151
|
Wang X, Huang H, Liu X, Li J, Wang L, Li L, Li Y, Han T. Immunogenic cell death-related classifications in breast cancer identify precise immunotherapy biomarkers and enable prognostic stratification. Front Genet 2022; 13:1052720. [PMID: 36437951 PMCID: PMC9685311 DOI: 10.3389/fgene.2022.1052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023] Open
Abstract
Background: Immunogenic cell death (ICD) remodels the tumor immune microenvironment, plays an inherent role in tumor cell apoptosis, and promotes durable protective antitumor immunity. Currently, appropriate biomarker-based ICD immunotherapy for breast cancer (BC) is under active exploration. Methods: To determine the potential link between ICD genes and the clinical risk of BC, TCGA-BC was used as the training set and GSE58812 was used as the validation set. Gene expression, consistent clustering, enrichment analysis, and mutation omics analyses were performed to analyze the potential biological pathways of ICD genes involved in BC. Furthermore, a risk and prognosis model of ICD was constructed to evaluate the correlation between risk grade and immune infiltration, clinical stage, and survival prognosis. Results: We identified two ICD-related subtypes by consistent clustering and found that the C2 subtype was associated with good survival prognosis, abundant immune cell infiltration, and high activity of immune biological processes. Based on this, we constructed and validated an ICD risk and prognosis model of BC, including ATG5, HSP90AA1, PIK3CA, EIF2AK3, MYD88, IL1R1, and CD8A. This model can effectively predict the survival rate of patients with BC and is negatively correlated with the immune microenvironment and clinical stage. Conclusion: This study provides new insights into the role of ICD in BC. The novel classification risk model based on ICD in BC established in this study can aid in estimating the potential prognosis of patients with BC and the clinical outcomes of immunotherapy and postulates targets that are more useful in comprehensive treatment strategies.
Collapse
Affiliation(s)
- Xue Wang
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xijian Liu
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiuwei Li
- College of Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Wang
- Office of Academic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling Li
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaxing Li
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Han
- Pharmacology of Traditional Chinese Medical Formulae, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
152
|
Babi A, Menlibayeva K, Bex T, Doskaliev A, Akshulakov S, Shevtsov M. Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials. Cancers (Basel) 2022; 14:5435. [PMID: 36358853 PMCID: PMC9659111 DOI: 10.3390/cancers14215435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/03/2024] Open
Abstract
Heat shock proteins (HSPs) are conservative and ubiquitous proteins that are expressed both in prokaryotic and eukaryotic organisms and play an important role in cellular homeostasis, including the regulation of proteostasis, apoptosis, autophagy, maintenance of signal pathways, protection from various stresses (e.g., hypoxia, ionizing radiation, etc.). Therefore, HSPs are highly expressed in tumor cells, including malignant brain tumors, where they also associate with cancer cell invasion, metastasis, and resistance to radiochemotherapy. In the current review, we aimed to assess the diagnostic and prognostic values of HSPs expression in CNS malignancies as well as the novel treatment approaches to modulate the chaperone levels through the application of inhibitors (as monotherapy or in combination with other treatment modalities). Indeed, for several proteins (i.e., HSP10, HSPB1, DNAJC10, HSPA7, HSP90), a direct correlation between the protein level expression and poor overall survival prognosis for patients was demonstrated that provides a possibility to employ them as prognostic markers in neuro-oncology. Although small molecular inhibitors for HSPs, particularly for HSP27, HSP70, and HSP90 families, were studied in various solid and hematological malignancies demonstrating therapeutic potential, still their potential was not yet fully explored in CNS tumors. Some newly synthesized agents (e.g., HSP40/DNAJ inhibitors) have not yet been evaluated in GBM. Nevertheless, reported preclinical studies provide evidence and rationale for the application of HSPs inhibitors for targeting brain tumors.
Collapse
Affiliation(s)
- Aisha Babi
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | | | - Torekhan Bex
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Aidos Doskaliev
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Serik Akshulakov
- National Centre for Neurosurgery, Turan Ave., 34/1, Astana 010000, Kazakhstan
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
153
|
Li Z, Pan Y, Du S, Li Y, Chen C, Song H, Wu Y, Luan X, Xu Q, Guan X, Song Y, Han X. Tumor-microenvironment activated duplex genome-editing nanoprodrug for sensitized near-infrared titania phototherapy. Acta Pharm Sin B 2022; 12:4224-4234. [PMID: 36386466 PMCID: PMC9643290 DOI: 10.1016/j.apsb.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (NIR)-light-triggered nanomedicine, including photodynamic therapy (PDT) and photothermal therapy (PTT), is growing an attractive approach for cancer therapy due to its high spatiotemporal controllability and minimal invasion, but the tumor eradication is limited by the intrinsic anti-stress response of tumor cells. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on oxygen-deficient titania (TiO2-x ) for mild NIR-phototherapy. In tumor microenvironment, the overexpressed hyaluronidase (HAase) and glutathione (GSH) can readily destroy hyaluronic acid (HA) and disulfide bond and releases the Cas9/sgRNA from TiO2-x to target the stress alleviating regulators, i.e., nuclear factor E2-related factor 2 (NRF2) and heat shock protein 90α (HSP90α), thereby reducing the stress tolerance of tumor cells. Under subsequent NIR light illumination, the TiO2-x demonstrates a higher anticancer effect both in vitro and in vivo. This strategy not only provides a promising modality to kills cancer cells in a minimal side-effects manner by interrupting anti-stress pathways but also proposes a general approach to achieve controllable gene editing in tumor region without unwanted genetic mutation in normal environments.
Collapse
Affiliation(s)
- Zekun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shiyu Du
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yayao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongxiu Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyao Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qin Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xin Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
154
|
Okamoto S, Miyano K, Choshi T, Sugisawa N, Nishiyama T, Kotouge R, Yamamura M, Sakaguchi M, Kinoshita R, Tomonobu N, Katase N, Sasaki K, Nishina S, Hino K, Kurose K, Oka M, Kubota H, Ueno T, Hirai T, Fujiwara H, Kawai C, Itadani M, Morihara A, Matsushima K, Kanegasaki S, Hoffman RM, Yamauchi A, Kuribayashi F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed Pharmacother 2022; 155:113733. [DOI: 10.1016/j.biopha.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
|
155
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
156
|
Wang P, Chen B, Zhan Y, Wang L, Luo J, Xu J, Zhan L, Li Z, Liu Y, Wei J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022; 14:2279. [PMID: 36365098 PMCID: PMC9695556 DOI: 10.3390/pharmaceutics14112279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Biaoqi Chen
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yunyan Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jia Xu
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
157
|
Khan MI, Park T, Imran MA, Gowda Saralamma VV, Lee DC, Choi J, Baig MH, Dong JJ. Development of machine learning models for the screening of potential HSP90 inhibitors. Front Mol Biosci 2022; 9:967510. [PMID: 36339714 PMCID: PMC9626531 DOI: 10.3389/fmolb.2022.967510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone playing a significant role in the folding of client proteins. This cellular protein is linked to the progression of several cancer types, including breast cancer, lung cancer, and gastrointestinal stromal tumors. Several oncogenic kinases are Hsp90 clients and their activity depends on this molecular chaperone. This makes HSP90 a prominent therapeutic target for cancer treatment. Studies have confirmed the inhibition of HSP90 as a striking therapeutic treatment for cancer management. In this study, we have utilized machine learning and different in silico approaches to screen the KCB database to identify the potential HSP90 inhibitors. Further evaluation of these inhibitors on various cancer cell lines showed favorable inhibitory activity. These inhibitors could serve as a basis for future development of effective HSP90 inhibitors.
Collapse
Affiliation(s)
- Mohd Imran Khan
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Taehwan Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohammad Azhar Imran
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Duk Chul Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaehyuk Choi
- BNJBiopharma, Yonsei University International Campus, Incheon, South Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jae-June Dong, ; Mohammad Hassan Baig,
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jae-June Dong, ; Mohammad Hassan Baig,
| |
Collapse
|
158
|
Huo J, Li J, Liu Y, Yang L, Cao X, Zhao C, Lu Y, Zhou W, Li S, Liu J, Li J, Li X, Wan J, Wen R, Zhen M, Wang C, Bai C. Amphiphilic Aminated Derivatives of [60]Fullerene as Potent Inhibitors of Tumor Growth and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201541. [PMID: 36031401 PMCID: PMC9561876 DOI: 10.1002/advs.202201541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Malignant proliferation and metastasis are the hallmarks of cancer cells. Aminated [70]fullerene exhibits notable antineoplastic effects, promoting it a candidate for multi-targeted cancer drugs. It is an urgent need to reveal the structure-activity relationship for antineoplastic aminated fullerenes. Herein, three amphiphilic derivatives of [60]fullerene with clarified molecular structures are synthesized: TAPC-4, TAPC-3, and TCPC-4. TAPC-4 inhibits the proliferation of diverse tumor cells via G0/G1 cell cycle arrest, reverses the epithelial-mesenchymal transition, and abrogates the high mobility of tumor cells. TAPC-4 can be excreted from the organism and achieves an in vivo inhibition index of 75.5% in tumor proliferation and 87.5% in metastatic melanoma with a wide safety margin. Molecular dynamics simulations reveal that the amphiphilic molecular structure and the ending amino groups promote the targeting of TAPC-4 to heat shock protein Hsp90-beta, vimentin, and myosin heavy chain 9 (MYH9), probably resulting in the alteration of cyclin D1 translation, vimentin expression, and MYH9 location, respectively. This work initially emphasizes the dominant role of the amphiphilic structure and the terminal amino moieties in the antineoplastic effects of aminated fullerenes, providing fundamental support for their anti-tumor drug development.
Collapse
Affiliation(s)
- Jiawei Huo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Libin Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinran Cao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chong Zhao
- School of PharmacyGuizhou Medical UniversityGuian New DistrictGuizhou550025China
| | - Yicheng Lu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Shumu Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Jianan Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Jiao Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xing Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jing Wan
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rui Wen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Chunru Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chunli Bai
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
159
|
Su K, Liu Y, Wang P, He K, Wang F, Chi H, Rao M, Li X, Wen L, Song Y, Zhang J, Gu T, Xu K, Li Q, Chen J, Wu Z, Li H, Huang W, Chen L, Tong J, Li H, Feng X, Chen S, Yang B, Jin H, Yang Y, Liu H, Yang C, Wu M, Xiong F, Peng K, Zhu L, Xu Y, Tang X, Tan Z, Luo X, Zheng H, Zhang Y, Guo L, Han Y. Heat-shock protein 90α is a potential prognostic and predictive biomarker in hepatocellular carcinoma: a large-scale and multicenter study. Hepatol Int 2022; 16:1208-1219. [PMID: 35972640 PMCID: PMC9525341 DOI: 10.1007/s12072-022-10391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/09/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although the diagnostic value of plasma heat-shock protein 90α (HSP90α) in hepatocellular carcinoma (HCC) has been previously reported, the causal effect of the plasma HSP90α levels on HCC prognosis remains largely unclear. To this extent, we sought to assess whether the plasma HSP90α acts as a prognostic factor for HCC patients. METHODS A total of 2150 HCC patients were included in this retrospective study between August 2016 and July 2021. Plasma HSP90α levels were tested within a week before treatment and their association with prognosis was assessed. RESULTS An optimal cutoff value of 143.5 for the HSP90α based on the overall survival (OS) was determined using the X-tile software. HCC patients with HSP90α < 143.5 ng/mL (low HSP90α) before and after propensity score matching (PSM) indicated longer median OS (mOS) relative to those with HSP90α ≥ 143.5 ng/mL (high HSP90α) (37.0 vs. 9.0 months, p < 0.001; 19.2 vs. 9.6 months, p < 0.001; respectively). In addition, the high HSP90α plasma level is an independent poor prognostic factor for OS in HCC patients. In our subgroup analysis, including the supportive care group, surgery group, transarterial chemoembolization (TACE) group, adjuvant TACE group, an immune checkpoint inhibitor (ICI) plus targeted therapy group, and TACE plus ICI group, the high HSP90α group demonstrated better OS compared to the low HSP90α group. Moreover, in the supportive care, TACE, ICI plus targeted therapy, TACE plus ICI groups, and high HSP90α levels were also an independent poor prognostic factors for OS. CONCLUSIONS Our study confirmed that the plasma HSP90α level can be used as a prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Ke Su
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Yanlin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Pan Wang
- Clinical Skills Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kun He
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fei Wang
- Department of General Surgery, Luxian People's Hospital, Luzhou, 646199, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Mingyue Rao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Xueting Li
- Department of Oncology, 363 Hospital, Chengdu, 610041, China
| | - Lianbin Wen
- Department of Geriatric Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yanqiong Song
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Jianwen Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Tao Gu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Ke Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Qi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Weihong Huang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lan Chen
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Tong
- Department of Spinal Surgery, No.1 Orthopedics Hospital of Chengdu, Chengdu, 610000, China
| | - Hongyan Li
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xunjie Feng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Siyu Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Binbin Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hongping Jin
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yue Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hanlin Liu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chao Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Ming Wu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Fangyu Xiong
- Department of Medical Inspection Technology, Southwest Medical University, Luzhou, 646000, China
| | - Keyi Peng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lechuan Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yaoyang Xu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xue Tang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Zunyuan Tan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xiaotong Luo
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hanyue Zheng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yuxin Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, China.
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, China.
| |
Collapse
|
160
|
Aghazadeh N, Beilankouhi EAV, Fakhri F, Gargari MK, Bahari P, Moghadami A, Khodabandeh Z, Valilo M. Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson's disease. Mol Biol Rep 2022; 49:11061-11070. [PMID: 36097120 DOI: 10.1007/s11033-022-07900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurological diseases, next only to Alzheimer's disease (AD) in terms of prevalence. It afflicts about 2-3% of individuals over 65 years old. The etiology of PD is unknown and several environmental and genetic factors are involved. From a pathological point of view, PD is characterized by the loss of dopaminergic neurons in the substantia nigra, which causes the abnormal accumulation of α-synuclein (α-syn) (a component of Lewy bodies), which subsequently interact with heat shock proteins (HSPs), leading to apoptosis. Apoptosis is a vital pathway for establishing homeostasis in body tissues, which is regulated by pro-apoptotic and anti-apoptotic factors. Recent findings have shown that HSPs, especially HSP27 and HSP70, play a pivotal role in regulating apoptosis by influencing the factors involved in the apoptosis pathway. Moreover, it has been reported that the expression of these HSPs in the nervous system is high. Apart from this finding, investigations have suggested that HSP27 and HSP70 (related to parkin) show a potent protective and anti-apoptotic impact against the damaging outcomes of mutant α-syn toxicity to nerve cells. Therefore, in this study, we aimed to investigate the relationship between these HSPs and apoptosis in patients with PD.
Collapse
Affiliation(s)
- Nina Aghazadeh
- Department of biology, Islamic Azad University, Tabriz, Iran
| | | | - Farima Fakhri
- Research Institute for Neuroscience, Kerman University of Medical Sciences, Kerman, Iran
| | - Morad Kohandel Gargari
- Faculty of Medicine, Imamreza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Moghadami
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
161
|
Sun Z, Chen W, Huang D, Jiang C, Lu L. A mitochondria targeted cascade reaction nanosystem for improved therapeutic effect by overcoming cellular resistance. Biomater Sci 2022; 10:5947-5955. [PMID: 36043518 DOI: 10.1039/d2bm00956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitigating cellular resistance, which could enhance the sensitivity of tumor cells to treatment, is a promising approach for obtaining better therapeutic outcomes. However, the present designs of materials generally disregard this point, or only focus on a single specific resistance. Herein, a strategy based on a series of cascade reactions aiming to suppress multiple cellular resistances is designed by integrating photothermal and chemotherapy into a mitochondria targeted nanosystem (AuBPs@TD). The intelligent nanosystem is fabricated by modifying gold nanobipyramids (AuBPs) with triphenylphosphonium (TPP) functionalized dichloroacetic acid (DCA). TPP serves as a "navigation system" and facilitates the location of AuBPs@TD in the mitochondria. Moreover, the released DCA promoted by the photothermal effect of AuBPs, as the mitochondrial kinase inhibitor, could inhibit glycolysis, and lead to a repressed expression of heat shock protein 90, which is the main resistance protein in cancer cells against photothermal therapy (PTT). Thus, the photothermal antitumor effect can be significantly improved. For the other cascade passage, the hyperthermal atmosphere depresses the expression of P-glycoprotein, a protein associated with drug resistance, and consequently prevents DCA molecules from being expelled in return. Furthermore, the retained DCA molecules elevate the concentration of intracellular hydrogen peroxide, and due to the peroxidase-like activity of AuBPs, increased intracellular reactive oxygen species could be obtained to accelerate apoptosis. As a result, these cascade reactions lead to significant inhibition of cellular resistance and greatly improve the therapeutic performance. This work paves a new way for suppressing cellular resistance to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Dianshuai Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
162
|
Li Z, Liu J, Zhao S, Ma Q, Guo Z, Liu A, Li Y, Guan G, Luo J, Yin H. Theileria annulata SVSP455 interacts with host HSP60. Parasit Vectors 2022; 15:308. [PMID: 36042502 PMCID: PMC9426020 DOI: 10.1186/s13071-022-05427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Theileria annulata, a transforming parasite, invades bovine B cells, dendritic cells and macrophages, promoting the uncontrolled proliferation of these cells. This protozoan evolved intricate strategies to subvert host cell signaling pathways related to antiapoptotic signaling to enable survival and proliferation within the host cells. However, the molecular mechanisms of the cell transformation induced by T. annulata remain largely unclear. Although some studies have predicted that the subtelomere-encoded variable secreted protein (SVSP) family plays roles in host-parasite interactions, the evidence for this is limited. Methods In the present study, the SVSP455 (TA05545) gene, a member of the SVSP gene family, was used as the target molecule. The expression pattern of SVSP455 in different life-cycle stages of T. annulata infection was explored using a quantitative real-time PCR assay, and the subcellular distribution of SVSP455 was observed using confocal microscopy. The host cell proteins interacting with SVSP455 were screened using the Y2H system, and their interactions were verified in vivo and in vitro using both bimolecular fluorescence complementation and confocal microscopy, and co-immunoprecipitation assays. The role played by SVSP455 in cell transformation was further explored by using overexpression, RNA interference and drug treatment experiments. Results The highest level of the SVSP455 transcript was detected in the schizont stage of T. annulata, and the protein was located both on the surface of schizonts and in the host cell cytoplasm. In addition, the interaction between SVSP455 and heat shock protein 60 was shown in vitro, and their link may regulate host cell apoptosis in T. annulata-infected cells. Conclusion Our findings are the first to reveal that T. annulata-secreted SVSP455 molecule directly interacts with both exogenous and endogenous bovine HSP60 protein, and that the interaction of SVSP455-HSP60 may manipulate the host cell apoptosis signaling pathway. These results provide insights into cancer-like phenotypes underlying Theilera transformation and therapeutics for protection against other pathogens. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05427-z.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Quanying Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhihong Guo
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute-Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
163
|
Chang F, Li N, Shi X, Olga V, Wang X, Diao X, Zhou H, Tang X. Physiological and muscle tissue responses in Litopenaeus vannamei under hypoxic stress via iTRAQ. Front Physiol 2022; 13:979472. [PMID: 36111157 PMCID: PMC9468788 DOI: 10.3389/fphys.2022.979472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
White L. vannamei have become the most widely cultivated shrimp species worldwide. Cultivation of L. vannamei is one of the predominant sectors in China’s aquaculture industry. This study focused on the physiological and biochemical responses, differential protein expression, and expression characteristics of the related crucial functional protein genes under low oxygen conditions among different strains of L. vannamei. It was found that 6 h of hypoxic stress caused a significant reduction in the total hemocyte number in both strains, while the hypoxia-sensitive strain showed a stronger reduction. In contrast, the hemocyanin concentration showed only an overall upward trend. Proteomic analysis of L. vannamei muscle tissue revealed 3,417 differential proteins after 12 h of hypoxic stress. Among them, 29 differentially expressed proteins were downregulated and 244 were upregulated in the hypoxia-sensitive strain. In contrast, there were only 10 differentially expressed proteins with a downregulation pattern and 25 with an upregulation pattern in the hypoxia-tolerant strain. Five protein genes that responded significantly to hypoxic stress were selected for quantitative real-time PCR analysis, namely, hemocyanin, chitinase, heat shock protein 90 (HSP 90), programmed death protein, and glycogen phosphorylase. The results showed that the gene expression patterns were consistent with proteomic experimental data except for death protein and glycogen phosphorylase. These results can enrich the general knowledge of hypoxic stress in L. vannamei and the information provided differentially expressed proteins which may be used to assist breeding programs of L. vannamei of new strains with tolerance to hypoxia.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Na Li
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiang Shi
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Volovych Olga
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiaobing Wang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
- *Correspondence: Xiaobing Wang, ; Hailong Zhou, ; Xianming Tang,
| |
Collapse
|
164
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
165
|
Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. Int J Mol Sci 2022; 23:ijms23179758. [PMID: 36077156 PMCID: PMC9456243 DOI: 10.3390/ijms23179758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan–Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients’ relapse and poor survival.
Collapse
Affiliation(s)
- Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| |
Collapse
|
166
|
Tustumi F, Agareno GA, Galletti RP, da Silva RBR, Quintas JG, Sesconetto LDA, Szor DJ, Wolosker N. The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells 2022; 11:2664. [PMID: 36078072 PMCID: PMC9454628 DOI: 10.3390/cells11172664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Heat-shock proteins (HSPs) are a family of proteins that have received considerable attention over the last several years. They have been classified into six prominent families: high-molecular-mass HSP, 90, 70, 60, 40, and small heat shock proteins. HSPs participate in protein folding, stability, and maturation of several proteins during stress, such as in heat, oxidative stress, fever, and inflammation. Due to the immunogenic host's role in the combat against cancer cells and the role of the inflammation in the cancer control or progression, abnormal expression of these proteins has been associated with many types of cancer, including esophagogastric cancer. This study aims to review all the evidence concerning the role of HSPs in the pathogenesis and prognosis of esophagogastric cancer and their potential role in future treatment options. This narrative review gathers scientific evidence concerning HSPs in relation to esophagus and gastric cancer. All esophagogastric cancer subtypes are included. The role of HSPs in carcinogenesis, prognostication, and therapy for esophagogastric cancer are discussed. The main topics covered are premalignant conditions for gastric cancer atrophic gastritis, Barrett esophagus, and some viral infections such as human papillomavirus (HPV) and Epstein-Barr virus (EBV). HSPs represent new perspectives on the development, prognostication, and treatment of esophagogastric cancer.
Collapse
Affiliation(s)
- Francisco Tustumi
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Gabriel Andrade Agareno
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Ricardo Purchio Galletti
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Rafael Benjamim Rosa da Silva
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Julia Grams Quintas
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Lucas de Abreu Sesconetto
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Daniel José Szor
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Nelson Wolosker
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
167
|
Zhang H, Huang J, Fan X, Miao R, Wang Y. HSP90AA1 promotes the inflammation in human gingival fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide via regulating of autophagy. BMC Oral Health 2022; 22:366. [PMID: 36028869 PMCID: PMC9419417 DOI: 10.1186/s12903-022-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peri-implantitis of tooth seriously affects the life quality of patients. This study aimed to investigate the role of HSP90AA1 in the inflammatory of human gingival fibroblasts (HGFs) induced by porphyromonas gingivalis lipopolysaccharide (Pg-LPS), and to provide a potential therapeutic target for clinical treatment of peri-implantitis. METHODS Pg-LPS (0.1, 1, 10 μg/mL) was used to construct the inflammatory model of HGFs to evaluate the effect of Pg-LPS on HGFs. Then HSP90AA1-siRNA was transfected to construct HSP90AA1 low expression HGFs cell line, and 3-MA was also added. After that, cell viability, apoptosis, the contents of inflammatory cytokines were detected by CCK-8, flow cytometry and ELISA assay, respectively. Intracellular ROS, the expressions of HSP90α, HSP90β were detected by immunofluorescence. The levels of HSP90AA1, p-NF-κB p65/NF-κB p65, LC3 II/I, ATG5, Beclin-1 and TLR protein were detected by western blot. RESULTS Pg-LPS treatment didn't affect the viability of HGFs cells, but induced the cell apoptosis and ROS generation, increased the contents of IL-1β, IL-6, TNF-α, and the protein expressions of HSP90AA1, p-NF-κBp65/NF-κBp65, LC3II/I, ATG5, and Beclin-1 in HGFs. While HSP90AA1-siRNA transfected into Pg-LPS induced HGFs significantly reduced the HSP90AA1, HSP90α, HSP90β expression, decreased the inflammatory factors, ROS generation, cell apoptosis rate, and autophagy-related proteins and TLR2/4 protein levels. What's more, the addition of autophagy inhibitor 3-MA further promote the effect of HSP90AA1-siRNA on Pg-LPS treated HGFs. CONCLUSIONS This study showed that HSP90AA1 promoted the inflammatory response of Pg-LPS induced HGFs by regulating autophagy. The addition of 3-MA further confirmed that autophagy may mediate siHSP90AA1 to enhance the inflammatory response.
Collapse
Affiliation(s)
- Huang Zhang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - Jie Huang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - XuSheng Fan
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - RuiJing Miao
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - YongWu Wang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province.
| |
Collapse
|
168
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
169
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
170
|
She K, Yu S, He S, Wang W, Chen B. CircRNA 0009043 suppresses non-small-cell lung cancer development via targeting the miR-148a-3p/DNAJB4 axis. Biomark Res 2022; 10:61. [PMID: 35974419 PMCID: PMC9380299 DOI: 10.1186/s40364-022-00407-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are important regulators of the development and progression of non-small-cell lung cancer (NSCLC) and many other malignancies. The functional importance of circ_0009043 in NSCLC, however, has yet to be established. Methods The expression of circ_0009043, miR-148a-3p, and DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) in NSCLC cells was assessed via qPCR. The proliferative activity of these cells was examined through EdU uptake and CCK-8 assays, while flow cytometry approaches were used to examine apoptotic cell death rates. Protein expression was measured through Western immunoblotting. Interactions between miR-148a-3p and circ_0009043 or DNAJB4 were detected through RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The in vivo importance of circ_0009043 as a regulator of oncogenic activity was assessed using murine xenograft models. Results Both NSCLC cells and tissue samples were found to exhibit circ_0009043 upregulation, and lower circ_0009043 expression levels were found to be related to poorer NSCLC patient overall survival. Knocking down circ_0009043 resulted in the enhancement of NSCLC cell proliferative activity and the suppression of apoptotic tumor cell death in vitro, while also driving more rapid in vivo tumorigenesis. Mechanistically, circ_0009043 was found to function as a molecular sponge that sequestered miR-148a-3p, which was in turn able to directly suppress DNAJB4 expression. When miR-148a-3p was overexpressed, this reversed the impact of knocking down circ_0009043 on the apoptotic death and proliferation of NSCLC cells. Conversely, miR-148a-3p inhibition resulted in the suppression of NSCLC cell apoptosis and the enhancement of tumor cell growth, while the downregulation of DNAJB4 reversed these changes. Conclusion Circ_0009043 acts as a tumor suppressor in NSCLC cells, promoting DNAJB4 upregulation via the sequestration of miR-148a-3p.
Collapse
Affiliation(s)
- Kelin She
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China. .,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| | - Shaoqi Yu
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Shushuai He
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Wen Wang
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| | - Biao Chen
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| |
Collapse
|
171
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
172
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
173
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
174
|
Scoles DR, Gandelman M, Paul S, Dexheimer T, Dansithong W, Figueroa KP, Pflieger LT, Redlin S, Kales SC, Sun H, Maloney D, Damoiseaux R, Henderson MJ, Simeonov A, Jadhav A, Pulst SM. A quantitative high-throughput screen identifies compounds that lower expression of the SCA2-and ALS-associated gene ATXN2. J Biol Chem 2022; 298:102228. [PMID: 35787375 PMCID: PMC9356275 DOI: 10.1016/j.jbc.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas Dexheimer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | | | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Lance T Pflieger
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - Scott Redlin
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stephen C Kales
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Hongmao Sun
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - David Maloney
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Department of Bioengineering in the Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Mark J Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
175
|
Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci 2022; 23:ijms23147792. [PMID: 35887137 PMCID: PMC9324353 DOI: 10.3390/ijms23147792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| |
Collapse
|
176
|
Qiang R, Liu XZ, Xu JC. The Immune Pathogenesis of Acute-On-Chronic Liver Failure and the Danger Hypothesis. Front Immunol 2022; 13:935160. [PMID: 35911735 PMCID: PMC9329538 DOI: 10.3389/fimmu.2022.935160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a group of clinical syndromes related to severe acute liver function impairment and multiple-organ failure caused by various acute triggering factors on the basis of chronic liver disease. Due to its severe condition, rapid progression, and high mortality, it has received increasing attention. Recent studies have shown that the pathogenesis of ACLF mainly includes direct injury and immune injury. In immune injury, cytotoxic T lymphocytes (CTLs), dendritic cells (DCs), and CD4+ T cells accumulate in the liver tissue, secrete a variety of proinflammatory cytokines and chemokines, and recruit more immune cells to the liver, resulting in immune damage to the liver tissue, massive hepatocyte necrosis, and liver failure, but the key molecules and signaling pathways remain unclear. The “danger hypothesis” holds that in addition to the need for antigens, damage-associated molecular patterns (DAMPs) also play a very important role in the occurrence of the immune response, and this hypothesis is related to the pathogenesis of ACLF. Here, the research status and development trend of ACLF, as well as the mechanism of action and research progress on various DAMPs in ACLF, are summarized to identify biomarkers that can predict the occurrence and development of diseases or the prognosis of patients at an early stage.
Collapse
Affiliation(s)
- Rui Qiang
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Zi Liu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jun-Chi Xu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People’s Hospital of Suzhou, Suzhou, China
- *Correspondence: Jun-Chi Xu,
| |
Collapse
|
177
|
Regulation of SLC6A14 trafficking in breast cancer cells by heat shock protein HSP90β. Biochem Biophys Res Commun 2022; 614:41-46. [DOI: 10.1016/j.bbrc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
178
|
Zhou H, Huang X, Shi W, Xu S, Chen J, Huang K, Wang Y. LncRNA RP3-326I13.1 promotes cisplatin resistance in lung adenocarcinoma by binding to HSP90B and upregulating MMP13. Cell Cycle 2022; 21:1391-1405. [PMID: 35298351 PMCID: PMC9345617 DOI: 10.1080/15384101.2022.2051971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (DDP) resistance has become the major obstacle in the therapy of malignant tumors, including lung adenocarcinoma (LAD). Long non-coding RNAs (lncRNAs) were confirmed to be related to DDP-resistance. Studies have shown that RP3-326I13.1 (also known as PINCR) could promote the progression of colorectal cancer, and RP3-326I13.1 knockdown could induce hypersensitivity to chemotherapy drugs. While the function of RP3-326I13.1 in LAD is unclear, therefore, this study aimed to research the biological function and related molecular mechanisms of RP3-326I13.1 in DDP-resistance of LAD. QPCR analysis found that RP3-326I13.1 was highly expressed in A549/DDP cells and LAD tissues. Cytological assays found that RP3-326I13.1 pro-moted the proliferation, migration, invasion, and DDP-resistance of LAD cell lines. Moreover, knock-down of RP3-326I13.1 could induce G1 phase arrest. Nude mouse xenograft assay confirmed that RP3-326I13.1 could promote tumor growth and DDP-resistance in vivo. Mechanically, RNA pull-down and mass spectrometry analysis indicated that heat shock protein HSP 90-beta (HSP90B) could be combined with RP3-326I13.1. HSP90B knockdown inhibited the effect of RP3-326I13.1 on proliferation, invasion, and promoted LAD cell lines apoptosis. Transcriptome sequencing analysis found that MMP13 was the downstream mRNA of RP3-326I13.1. In conclusion, RP3-326I13.1 could promote DDP-resistance of LAD by binding to HSP90B and upregulating human matrix metalloproteinase-13 (MMP-13) and may serve as a therapeutic target, as well as a biomarker for predicting DDP-resistance in LAD.Abbreviations:DDP: Cisplatin; LAD: Lung adenocarcinoma; LncRNAs: Long non-coding RNAs; qPCR: real-time fluorescent quantitative PCR; HSP90B: Heat shock protein HSP 90-beta; RPMI: Roswell Park Memorial Institute; FBS: Fetal bovine serum; CT: computed tomography; MRI: magnetic resonance imaging; RECIST: Response evaluation criteria in solid tumors; NC: Negative control; OE: overexpression; shRNA: short hairpin RNA; siRNA: small interfering RNA; CCK-8: Cell Counting Kit-8; IC50: The half maximal inhibitory concentration; PBS: Phosphate buffer saline; PI: propidium iodide; SDS-PAGE: sodiumdodecylsulfate-polyacrylamide gel electrophoresis; ceRNA: Competing endogenous RNA; HE: hematoxylin-eosin; ns: no significance.
Collapse
Affiliation(s)
- Huixin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Wenjing Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Shihao Xu
- Department of Ultrasound Imaging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Jie Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
179
|
Liposome-templated gold nanoparticles for precisely temperature-controlled photothermal therapy based on heat shock protein expression. Colloids Surf B Biointerfaces 2022; 217:112686. [DOI: 10.1016/j.colsurfb.2022.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022]
|
180
|
Doberentz E, Wegner A, Rochlitzer L, Madea B, Ulbricht J. Expression of heat shock proteins (Hsps) 27 and 70 in kidney in cases of fatal hemorrhage. Forensic Sci Int 2022; 336:111316. [DOI: 10.1016/j.forsciint.2022.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
181
|
DİRİCAN E, ÇINAR İ. Gossypin'in farklı kanser hücre dizilerinde HSP60 ve HSP70'in gen ekspresyonu üzerindeki etkisi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1052787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Amaç: Bu çalışmanın amacı, gossypin'in farklı kanser hücre hatlarında ısı şok proteinleri (HSP) genlerinin ekspresyon seviyesi üzerindeki etkisini incelemektir.
Gereç ve Yöntem: Hücreler, standart kültür koşulları altında büyütüldü. Kanser hücreleri, farklı konsantrasyonlarda (5-100 µg/ml) gossypin ve pozitif kontrol olarak sisplatin (50 µM) ile muamele edildi. Gossypin'in hücre canlılığı ve etkili doz aralığı (5-100 µg/ml), 24, 48 ve 72. saatlerde MTT ile belirlendi. RNA izolasyonu ve cDNA sentezinden sonra, HSP60 ve HSP70 gen ekpresyon seviyesi RT-PCR ile analiz edildi. Gen ekspresyonu için 2-∆∆ct methodu kullanıldı.
Bulgular: MTT sonuçlarına göre kanser hücre hatlarında 25-50-100 µg/ml gossipin dozlarının HSP60 ve HSP70 gen ekspresyon seviyeleri üzerinde etkili olduğu bulundu. Gossypin, üç hücre hattında HSP60 ve HSP70'in ekspresyonunu doza bağımlı olarak etkilemiştir. Üç hücre hattında, 50 µg/ml ve 100 µg/ml gossipin dozları, HSP60 ve HSP70'in ekspresyonunu kontrol grubuna kıyasla önemli ölçüde azalttı.
Sonuç: Sonuçlarımız, farklı hücre dizilerinde çeşitli dozlarda gossypinin antikarsinojenik etkisini güçlü bir şekilde desteklemektedir. Fakat, daha fazla in vivo araştırma ve insan çalışmalarına ihtiyaç olduğuna inanıyoruz. Bulgularımız, gossypin'nin farklı kanser türlerinin önlenmesi ve/veya tedavisi için yeni stratejiler geliştirmek için daha ileri araştırmalar için uygun aday ajan olabileceğini düşündürmektedir.
Collapse
Affiliation(s)
- Ebubekir DİRİCAN
- BAYBURT ÜNİVERSİTESİ, BAYBURT SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
| | | |
Collapse
|
182
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
183
|
Zhang Y, Geng H, Zhang J, He K. An update mini-review on the progress of azanucleoside analogues. Chem Pharm Bull (Tokyo) 2022; 70:469-476. [PMID: 35753803 DOI: 10.1248/cpb.c22-00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of structurally novel nucleoside analogues is an active area in medicinal chemistry, since these drugs have proven clinical efficacy for decades. Azanucleosides are nucleoside analogues in which the sugar moieties are composed of nitrogen-containing rings or chains. In recent years, many azanucleosides have demonstrated therapeutic potential. In this short review, we describe recent advancements in azanucleosides, which may translate in a better understanding of the molecular design, biological activity, structure-activity relationship, and their related mechanism of action. The information summarized in this paper should encourage medicinal chemists in their future efforts to create more potent and effective chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Hao Geng
- College of Science, Xichang University
| | | | - Kehan He
- College of Science, Xichang University
| |
Collapse
|
184
|
In Silico Discovery and Optimisation of a Novel Structural Class of Hsp90 C-Terminal Domain Inhibitors. Biomolecules 2022; 12:biom12070884. [PMID: 35883440 PMCID: PMC9312846 DOI: 10.3390/biom12070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Hsp90 is a promising target for the development of novel agents for cancer treatment. The N-terminal Hsp90 inhibitors have several therapeutic limitations, the most important of which is the induction of heat shock response, which can be circumvented by targeting the allosteric binding site on the C-terminal domain (CTD) of Hsp90. In the absence of an Hsp90—CTD inhibitor co-crystal structure, the use of structure-based design approaches for the Hsp90 CTD is difficult and the structural diversity of Hsp90 CTD inhibitors is limited. In this study, we describe the discovery of a novel structural class of Hsp90 CTD inhibitors. A structure-based virtual screening was performed by docking a library of diverse compounds to the Hsp90β CTD binding site. Three selected virtual hits were tested in the MCF-7 breast cancer cell line, with compound TVS-23 showing antiproliferative activity with an IC50 value of 26.4 ± 1.1 µM. We report here the optimisation, synthesis and biological evaluation of TVS-23 analogues. Several analogues showed significantly enhanced antiproliferative activities in MCF-7 breast cancer and SK-N-MC Ewing sarcoma cell lines, with 7l being the most potent (IC50 = 1.4 ± 0.4 µM MCF-7; IC50 = 2.8 ± 0.4 µM SK-N-MC). The results of this study highlight the use of virtual screening to expand the structural diversity of Hsp90 CTD inhibitors and provide new starting points for further development.
Collapse
|
185
|
Pan F, Lin X, Hao L, Wang T, Song H, Wang R. The Critical Role of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:882571. [PMID: 35800895 PMCID: PMC9255949 DOI: 10.3389/fcell.2022.882571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the sixth most frequently diagnosed cancer and the third dominant cause of cancer death worldwide. Ferroptosis is characterized as an iron-dependent form of regulated cell death, with accumulation of lipid peroxides to lethal amounts. Evidences have showed that ferroptosis is closely associated with HCC, but the mechanisms are still poorly understood. In this review, we mainly summarize the roles of several typical molecules as well as radiotherapy in regulating the ferroptosis process in HCC. Chances are that this review may help address specific issues in the treatment of HCC.
Collapse
|
186
|
Ma X, Qiu S, Tang X, Song Q, Wang P, Wang J, Xia Q, Wang Z, Zhao Q, Lu M. TSPAN31 regulates the proliferation, migration, and apoptosis of gastric cancer cells through the METTL1/CCT2 pathway. Transl Oncol 2022; 20:101423. [PMID: 35429902 PMCID: PMC9034387 DOI: 10.1016/j.tranon.2022.101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 10/25/2022] Open
|
187
|
Bhatia S, Spanier L, Bickel D, Dienstbier N, Woloschin V, Vogt M, Pols H, Lungerich B, Reiners J, Aghaallaei N, Diedrich D, Frieg B, Schliehe-Diecks J, Bopp B, Lang F, Gopalswamy M, Loschwitz J, Bajohgli B, Skokowa J, Borkhardt A, Hauer J, Hansen FK, Smits SHJ, Jose J, Gohlke H, Kurz T. Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization. ACS CENTRAL SCIENCE 2022; 8:636-655. [PMID: 35647282 PMCID: PMC9136973 DOI: 10.1021/acscentsci.2c00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 05/04/2023]
Abstract
Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.
Collapse
Affiliation(s)
- Sanil Bhatia
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49) 211 81 04896.
| | - Lukas Spanier
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - David Bickel
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Niklas Dienstbier
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vitalij Woloschin
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Melina Vogt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Henrik Pols
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Beate Lungerich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jens Reiners
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Narges Aghaallaei
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniela Diedrich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Benedikt Frieg
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
| | - Julian Schliehe-Diecks
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Bertan Bopp
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Franziska Lang
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mohanraj Gopalswamy
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Baubak Bajohgli
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Julia Skokowa
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Arndt Borkhardt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Hauer
- Department
of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden 01307, Germany
- Partner
Site Dresden, National Center for Tumor
Diseases (NCT), Dresden 01307, Germany
| | - Finn K. Hansen
- Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical
Institute University of Bonn, Bonn 53121, Germany
| | - Sander H. J. Smits
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biochemistry, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Jose
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
- Phone: (+49)
211 81 13662.
| | - Thomas Kurz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49)
211 81 14984.
| |
Collapse
|
188
|
Yang K, Jian S, Wen C, Guo D, Liao P, Wen J, Kuang T, Han S, Liu Q, Deng B. Gallnut Tannic Acid Exerts Anti-stress Effects on Stress-Induced Inflammatory Response, Dysbiotic Gut Microbiota, and Alterations of Serum Metabolic Profile in Beagle Dogs. Front Nutr 2022; 9:847966. [PMID: 35571952 PMCID: PMC9094144 DOI: 10.3389/fnut.2022.847966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
Stress exposure is a potential threat to humans who live or work in extreme environments, often leading to oxidative stress, inflammatory response, intestinal dysbiosis, and metabolic disorders. Gallnut tannic acid (TA), a naturally occurring polyphenolic compound, has become a compelling source due to its favorable anti-diarrheal, anti-oxidative, anti-inflammatory, and anti-microbial activities. Thus, this study aimed to evaluate the anti-stress effects of gallnut TA on the stress-induced inflammatory response, dysbiotic gut microbiota, and alterations of serum metabolic profile using beagle models. A total of 13 beagle dogs were randomly divided into the stress (ST) and ST + TA groups. Dietary supplementation with TA at 2.5 g/kg was individually fed to each dog in the ST + TA group for 14 consecutive days. On day 7, all dogs were transported for 3 h from a stressful environment (days 1–7) to a livable site (days 8–14). In our results, TA relieved environmental stress-induced diarrheal symptoms in dogs and were shown to protect from myocardial injury and help improve immunity by serum biochemistry and hematology analysis. Also, TA inhibited the secretion of serum hormones [cortisol (COR), glucocorticoid (GC), and adrenocorticotropic hormone (ACTH)] and the expression of heat shock protein (HSP) 70 to protect dogs from stress-induced injury, thereby relieving oxidative stress and inflammatory response. Fecal 16S rRNA gene sequencing revealed that TA stimulated the growth of beneficial bacteria (Allobaculum, Dubosiella, Coriobacteriaceae_UCG-002, and Faecalibaculum) and suppressed the growth of pathogenic bacteria (Escherichia-Shigella and Streptococcus), thereby increasing fecal butyrate levels. Serum metabolomics further showed that phytosphingosine, indoleacetic acid, arachidonic acid, and biotin, related to the metabolism of sphingolipid, tryptophan, arachidonic acid, and biotin, respectively, could serve as potential biomarkers of stress exposure. Furthermore, Spearman’s correlation analysis showed strong relationships between the four potential serum biomarkers and differential bacteria. Overall, gallnut TA may be a potential prebiotic for the prevention and treatment of stress-induced metabolic disorders by targeting intestinal microbiota.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dan Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pinfeng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiawei Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Kuang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sufang Han
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingshen Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
189
|
Yang W, Gao K, Qian Y, Huang Y, Xiang Q, Chen C, Chen Q, Wang Y, Fang F, He Q, Chen S, Xiong J, Chen Y, Xie N, Zheng D, Zhai R. A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes. J Hematol Oncol 2022; 15:53. [PMID: 35526007 PMCID: PMC9077895 DOI: 10.1186/s13045-022-01270-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Background Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs. Recent studies suggest that tRFs participate in some pathological processes. However, the biological functions and mechanisms of tRFs in non-small cell lung cancer (NSCLC) are largely unknown.
Methods Differentially expressed tRFs were identified by tRF and tiRNA sequencing using 9 pairs of pre- and post-operation plasma from patients with NSCLC. Quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) were used to determine the levels of tRF in tissues, plasma, and cells. Gain- and loss-of-function experiments were implemented to investigate the oncogenic effects of tRF on NSCLC cells in vitro and in vivo. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation (RIP), Western blot, co-immunoprecipitation (Co-IP) assays, and rescue experiments were performed to explore the regulatory mechanisms of tRF in NSCLC. Results AS-tDR-007333 was an uncharacterized tRF and significantly up-regulated in NSCLC tissues, plasma, and cells. Clinically, AS-tDR-007333 overexpression could distinguish NSCLC patients from healthy controls and associated with poorer prognosis of NSCLC patients. Functionally, overexpression of AS-tDR-007333 enhanced proliferation and migration of NSCLC cells, whereas knockdown of AS-tDR-007333 resulted in opposite effects. Mechanistically, AS-tDR-007333 promoted the malignancy of NSCLC cells by activating MED29 through two distinct mechanisms. First, AS-tDR-007333 bound to and interacted with HSPB1, which activated MED29 expression by enhancing H3K4me1 and H3K27ac in MED29 promoter. Second, AS-tDR-007333 stimulated the expression of transcription factor ELK4, which bound to MED29 promoter and increased its transcription. Therapeutically, inhibition of AS-tDR-007333 suppressed NSCLC cell growth in vivo. Conclusions Our study identifies a new oncogenic tRF and uncovers a novel mechanism that AS-tDR-007333 promotes NSCLC malignancy through the HSPB1-MED29 and ELK4-MED29 axes. AS-tDR-007333 is a potential diagnostic or prognostic marker and therapeutic target for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01270-y.
Collapse
Affiliation(s)
- Wenhan Yang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Kaiping Gao
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Youhui Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Yongyi Huang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Qin Xiang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Qianqian Chen
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yiling Wang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Fuyuan Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Qihan He
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Siqi Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Juan Xiong
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yangchao Chen
- Faculty of Medicine, The Chinese University of Hong Kong, Rm508A, Lo Kwee-Seong Integrated Biomedical Sciences Bldg, Shatin, NT, Hong Kong, China
| | - Ni Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China.
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.
| | - Rihong Zhai
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China. .,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China. .,Department of Thoracic Surgery, Shenzhen University General Hospital, 1098 Xueyuan Ave., Shenzhen, 518055, China.
| |
Collapse
|
190
|
Zhang Q, Shen J, Wu Y, Ruan W, Zhu F, Duan S. LINC00520: A Potential Diagnostic and Prognostic Biomarker in Cancer. Front Immunol 2022; 13:845418. [PMID: 35309319 PMCID: PMC8924041 DOI: 10.3389/fimmu.2022.845418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) is important in the study of cancer mechanisms. LINC00520 is located on human chromosome 14q22.3 and is a highly conserved long non-coding RNA. LINC00520 is widely expressed in various tissues. The expression of LINC00520 is regulated by transcription factors such as Sp1, TFAP4, and STAT3. The high expression of LINC00520 is significantly related to the risk of 11 cancers. LINC00520 can competitively bind 10 miRNAs to promote tumor cell proliferation, invasion, and migration. In addition, LINC00520 is involved in the regulation of P13K/AKT and JAK/STAT signaling pathways. The expression of LINC00520 is significantly related to the clinicopathological characteristics and prognosis of tumor patients and is also related to the sensitivity of HNSCC to radiotherapy. Here, this article summarizes the abnormal expression pattern of LINC00520 in cancer and its potential molecular regulation mechanism and points out that LINC00520 can be used as a potential biomarker for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Qiudan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jinze Shen
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
191
|
A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene 2022; 41:3289-3297. [PMID: 35501463 PMCID: PMC9166677 DOI: 10.1038/s41388-022-02269-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Despite recent advances, there remains a significant unmet need for the development of new targeted therapies for triple-negative breast cancer (TNBC). Although the heat shock protein HSP90 is a promising target, previous inhibitors have had issues during development including undesirable induction of the heat shock response (HSR) and off-target effects leading to toxicity. SL-145 is a novel, rationally-designed C-terminal HSP90 inhibitor that induces apoptosis in TNBC cells via the suppression of oncogenic AKT, MEK/ERK, and JAK2/STAT3 signaling and does not trigger the HSR, in contrast to other inhibitors. In an orthotopic allograft model incorporating breast cancer stem cell-enriched TNBC tumors, SL-145 potently suppressed tumor growth, angiogenesis, and metastases concomitant with dysregulation of the JAK2/STAT3 signaling pathway. Our findings highlight the potential of SL-145 in suppressing metastatic TNBC independent of the HSR.
Collapse
|
192
|
Liew HY, Tan XY, Chan HH, Khaw KY, Ong YS. Natural HSP90 inhibitors as a potential therapeutic intervention in treating cancers: A comprehensive review. Pharmacol Res 2022; 181:106260. [DOI: 10.1016/j.phrs.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
193
|
Tang Y, Zhou Y, Fan S, Wen Q. The Multiple Roles and Therapeutic Potential of HSP60 in Cancer. Biochem Pharmacol 2022; 201:115096. [DOI: 10.1016/j.bcp.2022.115096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
|
194
|
Schwab M, Multhoff G. A Low Membrane Hsp70 Expression in Tumor Cells With Impaired Lactate Metabolism Mediates Radiosensitization by NVP-AUY922. Front Oncol 2022; 12:861266. [PMID: 35463341 PMCID: PMC9022188 DOI: 10.3389/fonc.2022.861266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
As overexpression and membrane localization of stress proteins together with high lactate levels promote radioresistance in tumor cells, we studied the effect of the Hsp90 inhibitor NVP-AUY922 on the cytosolic and membrane expression of heat shock proteins (HSPs) and radiosensitivity in murine melanoma (B16F10) and human colorectal (LS174T) wildtype (WT) and lactate dehydrogenases A/B double knockout (LDH−/−) tumor cells. Double knockout for LDHA/B has been found to reduce cytosolic as well as membrane HSP levels, whereas treatment with NVP-AUY922 stimulates the synthesis of Hsp27 and Hsp70, but does not affect membrane Hsp70 expression. Despite NVP-AUY922-inducing elevated levels of cytosolic HSP, radiosensitivity was significantly increased in WT cells and even more pronounced in LDH−/− cells. An impaired lipid metabolism in LDH−/− cells reduces the Hsp70 membrane-anchoring sphingolipid globotriaosylceramide (Gb3) and thereby results in a decreased Hsp70 cell surface density on tumor cells. Our results demonstrate that the membrane Hsp70 density, but not cytosolic HSP levels determines the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in LDH−/− cells.
Collapse
Affiliation(s)
- Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany.,Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
195
|
Xu N, Hu A, Pu X, Wang J, Liao X, Huang Z, Yin G. Cu-Chelated polydopamine nanoparticles as a photothermal medium and "immunogenic cell death" inducer for combined tumor therapy. J Mater Chem B 2022; 10:3104-3118. [PMID: 35348176 DOI: 10.1039/d2tb00025c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have been powerful technologies for tumor ablation. However, how to realize efficient CDT and PTT synergetic tumor ablation through a safe and intelligent system, remains a topic of great research value. Herein, a novel Cu-chelated polydopamine nano-system (Cu-PDA) with surface PEGylation and folate (FA) targeting modification (Cu-PDA-FA) was presented as a photothermal agent (PTA), Fenton-like reaction initiator and "immunogenic cell death" inducer to mediate PTT/CDT synergistical tumor therapy and antitumor immune activation. Primarily, the prepared Cu-PDA NPs possessed elevated photothermal conversion efficiency (46.84%) under the near-infrared (NIR) irradiation, bringing about hyperthermic death of tumor cells. Secondly, Cu-PDA catalyzed the generation of toxic hydroxyl radicals (˙OH) in response to the specific tumor microenvironment (TME) with the depletion of GSH, killing tumor cells with high specificity. Interestingly, the increase in local tumor temperature caused by PTT availed the production of ˙OH, and then the produced toxic ˙OH further led the tumor cells to be more sensitive to heat via impeding the expression of heat shock protein, so the synergistically enhanced PTT/CDT in tumor therapy could be achieved. Most importantly, the synergistical PTT/CDT could cause tumor cell death in an immunogenic way to generate in situ tumor vaccine-like functions, which were able to trigger a systemic antitumor immune response, preventing recurrence and metastasis without any other adjuvant supplementation. Overall, these Cu-PDA NPs will provide inspiration for the construction of a versatile nanoplatform for tumor therapy.
Collapse
Affiliation(s)
- Na Xu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ao Hu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
196
|
Huang M, Dong W, Xie R, Wu J, Su Q, Li W, Yao K, Chen Y, Zhou Q, Zhang Q, Li W, Cheng L, Peng S, Chen S, Huang J, Chen X, Lin T. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (Lond) 2022; 42:447-470. [PMID: 35434944 PMCID: PMC9118058 DOI: 10.1002/cac2.12284] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lymphatic metastasis has been associated with poor prognosis in bladder cancer patients with limited therapeutic options. Emerging evidence shows that heat shock factor 1 (HSF1) drives diversified transcriptome to promote tumor growth and serves as a promising therapeutic target. However, the roles of HSF1 in lymphatic metastasis remain largely unknown. Herein, we aimed to illustrate the clinical roles and mechanisms of HSF1 in the lymphatic metastasis of bladder cancer and explore its therapeutic potential. Methods We screened the most relevant gene to lymphatic metastasis among overexpressed heat shock factors (HSFs) and heat shock proteins (HSPs), and analyzed its clinical relevance in three cohorts. Functional in vitro and in vivo assays were performed in HSF1‐silenced and ‐regained models. We also used Co‐immunoprecipitation to identify the binding proteins of HSF1 and chromatin immunoprecipitation and dual‐luciferase reporter assays to investigate the transcriptional program directed by HSF1. The pharmacological inhibitor of HSF1, KRIBB11, was evaluated in popliteal lymph node metastasis models and patient‐derived xenograft models of bladder cancer. Results HSF1 expression was positively associated with lymphatic metastasis status, tumor stage, advanced grade, and poor prognosis of bladder cancer. Importantly, HSF1 enhanced the epithelial‐mesenchymal transition (EMT) of cancer cells in primary tumor to initiate metastasis, proliferation of cancer cells in lymph nodes, and macrophages infiltration to facilitate multistep lymphatic metastasis. Mechanistically, HSF1 interacted with protein arginine methyltransferase 5 (PRMT5) and jointly induced the monomethylation of histone H3 at arginine 2 (H3R2me1) and symmetric dimethylation of histone H3 at arginine 2 (H3R2me2s). This recruited the WD repeat domain 5 (WDR5)/mixed‐lineage leukemia (MLL) complex to increase the trimethylation of histone H3 at lysine 4 (H3K4me3); resulting in upregulation of lymphoid enhancer‐binding factor 1 (LEF1), matrix metallopeptidase 9 (MMP9), C‐C motif chemokine ligand 20 (CCL20), and E2F transcription factor 2 (E2F2). Application of KRIBB11 significantly inhibited the lymphatic metastasis of bladder cancer with no significant toxicity. Conclusion Our findings reveal a novel transcriptional program directed by the HSF1‐PRMT5‐WDR5 axis during the multistep process of lymphatic metastasis in bladder cancer. Targeting HSF1 could be a multipotent and promising therapeutic strategy for bladder cancer patients with lymphatic metastasis.
Collapse
Affiliation(s)
- Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wenwen Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| |
Collapse
|
197
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
198
|
Chen D, Zhou L, Qiao H, Wang Y, Xiao Y, Fang L, Yang B, Wang Z. Comparative proteomics identify HSP90A, STIP1 and TAGLN‑2 in serum extracellular vesicles as potential circulating biomarkers for human adenomyosis. Exp Ther Med 2022; 23:374. [PMID: 35495589 PMCID: PMC9019665 DOI: 10.3892/etm.2022.11301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Dayong Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiting Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
199
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
200
|
Chen S, Tian Y, Ju A, Li B, Fu Y, Luo Y. Suppression of CCT3 Inhibits Tumor Progression by Impairing ATP Production and Cytoplasmic Translation in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073983. [PMID: 35409343 PMCID: PMC9000022 DOI: 10.3390/ijms23073983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins are highly expressed in various cancers and exert critical functions in tumor progression. However, their expression patterns and functions in lung adenocarcinoma (LUAD) remain largely unknown. We identified that chaperonin-containing T-complex protein-1 subunit 3 (CCT3) was highly expressed in LUAD cells and was positively correlated with LUAD malignancy in the clinical samples. Animal studies showed that silencing CCT3 dramatically inhibited tumor growth and metastasis of LUAD. Proliferation and migration were markedly suppressed in CCT3-deficient LUAD cells. Moreover, the knockdown of CCT3 promoted apoptosis and cell cycle arrest. Mechanistically, the function of glycolysis was significantly inhibited and the total intracellular ATP levels were reduced by at least 25% in CCT3-deficient cells. In addition, the knockdown of CCT3 decreased the protein translation and led to a significant reduction in eukaryotic translation initiation factor 3 (EIF3G) protein, which was identified as a protein that interacts with CCT3. Impaired protein synthesis and cell growth in EIF3G-deficient cells were consistent with those caused by CCT3 knockdown in LUAD cells. Taken together, our study demonstrated in multiple ways that CCT3 is a critical factor for supporting growth and metastasis of LUAD, and for the first time, its roles in maintaining intracellular ATP levels and cytoplasmic translation are reported. Our novel findings provide a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuohua Chen
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Anji Ju
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Boya Li
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|