JA. Tackling antimicrobial stewardship through synergy and antimicrobial peptides. RSC Med Chem 2022; 13:511-521. [PMID: 35694695 PMCID: PMC9132191 DOI: 10.1039/d2md00048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
The unrestricted use of antibiotics has led to rapid development of antibiotic resistance (AR) and renewed calls to address this serious problem. This review summarizes the most common mechanisms of antibiotic action, and in turn antibiotic resistance, as well as pathways to mitigate the harm. Focus is then turned to emerging antibiotic strategies, including antimicrobial peptides (AMPs), with a discussion of their modes of action, biochemical features, and potential challenges for their use as antibiotics. The role of synergy in antimicrobials is also examined, with a focus on the synergy of AMPs and other emerging interactions with synergistic potential.
Collapse
Affiliation(s)
- Jenna M Greve
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA +1 614 292 2703
| |
Collapse
|
190
|
He L, Tan J, Liu C, Wu S, Zhang Q, Redshaw C, Ni X. Triphenylamine Derived Radical Cations for Colorimetric Cu
2+
Sensors and as an Antibacterial Agent. ChemistrySelect 2022. [DOI: 10.1002/slct.202201155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luqi He
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Jiao Tan
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province Hunan Normal University Changsha 410081 China
| | - Chun Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Shouting Wu
- School of Basic Medical Science/School of Public Health Guizhou Medical University Guiyang 550025 China
| | - Qi‐Long Zhang
- School of Basic Medical Science/School of Public Health Guizhou Medical University Guiyang 550025 China
| | - Carl Redshaw
- Department of Chemistry University of Hull Hull HU6 7RX UK
| | - Xin‐Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province Hunan Normal University Changsha 410081 China
| |
Collapse
|
191
|
Unni V, Abishad P, Prasastha Ram V, Niveditha P, Yasur J, John L, Prejit N, Juliet S, Latha C, Vergis J, Kurkure NV, Barbuddhe SB, Rawool DB. Green synthesis, and characterization of zinc oxide nanoparticles using Piper longum catkin extract and its in vitro antimicrobial activity against multi-drug-resistant non-typhoidal Salmonella spp. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | | | | | | | - Lijo John
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nambiar Prejit
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - C. Latha
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nitin Vasantrao Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | | | | |
Collapse
|
192
|
Rodrigues G, Souza Santos L, Franco OL. Antimicrobial Peptides Controlling Resistant Bacteria in Animal Production. Front Microbiol 2022; 13:874153. [PMID: 35663853 PMCID: PMC9161144 DOI: 10.3389/fmicb.2022.874153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the last few decades, antimicrobial resistance (AMR) has been a worldwide concern. The excessive use of antibiotics affects animal and human health. In the last few years, livestock production has used antibiotics as food supplementation. This massive use can be considered a principal factor in the accelerated development of genetic modifications in bacteria. These modifications are responsible for AMR and can be widespread to pathogenic and commensal bacteria. In addition, these antibiotic residues can be dispersed by water and sewer water systems, the contamination of soil and, water and plants, in addition, can be stocked in tissues such as muscle, milk, eggs, fat, and others. These residues can be spread to humans by the consumption of water or contaminated food. In addition, studies have demonstrated that antimicrobial resistance may be developed by vertical and horizontal gene transfer, producing a risk to public health. Hence, the World Health Organization in 2000 forbid the use of antibiotics for feed supplementation in livestock. In this context, to obtain safe food production, one of the potential substitutes for traditional antibiotics is the use of antimicrobial peptides (AMPs). In general, AMPs present anti-infective activity, and in some cases immune response. A limited number of AMP-based drugs are now available for use in animals and humans. This use is still not widespread due to a few problems like in-vivo effectiveness, stability, and high cost of production. This review will elucidate the different AMPs applications in animal diets, in an effort to generate safe food and control AMR.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- *Correspondence: Octávio Luiz Franco
| |
Collapse
|
193
|
Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy. SENSORS 2022; 22:s22103712. [PMID: 35632121 PMCID: PMC9148023 DOI: 10.3390/s22103712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
There is extensive interest in developing real-time biosensing strategies to characterize the membrane-disruptive properties of antimicrobial lipids and surfactants. Currently used biosensing strategies mainly focus on tracking membrane morphological changes such as budding and tubule formation, while there is an outstanding need to develop a label-free biosensing strategy to directly evaluate the molecular-level mechanistic details by which antimicrobial lipids and surfactants disrupt lipid membranes. Herein, using electrochemical impedance spectroscopy (EIS), we conducted label-free biosensing measurements to track the real-time interactions between three representative compounds—glycerol monolaurate (GML), lauric acid (LA), and sodium dodecyl sulfate (SDS)—and a tethered bilayer lipid membrane (tBLM) platform. The EIS measurements verified that all three compounds are mainly active above their respective critical micelle concentration (CMC) values, while also revealing that GML induces irreversible membrane damage whereas the membrane-disruptive effects of LA are largely reversible. In addition, SDS micelles caused membrane solubilization, while SDS monomers still caused membrane defect formation, shedding light on how antimicrobial lipids and surfactants can be active in, not only micellar form, but also as monomers in some cases. These findings expand our mechanistic knowledge of how antimicrobial lipids and surfactants disrupt lipid membranes and demonstrate the analytical merits of utilizing the EIS sensing approach to comparatively evaluate membrane-disruptive antimicrobial compounds.
Collapse
|
194
|
Quorum quenching action of marine red alga Halemenia durvillei on biofilm forming Gram negative bacterial isolates from contact lens. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Liao ZY, Gao WW, Shao NN, Zuo JM, Wang T, Xu MZ, Zhang FX, Xia YM. Iron Phosphate Nanozyme-Hydrogel with Multienzyme-like Activity for Efficient Bacterial Sterilization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18170-18181. [PMID: 35426296 DOI: 10.1021/acsami.2c02102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pathogenic bacteria infections have posed a threat to human health worldwide. Nanomaterials with natural enzymatic activity provide an opportunity for the development of new antibacterial pathways. We successfully constructed iron phosphate nanozyme-hydrogel (FePO4-HG) with the traits of positive charge and macropores. Interestingly, FePO4-HG displayed not only peroxidase-like activity under acidic bacterial infectious microenvironment but also superoxide dismutase-catalase-like synergistic effects in neutral or weak alkaline conditions, thus protecting normal tissues from the peroxidase-like protocol with exogenous H2O2 damage. Furthermore, the positive charge and macropore structure of FePO4-HG could capture and restrict bacteria in the range of ROS destruction. Obviously, FePO4-HG exhibited excellent antibacterial ability against MRSA and AREC with the assistance of H2O2. Significantly, the FePO4-HG + H2O2 system could efficiently disrupt the bacterial biofilm formation and facilitate the glutathione oxidation process to rapid bacterial death with low cytotoxicity. Moreover, FePO4-HG was unsusceptible to bacterial resistance development in MRSA. Animal experiments showed that the FePO4-HG + H2O2 group could efficiently eliminate the MRSA infection and present excellent wound healing without inflammation and tissue adhesions. With further development and optimization, FePO4-HG has great potential as a new class of antibacterial agents to fight antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Zi-Yang Liao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning-Ning Shao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia-Min Zuo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Meng-Zhen Xu
- College of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Feng-Xiu Zhang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
196
|
Gildea L, Ayariga JA, Ajayi OS, Xu J, Villafane R, Samuel-Foo M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022; 27:2669. [PMID: 35566019 PMCID: PMC9099639 DOI: 10.3390/molecules27092669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Products derived from Cannabis sativa L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research. While the psychoactive and medicinal properties of Cannabis products have been extensively highlighted in the literature, the antibacterial properties of cannabidiol (CBD) have not been explored in depth. This research serves to examine the antibacterial potential of CBD against Salmonella newington and S. typhimurium. In this study, we observed bacterial response to CBD exposure through biological assays, bacterial kinetics, and fluorescence microscopy. Additionally, comparative studies between CBD and ampicillin were conducted against S. typhimurium and S. newington to determine comparative efficacy. Furthermore, we observed potential resistance development of our Salmonella spp. against CBD treatment.
Collapse
Affiliation(s)
- Logan Gildea
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Joseph Atia Ayariga
- The Biomedical Engineering Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Olufemi S. Ajayi
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Junhuan Xu
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Robert Villafane
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Michelle Samuel-Foo
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| |
Collapse
|
197
|
Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:683-699. [PMID: 35414206 DOI: 10.2217/fmb-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alternative solutions are eminently needed to combat the escalating number of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriocins produced by lactic acid bacteria are promising candidates for next-generation antibiotics. Studies have found that these stable and nontoxic ribosomally synthesized antimicrobial peptides exhibit significant potency against other bacteria, including antibiotic-resistant strains. Here the authors review previous studies on bacteriocins that have been effectively employed to manage MRSA infections. The authors' review focuses on the beneficial traits of bacteriocins for further application as templates for the design of novel drugs. Treatments that combine bacteriocins with other antimicrobials to combat pervasive MRSA infections are also highlighted. In short, future studies should focus on the pharmacodynamics and pharmacokinetics of bacteriocins-antimicrobials to understand their interactions, as this aspect would likely determine their efficacy in MRSA inhibition.
Collapse
Affiliation(s)
- Syariffah Ns Yaacob
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Roswanira A Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mailin Misson
- Biotechnology Research Institute, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Mohd K Sabullah
- Faculty of Science and Natural Resources, Jalan Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Noraziah M Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
198
|
Wang WF, Xie XY, Huang Y, Li YK, Liu H, Chen XL, Wang HL. Identification of a Novel Antimicrobial Peptide From the Ancient Marine Arthropod Chinese Horseshoe Crab, Tachypleus tridentatus. Front Immunol 2022; 13:794779. [PMID: 35401525 PMCID: PMC8984021 DOI: 10.3389/fimmu.2022.794779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Humoral immunity is the first line of defense in the invertebrate immune system, and antimicrobial peptides play an important role in this biological process. A novel antimicrobial peptide, termed Tatritin, was identified and characterized in hemolymph of Chinese horseshoe crab, Tachypleus tridentatus, infected with Gram-negative bacteria via transcriptome analysis. Tatritin was significantly induced by bacterial infection in hemolymph and gill. The preprotein of Tatritin consists of a signal peptide (21 aa) and a mature peptide (47 aa) enriched by cysteine. The putative mature peptide was 5.6 kDa with a theoretical isoelectric point (pI) of 9.99 and showed a α-helix structure in the N-terminal and an anti-parallel β-sheet structure in the cysteine-stabilized C-terminal region. The chemically synthesized peptide of Tatritin exhibited a broad spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria and fungi. Furthermore, Tatritin may recognize and inhibit pathogenic microorganisms by directly binding to LPS, DNA, and chitin. In addition, administration of Tatritin reduced the mortality of zebrafish after bacterial infection. Due to its broad-spectrum antimicrobial activity in vivo and in vitro and the sensitivity to drug-resistant bacterial strains, Tatritin peptide can be used as a new type of drug for infection treatment or as an immune enhancer in animals.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yong Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yan Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yin-Kang Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
199
|
Bhattacharjee B, Jolly L, Mukherjee R, Haldar J. An easy-to-use antimicrobial hydrogel effectively kills bacteria, fungi, and influenza virus. Biomater Sci 2022; 10:2014-2028. [PMID: 35294508 DOI: 10.1039/d2bm00134a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various drug resistant pathogens such as bacteria, fungi and viruses enter a host through different routes, which can lead to health-related problems and even fatalities. Propagation of these infectious microbes majorly occurs through the mucosal openings or upon topical contact. To curb their transmission or to cure infections associated with these pathogens, herein we describe the development of an antimicrobial hydrogel, based on a water soluble quaternary lipophilic polyethyleneimine derivative (QPEINH-C6). The cationic polymer QPEINH-C6 exhibited antibacterial activity against drug-resistant Gram-positive bacteria (MIC = 10-62 μg mL-1) and Gram-negative bacteria (MIC = 117-123 μg mL-1). The derivative showed killing of human pathogenic fungi (MIC = 58-67 μg mL-1), including their clinical isolates. The rapid bactericidal and fungicidal nature were confirmed from the fast inactivation kinetics of bacterial cells (methicillin resistant S. aureus and vancomycin resistant S. aureus) within 3-6 hours and C. albicans within 1 h with ∼5-6 log reduction in the microbial burden. This antibacterial and antifungal cationic polymer was then used to construct an antimicrobial shear-thinning hydrogel (Bacfuvir), through non-covalent crosslinking with biocompatible gellan and polyvinyl alcohol (PVA). This hydrogel displayed ∼5-7 log reduction of numerous multidrug-resistant bacteria and their stationary phase cells which are insusceptible to conventional antibiotics. In addition, >99.9 % viable bacterial burden was reduced from preformed biofilm matrices of drug-resistant bacteria. Alongside, fluconazole-resistant C. albicans strains were killed completely within 15-60 min upon exposure to Bacfuvir gel. Most importantly, MRSA and C. albicans cells were reduced (3-4 log) in polymicrobial biofilms after hydrogel treatment. The hydrogel exhibited 99.9 % reduction of influenza viruses in a rapid manner. Due to the biocompatibility of Bacfuvir gel on topical application in a murine model and easy administration owing to its shear-thinning behaviour, this hydrogel can markedly contribute to mitigating drug-resistant bacterial, fungal and viral infections in healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Logia Jolly
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jakkur, Bengaluru 560064, Karnataka, India
- Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| |
Collapse
|
200
|
Combination of Sanguisorbigenin and Conventional Antibiotic Therapy for Methicillin-Resistant Staphylococcus aureus: Inhibition of Biofilm Formation and Alteration of Cell Membrane Permeability. Int J Mol Sci 2022; 23:ijms23084232. [PMID: 35457049 PMCID: PMC9032919 DOI: 10.3390/ijms23084232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is challenging to eradicate because of antibiotic resistance and biofilm formation. Novel antimicrobial agents and alternative therapies are urgently needed. This study aimed to evaluate the synergy of sanguisorbigenin (SGB) isolated from Sanguisorba officinalis L. with six conventional antibiotics to achieve broad-spectrum antibacterial action and prevent the development of resistance. A checkerboard dilution test and time-to-kill curve assay were used to determine the synergistic effect of SGB combined with antibiotics against MRSA. SGB showed significant synergy with antibiotics and reduced the minimum inhibitory concentration of antibiotics by 2-16-fold. Biofilm inhibition assay, quantitative RT-PCR, crystal violet absorption, and transmission electron microscopy were performed to evaluate the synergy mechanism. The results indicated that SGB could inhibit biofilm formation and alter cell membrane permeability in MRSA. In addition, SGB was found to exhibit quite low cytotoxicity and hemolysis. The discovery of the superiority of SGB suggests that SGB may be an antibiotic adjuvant for use in combination therapy and as a plant-derived antibacterial agent targeting biofilms.
Collapse
|