151
|
Ibrahim MA, Mäenpää M, Hassinen V, Kontunen-Soppela S, Malec L, Rousi M, Pietikäinen L, Tervahauta A, Kärenlampi S, Holopainen JK, Oksanen EJ. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1583-95. [PMID: 20181662 PMCID: PMC2852659 DOI: 10.1093/jxb/erq034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/09/2023]
Abstract
Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Bamberger I, Hortnagl L, Schnitzhofer R, Graus M, Ruuskanen TM, Muller M, Dunkl J, Wohlfahrt G, Hansel A. BVOC fluxes above mountain grassland. ACTA ACUST UNITED AC 2010; 7. [PMID: 24339833 DOI: 10.5194/bg-7-1413-2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Grasslands comprise natural tropical savannah over managed temperate fields to tundra and cover one quarter of the Earth's land surface. Plant growth, maintenance and decay result in volatile organic compound (VOCs) emissions to the atmosphere. Furthermore, biogenic VOCs (BVOCs) are emitted as a consequence of various environmental stresses including cutting and drying during harvesting. Fluxes of BVOCs were measured with a proton-transfer-reaction-mass-spectrometer (PTR-MS) over temperate mountain grassland in Stubai Valley (Tyrol, Austria) over one growing season (2008). VOC fluxes were calculated from the disjunct PTR-MS data using the virtual disjunct eddy covariance method and the gap filling method. Methanol fluxes obtained with the two independent flux calculation methods were highly correlated (y = 0.95×-0.12, R2 = 0.92). Methanol showed strong daytime emissions throughout the growing season - with maximal values of 9.7 nmol m-2 s-1, methanol fluxes from the growing grassland were considerably higher at the beginning of the growing season in June compared to those measured during October (2.5 nmol m-2 s-1). Methanol was the only component that exhibited consistent fluxes during the entire growing periods of the grass. The cutting and drying of the grass increased the emissions of methanol to up to 78.4 nmol m-2 s-1. In addition, emissions of acetaldehyde (up to 11.0 nmol m-2 s-1), and hexenal (leaf aldehyde, up to 8.6 nmol m-2 s-1) were detected during/after harvesting.
Collapse
Affiliation(s)
- I Bamberger
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
|
154
|
Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants--a mechanism for associational herbivore resistance? THE NEW PHYTOLOGIST 2010; 186:722-32. [PMID: 20298484 DOI: 10.1111/j.1469-8137.2010.03220.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant-emitted semi-volatile compounds have low vaporization rates at 20-25 degrees C and may therefore persist on surfaces such as plant foliage. The passive adsorption of arthropod-repellent semi-volatiles to neighbouring foliage could convey associational resistance, whereby a plant's neighbours reduce damage caused by herbivores. We found that birch (Betula spp.) leaves adsorb and re-release the specific arthropod-repelling C(15) semi-volatiles ledene, ledol and palustrol produced by Rhododendron tomentosum when grown in mixed association in a field setup. In a natural habitat, a higher concentration of ledene was released from birches neighbouring R. tomentosum than from birches situated > 5 m from R. tomentosum. Emission of alpha-humulene, a sesquiterpene synthesized by both Betula pendula and R. tomentosum, was also increased in R. tomentosum-neighbouring B. pendula. In assessments for associational resistance, we found that the polyphagous green leaf weevils (Polydrusus flavipes) and autumnal moth (Epirrita autumnata) larvae both preferred B. pendula to R. tomentosum. P. flavipes also preferred birch leaves not exposed to R. tomentosum to leaves from mixed associations. In the field, a reduction in Euceraphis betulae aphid density occurred in mixed associations. Our results suggest that plant/tree species may be protected by semi-volatile compounds emitted by a more herbivore-resistant heterospecific neighbour.
Collapse
Affiliation(s)
- Sari J Himanen
- Department of Environmental Science, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
155
|
Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. PHOTOSYNTHESIS RESEARCH 2010; 104:61-74. [PMID: 20407831 DOI: 10.1007/s11120-010-9549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.
Collapse
Affiliation(s)
- Silvano Fares
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy.
| | | | | | | | | |
Collapse
|
156
|
Ibrahim MA, Egigu MC, Kasurinen A, Yahya A, Holopainen JK. Diversity of volatile organic compound emissions from flowering and vegetative branches of Yeheb,Cordeauxia edulis(Caesalpiniaceae), a threatened evergreen desert shrub. FLAVOUR FRAG J 2010. [DOI: 10.1002/ffj.1971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
157
|
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. TRENDS IN PLANT SCIENCE 2010; 15:154-66. [PMID: 20133178 DOI: 10.1016/j.tplants.2009.12.006] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione delle Piante (IPP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
158
|
Kegge W, Pierik R. Biogenic volatile organic compounds and plant competition. TRENDS IN PLANT SCIENCE 2010; 15:126-32. [PMID: 20036599 DOI: 10.1016/j.tplants.2009.11.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 05/08/2023]
Abstract
One of the most important factors to shape plant communities is competition between plants, which impacts on the availability of environmental factors such as light, nutrients and water. In response to these environmental parameters, plants adjust the emission of many different biogenic volatile organic compounds (BVOCs). BVOCs can also elicit responses in neighbouring plants, thus constituting a platform for plant-plant interactions. Here, we review the relationship between BVOC emissions and competition among neighbouring plants. Recent progress indicates that BVOCs can act both as allelochemicals and as neighbour detection signals. It is suggested that BVOCs provide information about neighbouring competitors, such as their identity or growth rate, that classic neighbour detection signals cannot provide.
Collapse
Affiliation(s)
- Wouter Kegge
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | |
Collapse
|
159
|
Peñuelas J, Staudt M. BVOCs and global change. TRENDS IN PLANT SCIENCE 2010; 15:133-44. [PMID: 20097116 DOI: 10.1016/j.tplants.2009.12.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) produced by plants are involved in plant growth, reproduction and defense. They are emitted from vegetation into the atmosphere and have significant effects on other organisms and on atmospheric chemistry and physics. Here, we review current knowledge on the alteration of BVOC emission rates due to climate and global changes: warming, drought, land use changes, high atmospheric CO(2) concentrations, ozone and enhanced UV radiation. These alterations are very variable depending on the doses, timing, BVOC and species, but in overall terms are likely to increase BVOC emissions. These changed emissions can lead to unforeseeable consequences for the biosphere structure and functioning, and can disturb biosphere feedback on atmospheric chemistry and climate with a direction and intensity that warrants in-depth investigation.
Collapse
Affiliation(s)
- Josep Peñuelas
- Global Ecology Unit CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecologica i Aplicacions Forestals), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
160
|
Fares S, Goldstein A, Loreto F. Determinants of ozone fluxes and metrics for ozone risk assessment in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:629-633. [PMID: 19923198 DOI: 10.1093/jxb/erp336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tropospheric ozone concentration is increasing and represents a threat to single plants and whole ecosystems. The deleterious ozone effects mainly occur when (i) ozone concentration in the air builds up; (ii) the pollutant enters the leaf through stomatal uptake, and (iii) ozone-produced reactive oxygen species are not efficiently scavenged by leaf antioxidants and then oxidize leaf tissues. The sensitivity of plants to ozone is species-specific, and a correct risk assessment should be based on a metric that correctly takes into account the ambient concentration of ozone, the physiological control on stomatal apertures, and the efficiency of leaf antioxidant system. Current methodologies have been analysed to evaluate ozone risk assessment, and, by phasing-in and phasing out sources and sinks of ozone, elements of improvements for the current metrics have been suggested.
Collapse
Affiliation(s)
- Silvano Fares
- National Research Council-Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300, I-00016 Monterotondo Scalo, Rome, Italy.
| | | | | |
Collapse
|
161
|
Allison JD, Daniel Hare J. Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. THE NEW PHYTOLOGIST 2009; 184:768-82. [PMID: 19807871 DOI: 10.1111/j.1469-8137.2009.03046.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In response to arthropod herbivory, plants release volatile organic compounds (VOCs), which are attractive to natural enemies. Consequently, VOCs have been interpreted as co-evolved plant-natural enemy signals. This review argues that, while these data are necessary, they are not sufficient to demonstrate a VOC plant-natural enemy signaling function. We propose that evidence that (1) plant fitness is increased as a consequence of natural enemy recruitment, and either (2A) natural enemies preferentially learn prey-induced VOCs or (2B) natural enemies respond innately to the VOCs of the prey-host plant complex, is also required. Whereas there are too few studies to rigorously test hypotheses 1 and 2A, numerous studies are available to test hypothesis 2B. Of 293 tests of natural enemy responses to VOCs, we identified only 74 that were unambiguous tests of naïve natural enemies; in the remainder of the tests either natural enemies were experienced with their host in the presence of VOCs, or experience could not be ruled out. Of those 74 tests with naïve natural enemies, attraction was observed in 41 and not in 33. This review demonstrates that empirical support for the hypothesized VOC plant-natural enemy signaling function is not universal and presents alternative hypotheses for VOC production.
Collapse
Affiliation(s)
- Jeremy D Allison
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
162
|
Strong Attraction of the Parasitoid Cotesia marginiventris Towards Minor Volatile Compounds of Maize. J Chem Ecol 2009; 35:999-1008. [DOI: 10.1007/s10886-009-9692-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
|
163
|
Ormeño E, Olivier R, Mévy JP, Baldy V, Fernandez C. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence. CHEMOSPHERE 2009; 77:94-104. [PMID: 19539976 DOI: 10.1016/j.chemosphere.2009.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/11/2009] [Accepted: 05/14/2009] [Indexed: 05/27/2023]
Abstract
The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.
Collapse
Affiliation(s)
- Elena Ormeño
- Department of Environmental Science, Policy, and Management, Berkeley University of California, 94720, USA
| | | | | | | | | |
Collapse
|
164
|
Loreto F, Bagnoli F, Fineschi S. One species, many terpenes: matching chemical and biological diversity. TRENDS IN PLANT SCIENCE 2009; 14:416-20. [PMID: 19616466 DOI: 10.1016/j.tplants.2009.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 05/03/2023]
Abstract
Volatile terpenes have been proposed as chemotaxonomic markers, despite the strong environmental control on their synthesis. To clarify whether chemical profiles match biological diversity, cork oak, a monoterpene-emitting species that has been bred by humans and frequently hybridizes with other oaks, is a useful case-study. Analysis of the available genetic information in cork oak provenances suggests that volatile terpenes might indeed suitably track geographical diversity even at the intraspecific level. Phylogeographical diversity does not reflect chemical diversity in other evergreen oaks that have not been intensively bred. Breeding for productive traits might therefore drive selection for terpene diversity, in turn modulating important adaptive mechanisms against biotic and abiotic stressors.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche - Istituto di Biologia Agroambientale e Forestale, via Salaria km 29.300, I-00015 Monterotondo Scalo - RM, Italy.
| | | | | |
Collapse
|
165
|
Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 2009; 24:323-31. [DOI: 10.1016/j.tree.2009.01.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 11/18/2022]
|
166
|
Calfapietra C, Fares S, Loreto F. Volatile organic compounds from Italian vegetation and their interaction with ozone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1478-86. [PMID: 19019511 DOI: 10.1016/j.envpol.2008.09.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 05/03/2023]
Abstract
Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NO(x) in the presence of UV radiation, ozone (O(3)) is formed. In Italy, optimal conditions for O(3) formation in terms of VOC/NO(x) ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependent emissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O(3) levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O(3) flux to the plant and protection against oxidative stress because of their antioxidant functions. This trait not only influences plant tolerance to O(3) but also may substantially alter the flux of O(3) between atmosphere and biosphere.
Collapse
Affiliation(s)
- Carlo Calfapietra
- CNR-Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300, 00015 Monterotondo Scalo (Roma), Italy.
| | | | | |
Collapse
|
167
|
Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 2009; 5:283-91. [DOI: 10.1038/nchembio.158] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
168
|
Himanen SJ, Nerg AM, Nissinen A, Pinto DM, Stewart CN, Poppy GM, Holopainen JK. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). THE NEW PHYTOLOGIST 2009; 181:174-186. [PMID: 19076723 DOI: 10.1111/j.1469-8137.2008.02646.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Does transgenically incorporated insect resistance affect constitutive and herbivore-inducible terpenoid emissions and multitrophic communication under elevated atmospheric CO(2) or ozone (O(3))? This study aimed to clarify the possible interactions between allocation to direct defences (Bacillus thuringiensis (Bt) toxin production) and that to endogenous indirect defences under future climatic conditions. Terpenoid emissions were measured from vegetative-stage non-Bt and Bt Brassica napus grown in growth chambers under control or doubled CO(2), and control (filtered air) or 100 ppb O(3). The olfactometric orientation of Cotesia vestalis, an endoparasitoid of the herbivorous diamondback moth (Plutella xylostella), was assessed under the corresponding CO(2) and O(3) concentrations. The response of terpenoid emission to CO(2) or O(3) elevations was equivalent for Bt and non-Bt plants, but lower target herbivory reduced herbivore-inducible emissions from Bt plants. Elevated CO(2) increased emissions of most terpenoids, whereas O(3) reduced total terpenoid emissions. Cotesia vestalis orientated to host-damaged plants independent of plant type or CO(2) concentration. Under elevated O(3), host-damaged non-Bt plants attracted 75% of the parasitoids, but only 36.8% of parasitoids orientated to host-damaged Bt plants. Elevated O(3) has the potential to perturb specialized food-web communication in Bt crops.
Collapse
Affiliation(s)
- Sari J Himanen
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - Anne-Marja Nerg
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - Anne Nissinen
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - Delia M Pinto
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - C Neal Stewart
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - Guy M Poppy
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland;MTT Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen, Finland;Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA;School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| |
Collapse
|
169
|
Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. Biogenic volatile organic compounds in the Earth system. THE NEW PHYTOLOGIST 2009; 183:27-51. [PMID: 19422541 DOI: 10.1111/j.1469-8137.2009.02859.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.
Collapse
Affiliation(s)
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - C Nicholas Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
170
|
Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T. From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS One 2008; 3:e2832. [PMID: 18665271 PMCID: PMC2475509 DOI: 10.1371/journal.pone.0002832] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background An understanding of the evolution of potential signals from plants to the predators of their herbivores may provide exciting examples of co-evolution among multiple trophic levels. Understanding the mechanism behind the attraction of predators to plants is crucial to conclusions about co-evolution. For example, insectivorous birds are attracted to herbivore-damaged trees without seeing the herbivores or the defoliated parts, but it is not known whether birds use cues from herbivore-damaged plants with a specific adaptation of plants for this purpose. Methodology We examined whether signals from damaged trees attract avian predators in the wild and whether birds could use volatile organic compound (VOC) emissions or net photosynthesis of leaves as cues to detect herbivore-rich trees. We conducted a field experiment with mountain birches (Betula pubescens ssp. czerepanovii), their main herbivore (Epirrita autumnata) and insectivorous birds. Half of the trees had herbivore larvae defoliating trees hidden inside branch bags and half had empty bags as controls. We measured predation rate of birds towards artificial larvae on tree branches, and VOC emissions and net photosynthesis of leaves. Principal Findings and Significance The predation rate was higher in the herbivore trees than in the control trees. This confirms that birds use cues from trees to locate insect-rich trees in the wild. The herbivore trees had decreased photosynthesis and elevated emissions of many VOCs, which suggests that birds could use either one, or both, as cues. There was, however, large variation in how the VOC emission correlated with predation rate. Emissions of (E)-DMNT [(E)-4,8-dimethyl-1,3,7-nonatriene], β-ocimene and linalool were positively correlated with predation rate, while those of highly inducible green leaf volatiles were not. These three VOCs are also involved in the attraction of insect parasitoids and predatory mites to herbivore-damaged plants, which suggests that plants may not have specific adaptations to signal only to birds.
Collapse
Affiliation(s)
- Elina Mäntylä
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- * E-mail:
| | - Giorgio A. Alessio
- Department of Environmental Science, University of Kuopio, Kuopio, Finland
| | - James D. Blande
- Department of Environmental Science, University of Kuopio, Kuopio, Finland
| | - Juha Heijari
- Department of Environmental Science, University of Kuopio, Kuopio, Finland
| | | | - Toni Laaksonen
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Panu Piirtola
- Department of Environmental Science, University of Kuopio, Kuopio, Finland
| | - Tero Klemola
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
171
|
Casado D, Gemeno C, Avilla J, Riba M. Diurnal variation of walnut tree volatiles and electrophysiological responses in Cydia pomonella (Lepidoptera: Tortricidae). PEST MANAGEMENT SCIENCE 2008; 64:736-747. [PMID: 18300208 DOI: 10.1002/ps.1551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND In recent years, many studies have been carried out on the behavioural and electrophysiological responses of Cydia pomonella (L.) to host volatile emissions, to find alternative attractants to the sex pheromone for pest monitoring. These studies have focused on apple and pear, and very little has been done on walnut. In the present work, the diurnal and seasonal variation in walnut volatile emissions and the electrophysiological response of C. pomonella have been studied. RESULTS Ninety compounds were detected in walnut emissions, mainly monoterpenes and sesquiterpenes. The most abundant compound was beta-pinene, which, together with (Z)-3-hexenyl acetate, (E)-beta-ocimene, limonene, germacrene D, 1,8-cineole, sabinene, (E)-beta-farnesene, (E)-beta-caryophyllene, beta-myrcene and beta-phellandrene, constituted between 81.9 and 90.5% of the total chromatographic area. Differences between seasonal periods were significant for 39 compounds, and between daytimes for 14 compounds. Discernible and consistent EAD responses were detected to 11 walnut-origin compounds, and confirmed with synthetics to seven of them. Except for alloocimene, pinocarvone and caryophyllene oxide, all these compounds are also emitted by apple. CONCLUSION Walnut volatile emissions differ widely from apple ones, but both share many compounds that are EAD-active in C. pomonella. However, among EAD-active compounds there are three walnut-specific ones, which should be further tested in behavioural assays.
Collapse
Affiliation(s)
- Daniel Casado
- Centre UdL-IRTA de R + D, Area de Protecció de Conreus, 191 Av. Alcalde Rovira Roure, E-25198 Lleida, Spain.
| | | | | | | |
Collapse
|
172
|
Noe SM, Copolovici L, Niinemets U, Vaino E. Foliar limonene uptake scales positively with leaf lipid content: "non-emitting" species absorb and release monoterpenes. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:129-37. [PMID: 17564947 DOI: 10.1055/s-2007-965239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Monoterpenes synthesized and released by emitting vegetation can be taken up by neighboring non-emitting plants, but the uptake capacity of non-emitting species has not been studied extensively. We investigated the foliar uptake potential of the hydrophobic monoterpene limonene in 13 species of contrasting leaf structure and lipid content to determine the structural and chemical controls of monoterpene uptake. Leaf dry mass per unit area (M(A,D)) varied 6.5-fold, dry to fresh mass ratio (D(F)) 2.7-fold, lipid content per dry mass (L(M)) 2.5-fold and per unit area (L(A)) 4.6-fold across the studied species. Average foliar limonene uptake rate (U(A)) from air at saturating limonene partial pressures varied from 0.9 to 6 nmol m(-2) s(-1), and limonene leaf to air partition coefficient (K(FA), ratio of limonene content per dry mass to limonene partial pressure) from 0.7 to 6.8 micromol kg(-1) Pa(-1). U(A) and K(FA) scaled positively with leaf lipid content, and were independent of D(F), indicating that variation in leaf lipid content was the primary determinant of species differences in monoterpene uptake rate and K(FA). Mass-based limonene uptake rates further suggested that thinner leaves with greater surface area per unit dry mass have higher uptake rates. In addition, limonene lipid to air partition coefficient (K(LA)=K(FA)/L(M)) varied 19-fold, indicating large differences in limonene uptake capacity at common leaf lipid content. We suggest that the significant uptake of hydrophobic monoterpenes when monoterpene ambient air concentration is high and release when the concentration is low should be included in large-scale monoterpene emission models.
Collapse
Affiliation(s)
- S M Noe
- Department of Plant Physiology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | | | | | | |
Collapse
|
173
|
Grote R, Niinemets U. Modeling volatile isoprenoid emissions--a story with split ends. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:8-28. [PMID: 18211545 DOI: 10.1055/s-2007-964975] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accurate prediction of plant-generated volatile isoprenoid fluxes is necessary for reliable estimation of atmospheric ozone and aerosol formation potentials. In recent years, significant progress has been made in understanding the environmental and physiological controls on isoprenoid emission and in scaling these emissions to canopy and landscape levels. We summarize recent developments and compare different approaches for simulating volatile isoprenoid emission and scaling up to whole forest canopies with complex architecture. We show that the current developments in modeling volatile isoprenoid emissions are "split-ended" with simultaneous but separated efforts in fine-tuning the empirical emission algorithms and in constructing process-based models. In modeling volatile isoprenoid emissions, simplified leaf-level emission algorithms (Guenther algorithms) are highly successful, particularly after scaling these models up to whole regions, where the influences of different ecosystem types, ontogenetic stages, and variations in environmental conditions on emission rates and dynamics partly cancel out. However, recent experimental evidence indicates important environmental effects yet unconsidered and emphasize, the importance of a highly dynamic plant acclimation in space and time. This suggests that current parameterizations are unlikely to hold in a globally changing and dynamic environment. Therefore, long-term predictions using empirical algorithms are not necessarily reliable. We show that process-based models have large potential to capture the influence of changing environmental conditions, in particular if the leaf models are linked with physiologically based whole-plant models. This combination is also promising in considering the possible feedback impacts of emissions on plant physiological status such as mitigation of thermal and oxidative stresses by volatile isoprenoids. It might be further worth while to incorporate main features of these approaches in regional empirically-based emission estimations thereby merging the "split ends".
Collapse
Affiliation(s)
- R Grote
- Research Center Karlsruhe GmbH, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany.
| | | |
Collapse
|
174
|
Fares S, Brilli F, Noguès I, Velikova V, Tsonev T, Dagli S, Loreto F. Isoprene emission and primary metabolism in Phragmites australis grown under different phosphorus levels. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:38-43. [PMID: 17729207 DOI: 10.1055/s-2007-965429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aquatic plants are generally used for wastewater purification and phytoremediation, but some of them also emit large amounts of isoprene, the most abundant biogenic volatile organic compound. Since isoprenoid biosynthesis requires high amounts of phosphorylated intermediates, the emission may also be controlled by inorganic phosphorus concentration (Pi) in leaves. We carried out experiments to determine the emission of isoprene from Phragmites australis plants used in reconstructed wetlands to phytoremediate elevated levels of phosphorus contributed by urban wastes. Four groups of plants were grown hydroponically in water containing different levels of KH(2)PO(4). High levels of phosphorus in the water resulted in high Pi in the leaves. High Pi stimulated photosynthesis at intercellular CO(2) concentrations lower and higher than ambient, implying higher ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and higher ribulose 1,5-bisphosphate regeneration rates, respectively. However, isoprene emission was substantially lower at high Pi than at low Pi, and was not associated to photosynthesis rates at high Pi. This surprising result suggests that isoprene is limited by processes other than photosynthetic intermediate availability or by energetic (ATP) requirements under high Pi levels. Irrespective of the mechanism responsible for the observed reduction of isoprene emission, our results show that Phragmites plants may effectively remove phosphorus from water without concurrently increase isoprene emission, at least on a leaf area basis. Thus, Phragmites used in reconstructed wetlands for phytoremediation of urban wastes rich of phosphates will not contribute high loads of hydrocarbons which may influence air quality over urban and peri-urban areas.
Collapse
Affiliation(s)
- S Fares
- Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300, 00016 Monterotondo Scalo (Roma), Italy.
| | | | | | | | | | | | | |
Collapse
|
175
|
Noe SM, Peñuelas J, Niinemets U. Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:163-169. [PMID: 18211554 DOI: 10.1111/j.1438-8677.2007.00014.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research on biogenic volatile organic compound (BVOC) emissions has mainly focused on native species in natural ecosystems. However, much of the ozone and aerosol formation occurs in city atmospheres due to BVOC emissions by local urban vegetation. Plant composition of urban habitats is often dominated by non-native ornamental plant species, for which only limited data on BVOC emissions are available. To gain insight into the influence of ornamental vegetation on the urban atmospheric reactivity in Barcelona, Spain, we studied volatile isoprenoid emissions in 11 widespread ornamental tree species (three conifers and nine angiosperms). We found significant monoterpene emissions in all studied species, with normalized emission potentials (T=30 degrees C, photosynthetic photon flux density (PPFD)=1000 micromol x m(-2) x s(-1)) ranging between 0.2 to 110 microg x g(-1) (dry weight) h(-1). Depending on species, the emissions were dominated by alpha- and beta-pinene, myrcene, alpha- and beta-phellandrene, carene, limonene and eucalyptol. These data demonstrate that ornamental plants may significantly contribute to the BVOC load in urban atmospheres and also underscore the importance of broadleaf angiosperms as significant monoterpene emitters.
Collapse
Affiliation(s)
- S M Noe
- Department of Plant Physiology, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
176
|
Glinwood R, Gradin T, Karpinska B, Ahmed E, Jonsson L, Ninkovic V. Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. PLANT SIGNALING & BEHAVIOR 2007; 2:321-6. [PMID: 19516995 PMCID: PMC2634203 DOI: 10.4161/psb.2.5.4494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 05/25/2007] [Indexed: 05/15/2023]
Abstract
It is well known that volatile cues from damaged plants may induce resistance in neighboring plants. Much less is known about the effects of volatile interaction between undamaged plants. In this study, barley plants, Hordeum vulgare cv. Kara, were exposed to volatiles from undamaged plants of barley cv. Alva or thistle Cirsium vulgare, and to the volatile phytochemicals, methyl salicylate or methyl jasmonate. Exposures were made either during natural daylight or darkness. Acceptance of exposed plants by the aphid Rhopalosiphum padi was assessed, as well as the expression of putative marker genes for the different treatments. Aphid acceptance of plants exposed to either barley or C. vulgare was significantly reduced, and an effect of the volatiles from undamaged plants was confirmed by the induction of pathogenesis-related protein, PR1a in exposed plants. However the effect on aphid acceptance was seen only when plants were exposed during darkness, whereas PR1a was induced only after treatment during daylight. Aphid acceptance of plants exposed to either methyl salicylate or methyl jasmonate was significantly reduced, but only when plants were exposed to the chemicals during daylight. AOS2 (allene oxide synthase) was induced by methyl jasmonate and BCI-4 (barley chemical inducible gene-4) by methyl salicylate in both daylight and darkness. It is concluded that (a) the effects on aphids of exposing barley to volatile phytochemicals was influenced by the presence or absence of light and (b) the response of barley to methyl salicylate/methyl jasmonate and to volatiles from undamaged plants differed at the gene and herbivore level.
Collapse
Affiliation(s)
- Robert Glinwood
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Therese Gradin
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Barbara Karpinska
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Elham Ahmed
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Llisbeth Jonsson
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Velemir Ninkovic
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| |
Collapse
|
177
|
Ormeño E, Mévy JP, Vila B, Bousquet-Mélou A, Greff S, Bonin G, Fernandez C. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. CHEMOSPHERE 2007; 67:276-84. [PMID: 17156816 DOI: 10.1016/j.chemosphere.2006.10.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/29/2006] [Accepted: 10/03/2006] [Indexed: 05/12/2023]
Abstract
The effects of water deficit stress and plant water potential (psi) on monoterpene and sesquiterpene leaf emissions from Rosmarinus officinalis, Pinus halepensis, Cistus albidus and Quercus coccifera were studied over 11 days of water withholding (from t(1) to t(11)), after substrates had achieved their field capacity (control pots: t(0)). Volatile compounds were sampled from the same twig per plant all throughout the study, using a dynamic bag enclosure system. Volatiles, collected in Tenax TA, were studied by means of GC-FID and GC-MS. Monoterpene emissions of water stressed plants (t(1)-t(11)) were either similar to those of control seedlings (R. officinalis and Q. coccifera) or higher (P. halepensis and C. albidus). By contrast, sesquiterpene emissions were strongly reduced or inhibited after four days of water withholding, particularly for R. officinalis, thus altering terpene emission composition. Despite the positive effect of water stress on leaf monoterpene emissions of P. halepensis and C. albidus, the significant correlation between these emissions and psi showed a slow decrease of these emissions over long term water deficit periods. This contrasted with the rapid decline of sesquiterpene emissions of R. officinalis according to lower values of psi. These results provide an overall picture of the different responses of monoterpene and sesquiterpene emissions to progressive water loss. They also reveal the utility of using psi for estimating some emission rates of some species according to drought conditions.
Collapse
Affiliation(s)
- E Ormeño
- Equipe Ecologie Fonctionnelle, Institut Méditerranéen d'Ecologie et Paléoécologie (IMEP) - UMR 6116CNRS, Université de Provence, Centre de St Jérôme, Case 421 Avenue Escadrille Normandie Niémen, 13397 Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
178
|
Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets U, Walter A, Wildt J. Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1783-93. [PMID: 17374874 DOI: 10.1093/jxb/erm038] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Emission from plants is a major source of atmospheric methanol. Growing tissues contribute most to plant-generated methanol in the atmosphere, but there is still controversy over biological and physico-chemical controls of methanol emission. Methanol as a water-soluble compound is thought to be strongly controlled by gas-phase diffusion (stomatal conductance), but growth rate can follow a different diurnal rhythm from that of stomatal conductance, and the extent to which the emission control is shared between diffusion and growth is unclear. Growth and methanol emissions from Gossypium hirsutum, Populus deltoides, and Fagus sylvatica were measured simultaneously. Methanol emission from growing leaves was several-fold higher than that from adult leaves. A pronounced diurnal rhythm of methanol emission was observed; however, this diurnal rhythm was not predominantly determined by the diurnal rhythm of leaf growth. Large methanol emission peaks in the morning when the stomata opened were observed in all species and were explained by release of methanol that had accumulated in the intercellular air space and leaf liquid pool at night in leaves with closed stomata. Cumulative daily methanol emissions were strongly correlated with the total daily leaf growth, but the diurnal rhythm of methanol emission was modified by growth rate and stomatal conductance in a complex manner. While in G. hirsutum and in F. sylvatica maxima in methanol emission and growth coincided, maximum growth rates of P. deltoides were observed at night, while maximum methanol emissions occurred in the morning. This interspecific variation was explained by differences in the share of emission control by growth processes, by stomatal conductance, and methanol solubilization in tissue water.
Collapse
Affiliation(s)
- K Hüve
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
179
|
D'Alessandro M, Held M, Triponez Y, Turlings TCJ. The Role of Indole and Other Shikimic Acid Derived Maize Volatiles in the Attraction of Two Parasitic Wasps. J Chem Ecol 2006; 32:2733-48. [PMID: 17123171 DOI: 10.1007/s10886-006-9196-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
After herbivore attack, plants release a plethora of different volatile organic compounds (VOCs), which results in odor blends that are attractive to predators and parasitoids of these herbivores. VOCs in the odor blends emitted by maize plants (Zea mays) infested by lepidopteran larvae are well characterized. They are derived from at least three different biochemical pathways, but the relative importance of each pathway for the production of VOCs that attract parasitic wasps is unknown. Here, we studied the importance of shikimic acid derived VOCs for the attraction of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris. By incubating caterpillar-infested maize plants in glyphosate, an inhibitor of the 5-enolpyruvylshikimate-3-phospate (EPSP) synthase, we obtained induced odor blends with only minute amounts of shikimic acid derived VOCs. In olfactometer bioassays, the inhibited plants were as attractive to naive C. marginiventris females as control plants that released normal amounts of shikimic acid derived VOCs, whereas naive M. rufiventris females preferred inhibited plants to control plants. By adding back synthetic indole, the quantitatively most important shikimic acid derived VOC in induced maize odors, to inhibited plants, we showed that indole had no effect on the attraction of C. marginiventris and that M. rufiventris preferred blends without synthetic indole. Exposing C. marginiventris females either to odor blends of inhibited or control plants during oviposition experiences shifted their preference in subsequent olfactometer tests in favor of the experienced odor. Further learning experiments with synthetic indole showed that C. marginiventris can learn to respond to this compound, but that this does not affect its choices between natural induced blends with or without indole. We hypothesize that for naïve wasps the attractiveness of an herbivore-induced odor blend is reduced due to masking by nonattractive compounds, and that during oviposition experiences in the presence of complex odor blends, parasitoids strongly associate some compounds, whereas others are largely ignored.
Collapse
Affiliation(s)
- Marco D'Alessandro
- University of Neuchâtel, Institute of Zoology, Laboratory of Evolutionary Entomology, Case Postale 158, CH-2009, Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
180
|
Loreto F, Barta C, Brilli F, Nogues I. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. PLANT, CELL & ENVIRONMENT 2006; 29:1820-8. [PMID: 16913871 DOI: 10.1111/j.1365-3040.2006.01561.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Among the volatile organic compounds (VOCs) emitted by plants, some are characteristic of stress conditions, but their biosynthesis and the metabolic and environmental control over the emission are still unclear. We performed experiments to clarify whether (1) the emission following wounding can occur at distance from the wounding site, from VOC pools subjected to metabolic signals; and (2) the emission of biogenic VOCs generated by membrane damage (e.g. consequent to wounding or ozone exposure) can also be induced by exposure to high light and high temperature, recurrent in nature. In Phragmites australis, leaf cutting caused large and rapid bursts of acetaldehyde both at the cutting site and on parts of the cut leaf distant from the cutting site. This emission was preceded by a transient stomatal opening and did not occur in conditions preventing stomatal opening. This suggests the presence of a large pool of leaf acetaldehyde whose release is under stomatal control. VOCs other than isoprene, particularly acetaldehyde and (E)-2-hexenal, one of the C-6 compounds formed by the denaturation of membrane lipids, were released by leaves exposed to high temperature and high light. The high-temperature treatment (45 degrees C) also caused a rapid stimulation and then a decay of isoprene emission in Phragmites leaves. Isoprene recovered to the original emission level after suspending the high-temperature treatment, suggesting a temporary deficit of photosynthetically formed substrate under high temperature. Emission of C-6 compounds was slowly induced by high temperature, and remained high, indicating that membrane denaturation occurs also after suspending the high-temperature treatment. Conversely, the emission of C-6 compounds was limited to the high-light episode in Phragmites. This suggests that a membrane denaturation may also occur in conditions that do not damage other important plant processes such as the photochemistry of photosynthesis of photoinhibition-insensitive plants. In the photoinhibition-sensitive Arabidopsis thaliana mutant NPQ1, a large but transient emission of (E)-2-hexenal was also observed a few minutes after the high-light treatment, indicating extensive damage to the membranes. However, (E)-2-hexenal emission was not observed in Arabidopsis plants fumigated with isoprene during the high-light treatment. This confirms that isoprene can effectively protect cellular membranes from denaturation. Our study indicates that large, though often transient, VOC emissions by plants occur in nature. In particular, we demonstrate that VOCs can be released by much larger tissues than those wounded and that even fluctuations of light and temperature regularly observed in nature can induce their emissions. This knowledge adds information that is useful for the parameterization of the emissions and for the estimate of biogenic VOC load in the atmosphere.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, Monterotondo Scalo, Roma, Italy.
| | | | | | | |
Collapse
|
181
|
Degenhardt DC, Lincoln DE. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J Chem Ecol 2006; 32:725-43. [PMID: 16718568 DOI: 10.1007/s10886-006-9030-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 12/09/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate (MeJA) exposure on the release of volatile organic compounds (VOCs) in the marsh elder, Iva frutescens, which contains numerous constitutive VOCs, mainly mono- and sesquiterpenes. Our specific goal was to test for the presence of inducible VOCs in a naturally occurring plant already armed with VOCs. The abundant, native specialist leaf beetle Paria aterrima was used in herbivore induction trials. VOCs were sampled from herbivore wounded and unwounded, and from MeJA treated and untreated I. frutescens. Total VOC emissions were significantly greater in response to herbivory and MeJA treatment compared to unwounded controls. Herbivore wounding caused a substantial shift in the emission profile (42 VOCs from wounded, compared to 8 VOCs from unwounded I. frutescens), and MeJA had a similar yet less substantial influence on the emission pattern (28 VOCs from MeJA treated compared to 8 VOCs from untreated I. frutescens). Constitutive VOC emissions predominated, but some VOCs were detected only in response to herbivory and MeJA treatment, suggesting de novo synthesis. Several VOCs exhibited a delayed emission profile in contrast to the rapid release of constitutive VOCs, and principal components analysis revealed they were not associated with constitutive emissions. While I. frutescens contains many constitutive VOCs that are released immediately in response to herbivory, it also produces novel VOCs in response to feeding by the specialist P. aterrima and MeJA treatment.
Collapse
Affiliation(s)
- David C Degenhardt
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
182
|
van Schie CCN, Haring MA, Schuurink RC. Regulation of terpenoid and benzenoid production in flowers. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:203-8. [PMID: 16458042 DOI: 10.1016/j.pbi.2006.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/20/2006] [Indexed: 05/06/2023]
Abstract
The production and emission of fragrant molecules by flowers are strictly regulated during the floral lifespan and often peak when pollinators are active. The best-studied classes of floral volatiles are benzenoids and terpenoids. The production of these molecules appears to be primarily regulated at the level of precursor biosynthesis. The genes from the petunia floral shikimate pathway, which provides the precursors for the formation of benzenoids, have recently been shown to be regulated by a MYB transcription factor. The floral terpenoids of snapdragon appear to be derived exclusively from the methyl-erythritol-phosphate pathway in plastids. This pathway controls precursor levels for geranyl diphosphate synthase, which in turn is transcriptionally regulated.
Collapse
Affiliation(s)
- Chris C N van Schie
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
183
|
Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M. Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. PLANT & CELL PHYSIOLOGY 2006; 47:309-18. [PMID: 16415066 DOI: 10.1093/pcp/pcj001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants contain a large number of ATP-binding cassette (ABC) transporters belonging to different subclasses. AtPDR8 is the only member of the pleiotropic drug resistance (PDR) ABC transporter subclass in Arabidopsis that is constitutively highly expressed. In transgenic Arabidopsis plants harboring the AtPDR8 promoter fused to beta-glucuronidase (GUS), reporter expression was shown to be strong in the stomata and hydathode. In the stomata, transcripts of AtPDR8 were particularly frequent in the cells surrounding air spaces. Subcellular fractionation and immunochemical analysis showed that AtPDR8 was localized in the plasma membrane. When a knockout mutant of AtPDR8 (atpdr8) was infected with bacterial and oomycete pathogens, the plants exhibited chlorotic lesions and a hypersensitive response (HR)-like cell death. Cell death was detected in the atpdr8 mutants within 10 h of infection with the virulent bacterial pathogen, Pseudomonas syringae. As a result, the growth of P. syringae in the leaves of the atpdr8 mutant was reduced to 1% of that in the wild type. The defense response genes, PR-1, PR-2, PR-5, VPEgamma, AtrbohD and AtrbohF were highly expressed when the mutant plants were grown under non-sterile conditions. The expression of the AtPDR8 gene was enhanced by infection of virulent and avirulent bacterial pathogens. Our results indicate that AtPDR8 is a key factor controlling the extent of cell death in the defense response and suggest that AtPDR8 transports some substance(s) which is closely related to the response of plants to pathogens.
Collapse
Affiliation(s)
- Yoshihiro Kobae
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile Signaling in Plant-Plant Interactions: "Talking Trees" in the Genomics Era. Science 2006; 311:812-5. [PMID: 16469918 DOI: 10.1126/science.1118446] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
Collapse
Affiliation(s)
- Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany.
| | | | | | | | | |
Collapse
|
185
|
Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP. Practical approaches to plant volatile analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:540-60. [PMID: 16441348 DOI: 10.1111/j.1365-313x.2005.02612.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography-mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic and State University, Fralin Biotech Center, West Campus Drive, Blacksburg, VA 24061, USA.
| | | | | | | | | | | |
Collapse
|
186
|
D'Alessandro M, Turlings TCJ. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 2006; 131:24-32. [PMID: 16365659 DOI: 10.1039/b507589k] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relatively new research field of Chemical Ecology has, over the last two decades, revealed an important role of plant-produced volatile organic compounds (VOCs) in mediating interactions between plants and other organisms. Of particular interest are the volatile blends that plants actively emit in response to herbivore damage. Various efforts are underway to pinpoint the bioactive compounds in these complex blends, but this has proven to be exceedingly difficult. Here we give a short overview on the role of herbivore-induced plant volatiles in interactions between plants and other organisms and we review methods that are currently employed to collect and identify key volatile compounds mediating these interactions. Our perspective on future directions of this fascinating research field places special emphasis on the need for an interdisciplinary approach. Joint efforts by chemists and biologists should not only facilitate the elucidation of crucial compounds, but can also be expected to lead to an exploitation of this knowledge, whereby ecological interactions may be chemically manipulated in order to protect crops and the environment.
Collapse
Affiliation(s)
- Marco D'Alessandro
- University of Neuchâtel, Institute of Zoology, Laboratory of Evolutionary Entomology, Case Postale 2, CH-2007 Neuchâtel, Switzerland
| | | |
Collapse
|
187
|
Dindorf T, Kuhn U, Ganzeveld L, Schebeske G, Ciccioli P, Holzke C, Köble R, Seufert G, Kesselmeier J. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvaticaL.) and their potential impact on the European volatile organic compound budget. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006751] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Filella I, Peñuelas J, Llusià J. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. THE NEW PHYTOLOGIST 2006; 169:135-44. [PMID: 16390425 DOI: 10.1111/j.1469-8137.2005.01570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses.
Collapse
Affiliation(s)
- Iolanda Filella
- Unitat Ecofisiologia CSIC-CEAB-CREAF, Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | |
Collapse
|
189
|
Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. THE NEW PHYTOLOGIST 2006; 170:657-75. [PMID: 16684230 DOI: 10.1111/j.1469-8137.2006.01716.x] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, 301-2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
190
|
Harzallah-Skhiri F, Jannet HB, Hammami S, Mighri Z. Variation of volatile compounds in twoProsopis farcta (Banks et Sol.) Eig. (Fabales, Fabaceae = Leguminosae) populations. FLAVOUR FRAG J 2006. [DOI: 10.1002/ffj.1652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
191
|
Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 2005; 580:1183-91. [PMID: 16364309 DOI: 10.1016/j.febslet.2005.12.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/05/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, polyphenols, quinones and many further compounds having combined structures of those groups. Physiological roles of those metabolites for plants are still under investigation, but they play, at least in part, important functions as protectants for plant bodies against herbivores and pathogens, as well as from physical stresses like ultraviolet light and heat. In order to accomplish these functions, biosyntheses and accumulation of secondary metabolites are highly regulated in a temporal and spatial manner in plant organs, where they can appropriately accumulate. In this mini-review, I introduce the mechanism of accumulation and membrane transport of these metabolites, in particular, focusing on ATP-binding cassette transporters involved.
Collapse
Affiliation(s)
- Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan.
| |
Collapse
|
192
|
Copolovici LO, Niinemets U. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. CHEMOSPHERE 2005; 61:1390-400. [PMID: 15967478 DOI: 10.1016/j.chemosphere.2005.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/25/2005] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.
Collapse
Affiliation(s)
- Lucian O Copolovici
- Department of Plant Physiology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | | |
Collapse
|
193
|
D'Alessandro M, Turlings TCJ. In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 2005; 30:739-53. [PMID: 16243967 DOI: 10.1093/chemse/bji066] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many parasitic wasps (parasitoids) exploit volatile organic compounds (VOCs) emitted by herbivore-infested plants in order to locate their hosts, but it remains largely unknown which specific compounds within the volatile blends elicit the attractiveness to parasitoids. One way of studying the importance of specific VOCs is to test the attractiveness of odor blends from which certain compounds have been emitted. We used this approach by testing the attraction of naive and experienced females of the two parasitoids Cotesia marginiventris and Microplitis rufiventris to partially altered volatile blends of maize seedlings (Zea mays var. Delprim) infested with Spodoptera littoralis larvae. Adsorbing filter tubes containing carbotrap-C or silica were installed in a four-arm olfactometer between the odor source vessels and the arms of the olfactometer. The blends breaking through were tested for chemical composition and attractiveness to the wasps. Carbotrap-C adsorbed most of the sesquiterpenes, but the breakthrough blend remained attractive to naive C. marginiventris females. Silica adsorbed only some of the more polar VOCs, but this essentially eliminated all attractiveness to naive C. marginiventris, implying that among the adsorbed compounds there are some that play key roles in the attraction. Unlike C. marginiventris, M. rufiventris was still attracted to the latter blend, showing that parasitoids with a comparable biology may employ different strategies in their use of plant-provided cues to locate hosts. Results from similar experiments with modified odor blends of caterpillar-infested cowpea (Vigna unguiculata) indicate that key VOCs in different plant species vary greatly in quality and/or quantity. Finally, experienced wasps were more strongly attracted to a specific blend after they perceived the blend while ovipositing in a host. Considering the high number of distinct adsorbing materials available today, this in situ modification of complex volatile blends provides a new and promising approach pinpointing on key attractants within these blends. Advantages and disadvantages compared to other approaches are discussed.
Collapse
Affiliation(s)
- Marco D'Alessandro
- Laboratory of Evolutionary Entomology, Institute of Zoology, University of Neuchâtel, Case Postale 2, CH-2007 Neuchâtel, Switzerland
| | | |
Collapse
|
194
|
Hoskovec M, Grygarová D, Cvaeka J, Streinz L, Zima J, Verevkin SP, Koutek B. Determining the vapour pressures of plant volatiles from gas chromatographic retention data. J Chromatogr A 2005; 1083:161-72. [PMID: 16078703 DOI: 10.1016/j.chroma.2005.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The frequently used vapour pressure versus Kováts retention index relationship has been evaluated in terms of its universal applicability, highlighting the problems associated with predicting the vapour pressures of structurally divergent organic compounds from experimentally measured isothermal Kováts retention indices. Two models differing in approximations adopted to express the activity coefficient ratio have been evaluated using 32 plant volatiles of different structural types as a test set. The validity of these models was established by checking their ability to reproduce 22 vapour pressures known from independent measurements. Results of the comparison demonstrated that (i) the original model, based on the assumption of equal activity coefficients for the test and reference substances, led, as expected, to a poor correlation (r2 = 89.1% only), with significantly deviating polar compounds and (ii) the model showed significant improvement after incorporating a new empirical term related to vaporization entropy and boiling point. The addition of this term allowed more than 99% of the vapour pressure variance to be accounted for. The proposed model compares favourably with existing correlations, while having an added advantage of providing a convenient tool for vapour pressure determination of chemically divergent chemicals.
Collapse
Affiliation(s)
- Michal Hoskovec
- Department of Natural Products, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
195
|
Copolovici LO, Filella I, Llusià J, Niinemets U, Peñuelas J. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. PLANT PHYSIOLOGY 2005; 139:485-96. [PMID: 16126854 PMCID: PMC1203397 DOI: 10.1104/pp.105.065995] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/02/2005] [Accepted: 07/06/2005] [Indexed: 05/04/2023]
Abstract
Heat stress resistance of foliar photosynthetic apparatus was investigated in the Mediterranean monoterpene-emitting evergreen sclerophyll species Quercus ilex. Leaf feeding with fosmidomycin, which is a specific inhibitor of the chloroplastic isoprenoid synthesis pathway, essentially stopped monoterpene emission and resulted in the decrease of the optimum temperature of photosynthetic electron transport from approximately 38 degrees C to approximately 30 degrees C. The heat stress resistance was partly restored by fumigation with 4 to 5 nmol mol(-1) air concentrations of monoterpene alpha-pinene but not with fumigations with monoterpene alcohol alpha-terpineol. Analyses of monoterpene physicochemical characteristics demonstrated that alpha-pinene was primarily distributed to leaf gas and lipid phases, while alpha-terpineol was primarily distributed to leaf aqueous phase. Thus, for a common monoterpene uptake rate, alpha-terpineol is less efficient in stabilizing membrane liquid-crystalline structure and as an antioxidant in plant membranes. Furthermore, alpha-terpineol uptake rate (U) strongly decreased with increasing temperature, while the uptake rates of alpha-pinene increased with increasing temperature, providing a further explanation of the lower efficiency of thermal protection by alpha-terpineol. The temperature-dependent decrease of alpha-terpineol uptake was both due to decreases in stomatal conductance, g(w), and increased volatility of alpha-terpineol at higher temperature that decreased the monoterpene diffusion gradient between the ambient air (F(A)) and leaf (F(I); U = g(w)[F(A) - F(I)]). Model analyses suggested that alpha-pinene reacted within the leaf at higher temperatures, possibly within the lipid phase, thereby avoiding the decrease in diffusion gradient, F(A) - F(I). Thus, these data contribute to the hypothesis of the antioxidative protection of leaf membranes during heat stress by monoterpenes. These data further suggest that fumigation with the relatively low atmospheric concentrations of monoterpenes that are occasionally observed during warm windless days in the Mediterranean canopies may significantly improve the heat tolerance of nonemitting vegetation that grows intermixed with emitting species.
Collapse
Affiliation(s)
- Lucian O Copolovici
- Department of Plant Physiology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | | | | | | |
Collapse
|
196
|
Owen SM, Peñuelas J. Opportunistic emissions of volatile isoprenoids. TRENDS IN PLANT SCIENCE 2005; 10:420-6. [PMID: 16098785 DOI: 10.1016/j.tplants.2005.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/21/2005] [Accepted: 07/26/2005] [Indexed: 05/04/2023]
Abstract
Isoprene, monoterpenes and sesquiterpenes are synthesized and emitted by some plant species, but not all plant species have this ability. These volatile, nonessential isoprenoid compounds share the same biochemical precursors as larger essential isoprenoids such as gibberellic acids and carotenoids. They have many protective and ecological functions for the plant species that produce them, but plant species that do not produce these compounds also grow and reproduce successfully. Here, we develop an 'opportunist hypothesis' suggesting that (i) volatile isoprenoid production takes advantage of dimethylallyl diphosphate (DMAPP) and its isomer isopentenyl diphosphate (IPP), which are synthesized primarily to produce essential isoprenoids, and (ii) conditions affecting synthesis of the higher isoprenoids will affect the production and emission of volatile isoprenoids.
Collapse
Affiliation(s)
- Susan M Owen
- Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
197
|
Abstract
The membrane transport of plant secondary metabolites is a newly developing research area. Recent progress in genome and expressed sequence tag (EST) databases has revealed that many transporters and channels exist in plant genome. Studies of the genetic sequences that encode these proteins, and of phenotypes caused by the mutation of these sequences, have been used to characterize the membrane transport of plant secondary metabolites. Such studies have clarified that membrane transport is fairly specific and highly regulated for each secondary metabolite. Not only genes that are involved in the biosynthesis of secondary metabolites but also genes that are involved in their transport will be important for systematic metabolic engineering aimed at increasing the productivity of valuable secondary metabolites in planta.
Collapse
Affiliation(s)
- Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan.
| |
Collapse
|
198
|
Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R. Effect of elevated CO 2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. FUNCTIONAL PLANT BIOLOGY : FPB 2004; 31:1137-1147. [PMID: 32688981 DOI: 10.1071/fp04142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Accepted: 10/08/2004] [Indexed: 06/11/2023]
Abstract
To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 μmol mol-1 CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD (approximately 1 kPa) and high VPD (approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.
Collapse
Affiliation(s)
| | - Ana Rey
- School of GeoSciences, University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK
| | - Edward G Bobich
- Biosphere 2 Laboratory, Columbia University, Oracle, AZ 85623, USA
| | | | | | - Yadvinder Malhi
- School of GeoSciences, University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK
| | - Ramesh Murthy
- Biosphere 2 Laboratory, Columbia University, Oracle, AZ 85623, USA
| |
Collapse
|
199
|
Graus M, Schnitzler JP, Hansel A, Cojocariu C, Rennenberg H, Wisthaler A, Kreuzwieser J. Transient release of oxygenated volatile organic compounds during light-dark transitions in Grey poplar leaves. PLANT PHYSIOLOGY 2004; 135:1967-75. [PMID: 15299129 PMCID: PMC520768 DOI: 10.1104/pp.104.043240] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: hexenal was emitted first, followed by acetaldehyde and other C(6)-VOCs. Under anoxic conditions, acetaldehyde was the only compound released after switching off the light. This clearly indicated that hexenal and other C(6)-VOCs were released from the lipoxygenase reaction taking place during light-dark transitions under aerobic conditions. Experiments with enzyme inhibitors that artificially increased cytosolic pyruvate demonstrated that the acetaldehyde burst after light-dark transition could not be explained by the recently suggested pyruvate overflow mechanism. The simulation of light fleck situations in the canopy by exposing leaves to alternating light-dark and dark-light transitions or fast changes from high to low photosynthetic photon flux density showed that this process is of minor importance for acetaldehyde emission into the Earth's atmosphere.
Collapse
Affiliation(s)
- Martin Graus
- Institut für Ionenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|