151
|
Herickhoff CD, Grant GA, Britz GW, Smith SW. Dual-mode IVUS catheter for intracranial image-guided hyperthermia: feasibility study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:2572-84. [PMID: 21041144 PMCID: PMC3018697 DOI: 10.1109/tuffc.2010.1723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the feasibility of modifying 3-Fr IVUS catheters in several designs to potentially achieve minimally-invasive, endovascular access for image-guided ultrasound hyperthermia treatment of tumors in the brain. Using a plane wave approximation, target frequencies of 8.7 and 3.5 MHz were considered optimal for heating at depths (tumor sizes) of 1 and 2.5 cm, respectively. First, a 3.5-Fr IVUS catheter with a 0.7-mm diameter transducer (30 MHz nominal frequency) was driven at 8.6 MHz. Second, for a low-frequency design, a 220-μm-thick, 0.35 x 0.35-mm PZT-4 transducer--driven at width-mode resonance of 3.85 MHz--replaced a 40-MHz element in a 3.5-Fr coronary imaging catheter. Third, a 5 x 0.5-mm PZT-4 transducer was evaluated as the largest aperture geometry possible for a flexible 3-Fr IVUS catheter. Beam plots and on-axis heating profiles were simulated for each aperture, and test transducers were fabricated. The electrical impedance, impulse response, frequency response, maximum intensity, and mechanical index were measured to assess performance. For the 5 x 0.5-mm transducer, this testing also included mechanically scanning and reconstructing an image of a 2.5-cm-diameter cyst phantom as a preliminary measure of imaging potential.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
152
|
Weng JC, Wu SK, Lin WL, Tseng WYI. Detecting blood-brain barrier disruption within minimal hemorrhage following transcranial focused ultrasound: a correlation study with contrast-enhanced MRI. Magn Reson Med 2010; 65:802-11. [PMID: 20941741 DOI: 10.1002/mrm.22643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/22/2010] [Accepted: 08/26/2010] [Indexed: 11/06/2022]
Abstract
Focused ultrasound combined with an intravascular ultrasound contrast agent can induce transient disruption of the blood-brain barrier, and the blood-brain barrier disruption can be detected by contrast-enhanced MRI. There is, however, no study investigating the ability of various MR methods to detect focused ultrasound-induced blood-brain barrier disruption within minimal hemorrhage. Sonication was applied to 15 rat brains with four different doses of ultrasound contrast agent (0, 10, 30, or 50 μL/kg), and contrast-enhanced T1-weighted spin echo, gradient echo images, and longitudinal relaxation rate mapping along with effective transverse relaxation time-weighted and susceptibility-weighted images were acquired. Volume-of-interest-based and threshold-based analyses were performed to quantify the contrast enhancement, which was then correlated with the ultrasound contrast agent dose and with the amount of Evans blue extravasation. Both effective transverse relaxation time-weighted and susceptibility-weighted images did not detect histology-proved intracranial hemorrhage at 10 μL/kg, but MRI failed to detect mild intracranial hemorrhage at 30 μL/kg. All tested sequences showed detectable contrast enhancement increasing with ultrasound contrast agent dose. In correlating with Evans blue extravasation, the gradient echo sequence was slightly better than the spin echo sequence and was comparable to longitudinal relaxation rate mapping. In conclusion, both gradient echo and spin echo sequences were all reliable in indicating the degree of focused ultrasound-induced blood-brain barrier disruption within minimal hemorrhage.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, and Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
153
|
Weng JC, Wu SK, Yang FY, Lin WL, Tseng WYI. Pulse sequence and timing of contrast-enhanced MRI for assessing blood-brain barrier disruption after transcranial focused ultrasound in the presence of hemorrhage. J Magn Reson Imaging 2010; 31:1323-30. [PMID: 20512883 DOI: 10.1002/jmri.22174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To optimize the timing of contrast-enhanced magnetic resonance imaging (MRI) that best indicates blood-brain barrier (BBB) disruption induced by focused ultrasound (FUS) along with an ultrasound contrast agent (UCA) and to verify that the contrast-enhanced spin-echo MRI sequence can indicate the degree and location of BBB disruption in the presence of hemorrhage better than a gradient-echo sequence. MATERIALS AND METHODS Sonication was applied to 12 rat brains with four different doses of UCA to cause variable degrees of hemorrhage. Two imaging sequences were performed to acquire T1-weighted (T1W) images at two time-points after the administration of a T1-shortening contrast agent. The contrast enhancement at the sonicated regions was quantified and correlated against Evans blue (EB) staining. RESULTS The spin-echo T1W images at 10 minutes post-contrast enhancement showed the best correlation with EB staining in both quantity of EB extravasation (r = 0.812; P < 0.01) and spatial distribution (r = 0.528, P < 0.01). This capability was more robust than the gradient-echo sequence. CONCLUSION Our results suggest that contrast-enhanced T1W spin-echo sequence acquired in the early phase post-contrast enhancement should be considered to monitor the degree and location of BBB disruption under the possibility of hemorrhage induced by FUS.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
154
|
Liu Y, Paliwal S, Bankiewicz KS, Bringas JR, Heart G, Mitragotri S, Prausnitz MR. Ultrasound-enhanced drug transport and distribution in the brain. AAPS PharmSciTech 2010; 11:1005-17. [PMID: 20532711 PMCID: PMC2974134 DOI: 10.1208/s12249-010-9458-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 05/13/2010] [Indexed: 11/30/2022] Open
Abstract
Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage.
Collapse
|
155
|
McLaughlan J, Rivens I, Leighton T, Ter Haar G. A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1327-44. [PMID: 20691922 DOI: 10.1016/j.ultrasmedbio.2010.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 05/13/2023]
Abstract
Cancer treatment by extracorporeal high-intensity focused ultrasound (HIFU) is constrained by the time required to ablate clinically relevant tumour volumes. Although cavitation may be used to optimize HIFU treatments, its role during lesion formation is ambiguous. Clear differentiation is required between acoustic cavitation (noninertial and inertial) effects and bubble formation arising from two thermally-driven effects (the vapourization of liquid into vapour, and the exsolution of formerly dissolved permanent gas out of the liquid and into gas spaces). This study uses clinically relevant HIFU exposures in degassed water and ex vivo bovine liver to test a suite of cavitation detection techniques that exploit passive and active acoustics, audible emissions and the electrical drive power fluctuations. Exposure regimes for different cavitation activities (none, acoustic cavitation and, for ex vivo tissue only, acoustic cavitation plus thermally-driven gas space formation) were identified both in degassed water and in ex vivo liver using the detectable characteristic acoustic emissions. The detection system proved effective in both degassed water and tissue, but requires optimization for future clinical application.
Collapse
Affiliation(s)
- James McLaughlan
- The Institute of Cancer Research, Joint Department of Physics, Royal Marsden NHS trust, Sutton, Surrey, UK.
| | | | | | | |
Collapse
|
156
|
A leptin derived 30-amino-acid peptide modified pegylated poly-l-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010; 31:5246-57. [DOI: 10.1016/j.biomaterials.2010.03.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/04/2010] [Indexed: 01/08/2023]
|
157
|
Abstract
IMPORTANCE OF THE FIELD The use of ultrasound with microbubbles raises the possibility of an efficient and safe gene delivery. AREAS COVERED IN THIS REVIEW This review summarizes the current state of the art of gene delivery by sonoporation under the following topics. First, the basic ultrasound parameters and the characteristics of microbubble in biological systems are discussed. Second, the extensions of sonoporation to other fields of gene delivery such as viral and non-viral vector are briefly reviewed. Finally, recent applications in an animal model for various diseases are introduced. WHAT THE READER WILL GAIN Information and comments on gene delivery by sonoporation or enhanced cell membrane permeability by means of ultrasound. TAKE HOME MESSAGE Ultrasound-mediated gene delivery combined with microbubble agents provides significant safety advantages over other methods of local gene delivery.
Collapse
Affiliation(s)
- Chang S Yoon
- Paik Memorial Institute for Clinical Research, Department of Internal Medicine, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
158
|
Abstract
The blood-brain barrier (BBB) poses a significant impediment for the delivery of therapeutic drugs into the brain. This is particularly problematic for the treatment of malignant gliomas which are characterized by diffuse infiltration of tumor cells into normal brain where they are protected by a patent BBB. Selective disruption of the BBB, followed by administration of anti-cancer agents, represents a promising approach for the elimination of infiltrating glioma cells. A summary of the techniques (focused ultrasound, photodynamic therapy and photochemical internalization) for site-specific opening of the BBB will be discussed in this review. Each approach is capable of causing localized and transient opening of the BBB with minimal damage to surrounding normal brain as evidenced from magnetic resonance images and histology.
Collapse
Affiliation(s)
- Steen J Madsen
- Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| | | |
Collapse
|
159
|
Goertz DE, Wright C, Hynynen K. Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:916-24. [PMID: 20447757 PMCID: PMC2878849 DOI: 10.1016/j.ultrasmedbio.2010.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 05/12/2023]
Abstract
Ultrasound-stimulated microbubbles are currently under investigation as a means of transiently disrupting the blood-brain barrier (BBB) and it has been shown that the strength of this effect is highly dependent on ultrasound exposure conditions. The objective of this study was to investigate the potential for contrast agent destruction in the brain under conditions relevant to BBB disruption with a view to determining its possible influence on effective exposure parameters. An ultrasound imaging array was mounted within the aperture of a 1.68-MHz focused therapy transducer. Pulse lengths of 10 ms were used at repetition rates of 0.1-2.0 Hz and pressures from 0.30-0.88 MPa. Contrast imaging was performed after the bolus injection of Definity, and contrast time-intensity curves were then analyzed for regions-of-interest exposed to the therapy beam. Individual therapy pulses resulted in microbubble destruction, with the degree of agent depletion and replenishment time increasing with transmit pressure. As the pulse repetition rate was increased, agent reperfusion between pulses was incomplete and the concentration within the beam was progressively diminished, to a degree dependent on both pressure and repetition rates. These results demonstrate that microbubble concentration can be substantially influenced by destruction induced by therapeutic ultrasound pulses. The kinetics of this effect may therefore be a significant factor influencing the efficiency of BBB disruption, suggesting that monitoring of the spatial and temporal distribution of contrast agents may be warranted to guide and optimize BBB disruption therapy in both preclinical and clinical contexts.
Collapse
Affiliation(s)
- David E Goertz
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
160
|
Shihabuddin LS, Aubert I. Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 2010; 58:845-54. [DOI: 10.1016/j.neuropharm.2009.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 01/21/2023]
|
161
|
Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2010; 62:503-17. [PMID: 19914319 DOI: 10.1016/j.addr.2009.11.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/14/2009] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus (HIV) can gain access to the central nervous system during the early course of primary infection. Once in the brain compartment the virus actively replicates to form an independent viral reservoir, resulting in debilitating neurological complications, latent infection and drug resistance. Current antiretroviral drugs (ARVs) often fail to effectively reduce the HIV viral load in the brain. This, in part, is due to the poor transport of many ARVs, in particular protease inhibitors, across the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSBF). Studies have shown that nanocarriers including polymeric nanoparticles, liposomes, solid lipid nanoparticles (SLN) and micelles can increase the local drug concentration gradients, facilitate drug transport into the brain via endocytotic pathways and inhibit the ATP-binding cassette (ABC) transporters expressed at the barrier sites. By delivering ARVs with nanocarriers, significant increase in the drug bioavailability to the brain is expected to be achieved. Recent studies show that the specificity and efficiency of ARVs delivery can be further enhanced by using nanocarriers with specific brain targeting, cell penetrating ligands or ABC-transporters inhibitors. Future research should focus on achieving brain delivery of ARVs in a safe, efficient, and yet cost-effective manner.
Collapse
|
162
|
Lelyveld VS, Atanasijevic T, Jasanoff A. Challenges for Molecular Neuroimaging with MRI. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2010; 20:71-79. [PMID: 20808721 PMCID: PMC2929832 DOI: 10.1002/ima.20221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Magnetic resonance (MRI)-based molecular imaging methods are beginning to have impact in neuroscience. A growing number of molecular imaging agents have been synthesized and tested in vitro, but so far relatively few have been validated in the brains of live animals. Here, we discuss key challenges associated with expanding the repertoire of successful molecular neuroimaging approaches. The difficulty of delivering agents past the blood-brain barrier (BBB) is a particular obstacle to molecular imaging in the central nervous system. We review established and emerging techniques for trans-BBB delivery, including intracranial infusion, BBB disruption, and transporter-related methods. Improving the sensitivity with which MRI-based molecular agents can be detected is a second major challenge. Better sensitivity would in turn reduce the requirements for delivery and alleviate potential side effects. We discuss recent efforts to enhance relaxivity of conventional longitudinal relaxation time (T(1)) and transverse relaxation time (T(2)) MRI contrast agents, as well as strategies that involve amplifying molecular signals or reducing endogenous background influences. With ongoing refinement of imaging approaches and brain delivery methods, MRI-based techniques for molecular-level neuroscientific investigation will fall increasingly within reach.
Collapse
Affiliation(s)
- Victor S Lelyveld
- Department of Biological Engineering, Massachusetts Institute of Technology, NW14-2213, Cambridge, MA 02139
| | | | | |
Collapse
|
163
|
Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 2010; 28:264-70. [PMID: 20190737 DOI: 10.1038/nbt.1609] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/27/2010] [Indexed: 11/08/2022]
Abstract
The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3-8.9 microM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity-dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.
Collapse
|
164
|
Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y. Cavitation microstreaming and stress fields created by microbubbles. ULTRASONICS 2010; 50:273-9. [PMID: 19896683 DOI: 10.1016/j.ultras.2009.10.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 05/05/2023]
Abstract
Cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonoporative and sonothrombolytic phenomena. Microscopic particle-image velocimetry experiments are presented. Results show that many different microstreaming patterns are possible around a microbubble when it is on a surface, albeit for microbubbles much larger than used in clinical practice. Each pattern is associated with a particular oscillation mode of the bubble, and changing between patterns is achieved by changing the sound frequency. Each microstreaming pattern also generates different shear stress and stretch/compression distributions in the vicinity of a bubble on a wall. Analysis of the micro-PIV results also shows that ultrasound-driven microstreaming flows around bubbles are feasible mechanisms for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Patterns show significant variations around the bubble, suggesting sonoporation may be either enhanced or inhibited in different zones across a cellular surface. Thus, alternating the patterns may result in improved sonoporation and sonothrombolysis. The clear and reproducible delineation of microstreaming patterns based on driving frequency makes frequency-based pattern alternation a feasible alternative to the clinically less desirable practice of increasing sound pressure for equivalent sonoporative or sonothrombolytic effect. Surface divergence is proposed as a measure relevant to sonoporation.
Collapse
Affiliation(s)
- James Collis
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
165
|
Yang FY, Liu SH, Ho FM, Chang CH. Effect of ultrasound contrast agent dose on the duration of focused-ultrasound-induced blood-brain barrier disruption. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:3344-3349. [PMID: 20000948 DOI: 10.1121/1.3242376] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It has been shown that focused ultrasound (FUS) is capable of noninvasive and reversible disruption of the blood-brain barrier (BBB) at target regions when applied in the presence of ultrasound contrast agent (UCA). The purpose of this study was to investigate the effects of UCA dose on the reversibility of BBB disruption induced by the same acoustical power of FUS. Sonications were applied at an ultrasound frequency of 1 MHz with a 5% duty cycle and a repetition frequency of 1 Hz. The brains of 66 male Sprague-Dawley rats were subjected to sonications with three doses of UCA. BBB integrity was evaluated via femoral vein injection of Evans Blue (EB) while the rats were anesthetized. The relationship between UCA dose and the region of EB extravasation was evaluated at an acoustic power of 1.43 W. The BBB disruption, as indexed by the amount of EB extravasation, was the largest immediately after the sonications. The quantity of Evans blue extravasation decreased as a function of time at various UCA doses. This study demonstrates that the appropriate dose of UCA not only enhance the BBB opening but also effectively aid in controlling the duration of BBB disruption.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, 11221 Taipei, Taiwan.
| | | | | | | |
Collapse
|
166
|
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6:1017-32. [PMID: 19732031 DOI: 10.1517/17425240903167942] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood-brain barrier (BBB). OBJECTIVE The objective of this paper is to review recent approaches to delivering anticancer drugs into primary brain tumors. METHODS Both preclinical and clinical strategies to circumvent the BBB are considered that include chemical modification and colloidal carriers. CONCLUSION Analysis of the available data indicates that new approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues and improved knowledge of tumor biology will be needed to affect significantly drug delivery to the target site.
Collapse
|
167
|
Computational aspects in high intensity ultrasonic surgery planning. Comput Med Imaging Graph 2009; 34:69-78. [PMID: 19740625 DOI: 10.1016/j.compmedimag.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/24/2009] [Accepted: 08/07/2009] [Indexed: 01/04/2023]
Abstract
Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers.
Collapse
|
168
|
Herickhoff CD, Light ED, Bing KF, Mukundan S, Grant GA, Wolf PD, Smith SW. Dual-mode intracranial catheter integrating 3D ultrasound imaging and hyperthermia for neuro-oncology: feasibility study. ULTRASONIC IMAGING 2009; 31:81-100. [PMID: 19630251 PMCID: PMC2810199 DOI: 10.1177/016173460903100201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/therapy
- Catheterization/instrumentation
- Catheterization/methods
- Dogs
- Equipment Design
- Feasibility Studies
- Hyperthermia, Induced/instrumentation
- Hyperthermia, Induced/methods
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Phantoms, Imaging
- Swine
- Transducers
- Ultrasonography, Doppler, Color/instrumentation
- Ultrasonography, Doppler, Color/methods
- Ultrasonography, Interventional/instrumentation
- Ultrasonography, Interventional/methods
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Lopata RGP, Hansen HHG, Nillesen MM, Thijssen JM, De Korte CL. Comparison of one-dimensional and two-dimensional least-squares strain estimators for phased array displacement data. ULTRASONIC IMAGING 2009; 31:1-16. [PMID: 19507679 DOI: 10.1177/016173460903100101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, the performances of one-dimensional and two-dimensional least-squares strain estimators (LSQSE) are compared. Furthermore, the effects of kernel size are examined using simulated raw frequency data of a widely-adapted hard lesion/soft tissue model. The performances of both methods are assessed in terms of root-mean-squared errors (RMSE), elastographic signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe). RMSE analysis revealed that the 2D LSQSE yields better results for phased array data, especially for larger insonification angles. Using a 2D LSQSE enabled the processing of unfiltered displacement data, in particular for the lateral/horizontal strain components. The SNRe and CNRe analysis showed an improvement in precision and almost no loss in contrast using 2D LSQSE. However, the RMSE images for different kernel sizes revealed that the optimal 2D kernel size depends on the region-of-interest and showed that the LSQ kernel size should be limited to avoid loss in resolution.
Collapse
Affiliation(s)
- Richard G P Lopata
- Clinical Physics Laboratory-833, Department ofPediatrics, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|