151
|
Neale PA, Brack W, Aït-Aïssa S, Busch W, Hollender J, Krauss M, Maillot-Maréchal E, Munz NA, Schlichting R, Schulze T, Vogler B, Escher BI. Solid-phase extraction as sample preparation of water samples for cell-based and other in vitro bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:493-504. [PMID: 29493668 DOI: 10.1039/c7em00555e] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In vitro bioassays are increasingly used for water quality monitoring. Surface water samples often need to be enriched to observe an effect and solid-phase extraction (SPE) is commonly applied for this purpose. The applied methods are typically optimised for the recovery of target chemicals and not for effect recovery for bioassays. A review of the few studies that have evaluated SPE recovery for bioassays showed a lack of experimentally determined recoveries. Therefore, we systematically measured effect recovery of a mixture of 579 organic chemicals covering a wide range of physicochemical properties that were spiked into a pristine water sample and extracted using large volume solid-phase extraction (LVSPE). Assays indicative of activation of xenobiotic metabolism, hormone receptor-mediated effects and adaptive stress responses were applied, with non-specific effects determined through cytotoxicity measurements. Overall, effect recovery was found to be similar to chemical recovery for the majority of bioassays and LVSPE blanks had no effect. Multi-layer SPE exhibited greater recovery of spiked chemicals compared to LVSPE, but the blanks triggered cytotoxicity at high enrichment. Chemical recovery data together with single chemical effect data were used to retrospectively estimate with reverse recovery modelling that there was typically less than 30% effect loss expected due to reduced SPE recovery in published surface water monitoring studies. The combination of targeted experiments and mixture modelling clearly shows the utility of SPE as a sample preparation method for surface water samples, but also emphasizes the need for adequate controls when extraction methods are adapted from chemical analysis workflows.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany. and RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, 60550 Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | | | - Nicole A Munz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Tobias Schulze
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia and UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany. and Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| |
Collapse
|
152
|
Li XF, Mitch WA. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1681-1689. [PMID: 29283253 DOI: 10.1021/acs.est.7b05440] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters. However, the DBPs responsible for the bladder cancer association remain unclear. Utilities are switching away from a reliance on chlorination of pristine drinking water supplies to the application of new disinfectant combinations to waters impaired by wastewater effluents and algal blooms. In light of these changes in disinfection practice, this article discusses new approaches being taken by analytical chemists, engineers, toxicologists and epidemiologists to characterize the DBP classes driving disinfected water toxicity, and suggests that DBP exposure should be measured using other DBP classes in addition to THMs.
Collapse
Affiliation(s)
- Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB T6G 2G3 Canada
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
153
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
154
|
Leusch FDL, Aneck-Hahn NH, Cavanagh JAE, Du Pasquier D, Hamers T, Hebert A, Neale PA, Scheurer M, Simmons SO, Schriks M. Comparison of in vitro and in vivo bioassays to measure thyroid hormone disrupting activity in water extracts. CHEMOSPHERE 2018; 191:868-875. [PMID: 29107228 DOI: 10.1016/j.chemosphere.2017.10.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 05/02/2023]
Abstract
Environmental chemicals can induce thyroid disruption through a number of mechanisms including altered thyroid hormone biosynthesis and transport, as well as activation and inhibition of the thyroid receptor. In the current study six in vitro bioassays indicative of different mechanisms of thyroid disruption and one whole animal in vivo assay were applied to 9 model compounds and 4 different water samples (treated wastewater, surface water, drinking water and ultra-pure lab water; both unspiked and spiked with model compounds) to determine their ability to detect thyroid active compounds. Most assays correctly identified and quantified the model compounds as agonists or antagonists, with the reporter gene assays being the most sensitive. However, the reporter gene assays did not detect significant thyroid activity in any of the water samples, suggesting that activation or inhibition of the thyroid hormone receptor is not a relevant mode of action for thyroid endocrine disruptors in water. The thyroperoxidase (TPO) inhibition assay and transthyretin (TTR) displacement assay (FITC) detected activity in the surface water and treated wastewater samples, but more work is required to assess if this activity is a true measure of thyroid activity or matrix interference. The whole animal Xenopus Embryonic Thyroid Assay (XETA) detected some activity in the unspiked surface water and treated wastewater extracts, but not in unspiked drinking water, and appears to be a suitable assay to detect thyroid activity in environmental waters.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia.
| | - Natalie H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Timo Hamers
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Armelle Hebert
- Veolia Research & Innovation, 78600, Maisons-Laffitte, France
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia
| | - Marco Scheurer
- DVGW - Technologiezentrum Wasser, Karlsruher Str.84, 76139, Karlsruhe, Germany
| | - Steven O Simmons
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Merijn Schriks
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands; Vitens Drinking Water Company, 8019 BE, Zwolle, The Netherlands
| |
Collapse
|
155
|
Brack W, Escher BI, Müller E, Schmitt-Jansen M, Schulze T, Slobodnik J, Hollert H. Towards a holistic and solution-oriented monitoring of chemical status of European water bodies: how to support the EU strategy for a non-toxic environment? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:33. [PMID: 30221105 PMCID: PMC6132835 DOI: 10.1186/s12302-018-0161-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/25/2018] [Indexed: 05/02/2023]
Abstract
The definition of priority substances (PS) according to the Water Framework Directive (WFD) helped to remove many of these chemicals from the market and to reduce their concentrations in the European water bodies. However, it could not prevent that many of these chemicals have been replaced by others with similar risks. Today, monitoring of the PS-based chemical status according to WFD covers only a tiny fraction of toxic risks, extensively ignores mixture effects and lacks incentives and guidance for abatement. Thus, we suggest complement this purely status-related approach with more holistic and solution-oriented monitoring, which at the same time helps to provide links to the ecological status. Major elements include (1) advanced chemical screening techniques supporting mixture risk assessment and unraveling of source-related patterns in complex mixtures, (2) effect-based monitoring for the detection of groups of chemicals with similar effects and the establishment of toxicity fingerprints, (3) effect-directed analysis of drivers of toxicity and (4) to translate chemical and toxicological fingerprints into chemical footprints for prioritization of management measures. The requirement of more holistic and solution-oriented monitoring of chemical contamination is supported by the significant advancement of appropriate monitoring tools within the last years. Non-target screening technology, effect-based monitoring and basic understanding of mixture assessment are available conceptually and in research but also increasingly find their way into practical monitoring. Substantial progress in the development, evaluation and demonstration of these tools, for example, in the SOLUTIONS project enhanced their acceptability. Further advancement, integration and demonstration, extensive data exchange and closure of remaining knowledge gaps are suggested as high priority research needs for the next future to bridge the gap between insufficient ecological status and cost-efficient abatement measures.
Collapse
Affiliation(s)
- Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Erik Müller
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
156
|
Müller ME, Escher BI, Schwientek M, Werneburg M, Zarfl C, Zwiener C. Combining in vitro reporter gene bioassays with chemical analysis to assess changes in the water quality along the Ammer River, Southwestern Germany. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:20. [PMID: 29984126 PMCID: PMC6006277 DOI: 10.1186/s12302-018-0148-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rivers receive water and associated organic micropollutants from their entire catchment, including from urban, agricultural and natural sources, and constitute an important environmental component for catalyzing pollutant turnover. Environmental removal processes were extensively investigated under laboratory conditions in the past but there is still a lack of information on how organic micropollutants attenuate on the catchment scale. The aim of this study was to describe the chemical and toxicological profile of a 4th order river and to characterize in-stream processes. We propose indicator chemicals and indicator in vitro bioassays as screening methods to evaluate micropollutant input and transport and transformation processes of the chemical burden in a river. Carbamazepine and sulfamethoxazole were selected as indicators for dilution processes and the moderately degradable chemicals tramadol and sotalol as indicators for potential in-stream attenuation processes. The battery of bioassays covers seven environmentally relevant modes of action, namely estrogenicity, glucocorticogenic activity, androgenicity progestagenic activity and oxidative stress response, as well as activation of the peroxisome proliferator-activated receptor and the aryl hydrocarbon receptor, using the GeneBLAzer test battery and the AhR-CALUX and AREc32 assays. RESULTS Both approaches, targeted chemical analysis and in vitro bioassays, identified a wastewater treatment plant (WWTP) as a major input source of organic micropollutants that dominantly influenced the water quality of the river. Downstream of the WWTP the amount of detected chemicals and biological effects decreased along the river flow. The organic indicator chemicals of known degradability uncovered dilution and potential loss processes in certain river stretches. The average cytotoxic potency of the river water decreased in a similar fashion as compounds of medium degradability such as the pharmaceutical sotalol. CONCLUSIONS This study showed that the indicator chemical/indicator bioassay approach is suitable for identifying input sources of a mixture of organic micropollutants and to trace changes in the water quality along small rivers. This method forms the necessary basis for evaluating the natural attenuation processes of organic micropollutants on a catchment scale, especially when combined with enhanced sampling strategies in future studies.
Collapse
Affiliation(s)
- Maximilian E. Müller
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Beate I. Escher
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Marc Schwientek
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martina Werneburg
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Christian Zwiener
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|