151
|
Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 2010; 9:5296-310. [PMID: 20695486 DOI: 10.1021/pr100570j] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptides and protein hormones constitute a very important group of signaling molecules, regulating central physiological processes such as reproduction, development, and behavior. Using a bioinformatics approach, we screened the recently sequenced genome of the parasitic wasp, Nasonia vitripennis, for the presence of these signaling molecules and annotated 30 precursor genes encoding 51 different mature neuropeptides or protein hormones. Twenty-four of the predicted mature Nasonia neuropeptides could be experimentally confirmed by mass spectrometry. We also discovered a completely novel neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides, even though their putative G protein coupled receptor (GPCR) is present in the Nasonia genome. Neither the precursor nor the putative receptor could be identified for allatostatin-B, capa, the glycoprotein hormones GPA2/GPB5, kinin, proctolin, sex peptide, and sulfakinin, arguing that these signaling systems are truly absent in the wasp. Also, antidiuretic factors, allatotropin, and NPLP-like precursors are missing in Nasonia, but here the receptors have not been identified in any insect, so far. Nasonia (Hymenoptera) has the lowest number of neuropeptide precursor genes compared to Drosophila melanogaster, Aedes aegypti (both Diptera), Bombyx mori (Lepidoptera), Tribolium castaneum (Coleoptera), Apis mellifera (Hymenoptera), and Acyrthosiphon pisum (Hemiptera). This lower number of neuropeptide genes might be related to Nasonia's parasitic life.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
152
|
Mykles DL, Adams ME, Gäde G, Lange AB, Marco HG, Orchard I. Neuropeptide action in insects and crustaceans. Physiol Biochem Zool 2010; 83:836-46. [PMID: 20550437 PMCID: PMC3844688 DOI: 10.1086/648470] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Fan Y, Sun P, Wang Y, He X, Deng X, Chen X, Zhang G, Chen X, Zhou N. The G protein-coupled receptors in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:581-591. [PMID: 20685615 DOI: 10.1016/j.ibmb.2010.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 05/07/2010] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell, occupying the highest hierarchical positions in the regulation of many physiological processes. Although they have been extensively studied in a number of model insects, there have been few investigations of GPCRs in large Lepidopterans, such as Bombyx mori, an organism that provides a means to perform detailed tissue expression analyses, which may help to characterize GPCRs and their ligands. In addition, B. mori, also known as the silkworm, is an insect of substantial economic importance, due to its use in silk production and traditional medicines. In this work, we computationally identified 90 putative GPCRs in B. mori, 33 of which represent novel proteins. These GPCRs were annotated and compared with their homologs in Drosophila melanogaster and Anopheles gambiae. Phylogenetics analyses of the GPCRs from these three insects showed that GPCRs may easily duplicate or disappear during insect evolution, especially in the neuropeptide and protein hormone receptor subfamily. Interestingly, we observed a decrease in the quantity and diversity of the stress-tolerance gene, Methuselah, in B. mori, which may be related to its long history of domestication. Moreover, the presence of many Bombyx-specific GPCRs suggests that neither Drosophila nor Anopheles is good representatives for the GPCRs in the Class Insecta.
Collapse
Affiliation(s)
- Yi Fan
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV. The role of octopamine in locusts and other arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:854-867. [PMID: 20621695 DOI: 10.1016/j.jinsphys.2010.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The biogenic amine octopamine and its biological precursor tyramine are thought to be the invertebrate functional homologues of the vertebrate adrenergic transmitters. Octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems and prompts the whole organism to "dynamic action". A growing number of studies suggest a prominent role for octopamine in modulating multiple physiological and behavioural processes in invertebrates, as for example the phase transition in Schistocerca gregaria. Both octopamine and tyramine exert their effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. Since these receptors do not appear to be present in vertebrates, they may present very suitable and specific insecticide and acaricide targets.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
155
|
Abdel-latief M, Hoffmann KH. Neuropeptide regulators of the juvenile hormone biosynthesis (in vitro) in the beetle, Tenebrio molitor (Coleoptera, Tenebrionidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:135-146. [PMID: 20544805 DOI: 10.1002/arch.20359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The genome of Tribolium castaneum encodes two allatostatin [AS type B; W(X)(6)Wamide and AS type C; PISCF-OH] and one allatotropin (AT) precursor, but no AS type A (FGLamide) (Tribolium Genome Sequencing Consortium, 2008: Nature 452:949-955). Here we studied the activity (in vitro) of peptides derived from these precursors on the synthesis/release of juvenile hormone (JH) III. The corpora cardiaca-corpora allata (CC-CA) complexes of adult females of another tenebrionid beetle, the mealworm Tenebrio molitor, were used. Incubating the gland complexes in a medium containing Trica-AS B3 peptide, we showed that the peptide has allatostatic function in T. molitor. The activity of the type C AS depended on the age of the test animals and their intrinsic rate of JH III biosynthesis. The Trica-AS C peptide inhibited the JH release from CA of 3-day-old females with a high intrinsic rate of JH synthesis, but activated JH release from the CA of 7-day-old females with a lower intrinsic rate of JH production. The allatotropin peptide (Trica-AT) also activated the JH release from the CA of 7-day-old females in a dose-dependent and reversible manner. Unexpectedly, a type A AS derived from the precursor of the American cockroach Periplaneta americana (Peram-AS A2b) inhibited the JH release from the CA of younger and older females in the concentration range of 10(-8) to 10(-4) M, and the effects were fully reversible in the absence of peptide. These data suggest a complex role of allatoactive neuropeptides in the regulation of JH III biosynthesis in beetles.
Collapse
|
156
|
Nishi Y, Sasaki K, Miyatake T. Biogenic amines, caffeine and tonic immobility in Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:622-628. [PMID: 20079743 DOI: 10.1016/j.jinsphys.2010.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/09/2010] [Accepted: 01/10/2010] [Indexed: 05/28/2023]
Abstract
Biogenic amines are physiologically neuroactive substances that affect behavioural and physiological traits in invertebrates. In the present study, the effects of dopamine, octopamine, tyramine and serotonin on tonic immobility, or death-feigning, were investigated in Tribolium castaneum. These amines were injected into the abdomens of beetles artificially selected for long or short duration of tonic immobility. In beetles of the long strains, the durations of tonic immobility were shortened by injection of dopamine, octopamine and tyramine, and the effects of these amines were dose-dependent. On the other hand, serotonin injection did not affect the duration of tonic immobility. In the short-strain beetles that rarely feign death, no significant effects of the amines were found on the duration of tonic immobility. Brain expression levels of octopamine, tyramine and serotonin did not differ between long- and short-strain beetles, in contrast to the higher dopamine levels in short strains previously reported. Caffeine decreased the duration of death-feigning in both oral absorption and injection experiments. It is known that caffeine activates dopamine. Therefore, the present results suggest that the duration of tonic immobility is affected by dopamine via the dopamine receptor in T. castaneum.
Collapse
Affiliation(s)
- Yusuke Nishi
- Laboratory of Evolutionary Ecology, Graduate School of Environmental Science, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
157
|
Lind U, Alm Rosenblad M, Hasselberg Frank L, Falkbring S, Brive L, Laurila JM, Pohjanoksa K, Vuorenpää A, Kukkonen JP, Gunnarsson L, Scheinin M, Mårtensson Lindblad LGE, Blomberg A. Octopamine Receptors from the Barnacle Balanus improvisus Are Activated by the α2-Adrenoceptor Agonist Medetomidine. Mol Pharmacol 2010; 78:237-48. [DOI: 10.1124/mol.110.063594] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
158
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
159
|
Trudeau VL. Fourth Comparative Neuroendocrinology Symposium: Evolutionary and developmental neuroendocrinology. Gen Comp Endocrinol 2010; 166:443-6. [PMID: 20338174 DOI: 10.1016/j.ygcen.2010.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
160
|
Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJP. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 2010; 285:10736-47. [PMID: 20068045 PMCID: PMC2856281 DOI: 10.1074/jbc.m109.045369] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/04/2009] [Indexed: 11/06/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin receptors and, vice versa, AKH and corazonin do not activate the ACP receptor, showing that the ACP/receptor couple is an independent and so far unknown peptidergic signaling system. Because ACP is structurally intermediate between AKH and corazonin and the ACP receptor between the AKH and corazonin receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera), the honeybee Apis mellifera (Hymenoptera), the pea aphid Acyrthosiphon pisum (Hemiptera), the body louse Pediculus humanus (Phthiraptera), and the crustacean Daphnia pulex, indicating that it has been lost several times during arthropod evolution. In particular, this frequent loss of hormonal systems is unique for arthropods compared with vertebrates.
Collapse
Affiliation(s)
- Karina K. Hansen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Elisabeth Stafflinger
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martina Schneider
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Frank Hauser
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Giuseppe Cazzamali
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Michael Williamson
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martin Kollmann
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Joachim Schachtner
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Cornelis J. P. Grimmelikhuijzen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| |
Collapse
|
161
|
Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. In search for a common denominator for the diverse functions of arthropod corazonin: a role in the physiology of stress? Gen Comp Endocrinol 2010; 166:222-33. [PMID: 19748506 DOI: 10.1016/j.ygcen.2009.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 02/01/2023]
Abstract
Corazonin (Crz) is an 11 amino acid C-terminally amidated neuropeptide that has been identified in most arthropods examined with the notable exception of beetles and an aphid. The Crz-receptor shares sequence similarity to the GnRH-AKH receptor family thus suggesting an ancestral function related to the control of reproduction and metabolism. In 1989, Crz was purified and identified as a potent cardioaccelerating agent in cockroaches (hence the Crz name based on "corazon", the Spanish word for "heart"). Since the initial assignment as a cardioacceleratory peptide, additional functions have been discovered, ranging from pigment migration in the integument of crustaceans and in the eye of locusts, melanization of the locust cuticle, ecdysis initiation and in various aspects of gregarization in locusts. The high degree of structural conservation of Crz, its well-conserved (immuno)-localization, mainly in specific neurosecretory cells in the pars lateralis, and its many functions, suggest that Crz is vital. Yet, Crz-deficient insects develop normally. Upon reexamining all known effects of Crz, a hypothesis was developed that the evolutionary ancient function of Crz may have been "to prepare animals for coping with the environmental stressors of the day". This function would then complement the role of pigment-dispersing factor (PDF), the prime hormonal effector of the clock, which is thought "to set a coping mechanism for the night".
Collapse
Affiliation(s)
- Bart Boerjan
- Functional Genomics and Proteomics, Department of Biology, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
162
|
Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, Kollmann M, Huetteroth W, Schachtner J. 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity. Front Syst Neurosci 2010; 4:3. [PMID: 20339482 PMCID: PMC2845059 DOI: 10.3389/neuro.06.003.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 01/18/2010] [Indexed: 12/21/2022] Open
Abstract
The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0). The atlases include eight paired and three unpaired neuropils including antennal lobes (ALs), optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the ALs. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity.
Collapse
Affiliation(s)
- David Dreyer
- Department of Biology, Animal Physiology, Philipps-University Marburg Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Elliott KL, Chan KK, Stay B. Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor. Peptides 2010; 31:402-7. [PMID: 19793542 DOI: 10.1016/j.peptides.2009.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
Abstract
The allatostatins (ASTs) with Phe-Gly-Leu-amide C-terminal sequence are multifunctional neuropeptides discovered as inhibitors of juvenile hormone (JH) synthesis by corpora allata (CA) of cockroaches. Although these ASTs inhibit JH synthesis only in cockroaches, crickets, termites and locusts, isolation of peptides or of cDNA/genomic DNA or analysis of genomes indicates their occurrence in many orders of insects with the exception of coleopterans. The gene for these ASTs has not been found in the genome of the red flour beetle Tribolium castaneum (Family Tenebrionidae). Yet, in view of widespread occurrence of these peptides in insects, crustaceans and nematodes, they would be expected to occur in beetles. This study provides evidence for the presence of FGLa-like ASTs in the tenebrionid beetle, Tenebrio molitor, and scarabid beetle, Popillia japonica. Extract of brain from both beetles inhibited JH synthesis by cockroach CA dose dependently and reversibly. 20 brain equivalents of T. molitor and P. japonica extracts inhibited JH synthesis 64+/-5 and 65+/-0.6% respectively. Antibody against cockroach allatostatin (Diploptera punctata AST-7) used in an enzyme-linked immunosorbent assay reacted with brain extract of these beetles. Antibody against D. punctata AST-5 localized FGLa-like ASTs in the brain and subesophageal ganglion of T. molitor and P. japonica. In addition, pretreatment of T. molitor brain extract with anti-D. punctata AST-5 reduced the inhibition of JH synthesis and pretreatment of anti-D. punctata AST-5 with D. punctata AST-5 diminished the immunoreactivity of the antibody. Thus we predict that FGLa-like allatostatins will be found in beetles.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, 163 Jefferson Street, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
164
|
Mayoral JG, Nouzova M, Brockhoff A, Goodwin M, Hernandez-Martinez S, Richter D, Meyerhof W, Noriega FG. Allatostatin-C receptors in mosquitoes. Peptides 2010; 31:442-50. [PMID: 19409436 PMCID: PMC2826609 DOI: 10.1016/j.peptides.2009.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 11/29/2022]
Abstract
In the present work we describe the functional and molecular characterization of two Aedes aegypti allatostatin-C receptor paralogs (AeAS-CrA and AeAS-CrB) and provide a detailed quantitative study of the expression of the AS-C receptor genes in an adult insect. The tissue distribution of the two AS-C receptors differed significantly; the mRNA levels of AeAS-CrB in the Malpighian tubules were the highest detected, while transcripts for AeAS-CrA were relatively low in this tissue. In addition, the transcript levels of both receptors were different in the thoracic and abdominal ganglia, corpora allata (CA) and the testis of the male. In the CA, the AeAS-CrB mRNA levels were constant from 0 to 72 h after female emergence, while the AeAS-CrA levels increased at 72 h. To complement the receptor expression studies, we analyzed the tissue specificity for allatostatin-C mRNA in female mosquitoes. Expression was high in abdominal ganglia and brain. Transcript levels of allatostatin-C in the head of females were elevated at eclosion and there were no major changes during the first week of adult life or after blood feeding. Fluorometric Imaging Plate Reader (FLIPR) recordings of calcium transients in HEK293T cells transiently expressing both putative receptors showed that they both responded selectively to allatostatin-C stimulation in the nanomolar concentration range. However, the peptide showed slightly greater affinity for AeAS-CrB than AeAS-CrA. Our studies suggest that some of the pleiotropic effects of allatostatin-C in mosquitoes could be mediated by the different receptor paralogs. Transcriptional regulation of the AS-C receptors may not have a critical role in the changes of CA responsiveness to the peptide that we previously described.
Collapse
Affiliation(s)
| | | | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | | | | - Dietmar Richter
- Institute of Cell Biochemistry and Clinical Neurobiology, University Hospital Eppendorf, Hamburg, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
165
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
166
|
Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci U S A 2010; 107:2060-5. [PMID: 20133850 DOI: 10.1073/pnas.0907471107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect molting and metamorphosis are induced by steroid hormones named ecdysteroids, whose production is regulated by various neuropeptides. We cloned the gene and analyzed the expression of the prothoracicostatic peptide, a unique neuropeptide shown to suppress the production of ecdysteroids in the prothoracic gland of the silkworm, Bombyx mori. We also characterized a Bombyx G protein-coupled receptor, which has previously been identified as an ortholog of the Drosophila sex peptide receptor, as a functional prothoracicostatic peptide receptor. This receptor responded specifically to the prothoracicostatic peptides when examined using a heterologous expression system. The receptor was highly expressed in the prothoracic gland on the day before each larval and pupal ecdysis, when prothoracicostatic peptides are synthesized at a high level in the epiproctodeal glands. These results suggest that the sex peptide receptor functions as a prothoracicostatic peptide receptor in Bombyx and that the peripheral neurosecretory cells as well as the central neuroendocrine system play stage-specific roles in regulating ecdysteroidogenesis.
Collapse
|
167
|
Altstein M, Nässel DR. Neuropeptide signaling in insects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:155-65. [PMID: 21189678 DOI: 10.1007/978-1-4419-6902-6_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropeptides represent the largest single class of signal compounds and are involved in regulation of development, growth, reproduction, metabolism and behavior of insects. Over the last few years there has been a tremendous increase in our knowledge of neuropeptide signaling due to genome sequencing, peptidomics, gene micro arrays, receptor characterization and targeted gene interference combined with physiological and behavior analysis. In this chapter we review the current knowledge of structure and distribution of insect neuropeptides and their receptors, as well as their diverse functions. We also discuss peptide biosynthesis, processing and expression, as well as classification of insect neuropeptides. Special attention is paid to the role insect neuropeptides play as potential targets for pest management and as a basis for development of insect control agents employing the rational/structural design approaches.
Collapse
Affiliation(s)
- Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan, 50250 Israel.
| | | |
Collapse
|
168
|
Veenstra JA. Does corazonin signal nutritional stress in insects? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:755-762. [PMID: 19815069 DOI: 10.1016/j.ibmb.2009.09.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 05/28/2023]
Abstract
The undecapeptide corazonin, initially discovered from the American cockroach as a strong cardioaccelerator, is now known to be ubiquitously present in arthropods, although it is absent from some species, notably Coleoptera. The structure of its precursor is similar to the GnRH precursor, while it acts through a receptor related to the GnRH receptor; corazonin thus appears to be an arthropod homolog of GnRH. It is produced by neuroendocrine cells in the brain, as well as interneurons in the ventral nerve cord. These two cell types are generally present in insects; in most species there are also other neurons producing corazonin. Its function in insects has remained obscure; its cardioacceleratory effects are limited to a few cockroach species, while in other species different physiological effects have been described. Most spectacularly it induces changes associated with the gregarious phase in migratory locusts and in the silkworm it reduces the size of the cocoon formed. Corazonin is able to induce ecdysis in two moth species, however locusts and flies in which the corazonin gene is no longer expressed, ecdyse normally and, hence, it is not clear whether corazonin is essential for ecdysis. As the corazonin neuroendocrine cells in the brain express receptors for two midgut peptides, it seems likely that their activity is modulated by the midgut endocrine cells. I propose that in insects corazonin might be released under conditions of nutritional stress, which can explain several of the observed physiological effects of this neurohormone.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNIC UMR 5228 CNRS, Talence, France.
| |
Collapse
|
169
|
Neupert S, Russell WK, Predel R, Russell DH, Strey OF, Teel PD, Nachman RJ. The neuropeptidomics of Ixodes scapularis synganglion. J Proteomics 2009; 72:1040-5. [DOI: 10.1016/j.jprot.2009.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
170
|
Scherkenbeck J, Zdobinsky T. Insect neuropeptides: Structures, chemical modifications and potential for insect control. Bioorg Med Chem 2009; 17:4071-84. [DOI: 10.1016/j.bmc.2008.12.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/31/2022]
|
171
|
Lange AB. Tyramine: from octopamine precursor to neuroactive chemical in insects. Gen Comp Endocrinol 2009; 162:18-26. [PMID: 18588893 DOI: 10.1016/j.ygcen.2008.05.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/26/2008] [Accepted: 05/30/2008] [Indexed: 11/26/2022]
Abstract
It is well acknowledged that tyramine acts as the biosynthetic intermediate precursor for octopamine. This fact has biased the interpretation of biological effects of tyramine towards an artifact of it being a partial agonist on octopamine receptors. Over recent years there has been an accumulation of evidence to show that tyramine is in fact a neuroactive chemical in its own right, with diverse physiological/behavioral roles. In addition, tyramine plays a unique role in a non-neuronal tissue, namely the Malpighian tubules. This review examines this evidence, taking into account the criteria that need to be satisfied in order to claim neuroactive chemical status. Thus, the evidence points to tyramine being synthesized by, and present in, neurons; capable of being released from neurons; removed by high affinity plasma membrane transporters; acting upon specific tyramine receptors; and producing physiological/behavioral effects that can be blocked by antagonists. This composite evidence is strong, although the final proof still awaits analysis on a uniquely identifiable tyraminergic neuron as has been possible with octopamine.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ont., L5L 1C6 Canada.
| |
Collapse
|
172
|
Verleyen P, Huybrechts J, Schoofs L. SIFamide illustrates the rapid evolution in Arthropod neuropeptide research. Gen Comp Endocrinol 2009; 162:27-35. [PMID: 19014945 DOI: 10.1016/j.ygcen.2008.10.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/28/2008] [Accepted: 10/09/2008] [Indexed: 11/27/2022]
Abstract
This review is focussed on SIFamide. This neuropeptide was discovered as a result of an extensive purification process, typical for 20th century physiology, of an extract of 350,000 flesh flies. Our knowledge of SIFamide greatly expanded since the first publication in 1996. Describing the minor and major findings on this peptide is our lead to summarise a number of innovations that recently became common in research on Arthropods. Mass spectrometry, nanoLC, whole mount immunocytochemistry, genome sequencing, deorphanizing receptors and functional gene knock downs are aspects that dramatically improved and changed peptide research. Some of the techniques mentioned in this review were of course applied before 1996, but they were not widespread. Although the focus of the review is on insects we incorporated the data of SIFamide in Crustaceans as well. SIFamide illustrates that crustaceans and insects might have more in common than was previously anticipated. Today, six isoforms of SIFamide are discovered in many crustaceans, several insects and a tick. The sequence of SIFamide is extremely conserved among these species. Deorphanizing its receptor in Drosophila, learned that both the ligand and receptor are impressively conserved, pointing at a crucial function. Immunohistochemistry and mass spectrometry data reveal that SIFamide is present in the crustacean brain and gut, but restricted to four neurons in the insect pars intercerebralis. The immunoreactive patterns in the brain refer to a neuromodulatory role in combining visual, tactile and olfactory input. Eventually, targeted cell ablation and RNAi revealed that SIFamide modulates sexual behaviour in fruit flies.
Collapse
Affiliation(s)
- Peter Verleyen
- K.U. Leuven, Zoological Institute, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
173
|
|
174
|
Veenstra JA. Allatostatin C and its paralog allatostatin double C: the arthropod somatostatins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:161-170. [PMID: 19063967 DOI: 10.1016/j.ibmb.2008.10.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 10/25/2008] [Accepted: 10/28/2008] [Indexed: 05/27/2023]
Abstract
Arthropods do not have one, but two genes encoding an allatostatin C-like peptide. The newly discovered paralog gene was called Ast-CC, and the peptide which it is predicted to make was called allatostatin double C (ASTCC). Genes for both allatostatin C (ASTC) and its paralog were found in the tick Ixodes scapularis as well as dipteran, lepidopteran, coleopteran, aphidoidean and phthirapteran insect species. In addition partial or complete cDNAs derived from Ast-CCs were found in a number of species, including Drosophila melanogaster, Bombyx mori and Rhodnius prolixus. The ASTCC precursors have a second conserved peptide sequence suggesting that they may produce two biologically active peptides. The predicted precursors encoded by the Ast-CCs have some unusual features, particularly in Drosophila, where they lack a signal peptide, and have instead a peptide anchor. These unusual structural features suggest that they are perhaps expressed by cells that are not specialized in neuropeptide synthesis and that in Drosophila ASTCC may be a juxtacrine. Data from the Fly Atlas project show that in Drosophila Ast-CC is little expressed. Nevertheless a P-element insertion in this gene is embryonic lethal, suggesting that it is an essential gene. Similarity between the precursors and receptors of ASTC/ASTCC and somatostatin suggests that ASTC/ASTCC and somatostatin have a common ancestor.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS CNIC UMR 5228, Talence Cedex, France.
| |
Collapse
|
175
|
Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:989-1005. [PMID: 19005656 DOI: 10.1007/s00359-008-0386-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/20/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
Bursicon was identified in 1965 as a peptide neurohormone that initiates the tanning of the insect cuticle immediately after the shedding of the old one during the final stages of the molting process. Its molecular identity as an approximately 30 kDa bioactive heterodimer consisting of two cystine knot proteins resisted elucidation for 43 years. The sequence of the two bursicon subunits is highly conserved among arthropods, and this conservation extends even to echinoderms. We review the efforts leading to bursicon's characterization, the identification of its leucine-rich repeat-containing, G protein-coupled receptor (LGR2), and the progress towards revealing its various functions. It is now clear that bursicon regulates different aspects of wing inflation in Drosophila melanogaster besides being involved at various points in the cuticle tanning process in different insects. We also describe the current knowledge of the expression of bursicon in the central nervous system of different insects in large homologous neurosecretory cells, and the changes in its expression during the development of Manduca sexta and D. melanogaster. Although much remains to be learned, the elucidation of its molecular identity and that of its receptor has provided the breakthrough needed for investigating the diverse actions of this critical insect neurohormone.
Collapse
|
176
|
Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 2008; 125:984-95. [DOI: 10.1016/j.mod.2008.09.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 11/30/2022]
|
177
|
Jagge CL, Pietrantonio PV. Diuretic hormone 44 receptor in Malpighian tubules of the mosquito Aedes aegypti: evidence for transcriptional regulation paralleling urination. INSECT MOLECULAR BIOLOGY 2008; 17:413-426. [PMID: 18651923 DOI: 10.1111/j.1365-2583.2008.00817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the mosquito Aedes aegypti (L.), the molecular endocrine mechanisms underlying rapid water elimination upon eclosion and blood feeding are not fully understood. The genome contains a single predicted diuretic hormone 44 (DH44) gene, but two DH44 receptor genes. The identity of the DH44 receptor(s) in the Malpighian tubule is unknown in any mosquito species. We show that VectorBase gene ID AAEL008292 encodes the DH44 receptor (GPRDIH1) most highly expressed in Malpighian tubules. Sequence analysis and transcript localization indicate that AaegGPRDIH1 is the co-orthologue of the Drosophila melanogaster DH44 receptor (CG12370-PA). Time-course quantitative PCR analysis of Malpighian tubule cDNA revealed AaegGPRDIH1 expression changes paralleling periods of excretion. This suggests that target tissue receptor biology is linked to the known periods of release of diuretic hormones from the nervous system pointing to a common up-stream regulatory mechanism.
Collapse
Affiliation(s)
- C L Jagge
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | |
Collapse
|
178
|
Stafflinger E, Hansen KK, Hauser F, Schneider M, Cazzamali G, Williamson M, Grimmelikhuijzen CJP. Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci U S A 2008; 105:3262-7. [PMID: 18316733 PMCID: PMC2265169 DOI: 10.1073/pnas.0710897105] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 11/18/2022] Open
Abstract
More than 20 years ago, an oxytocin/vasopressin-like peptide, CLITNCPRGamide, was isolated from the locust, Locusta migratoria [Proux JP, et al. (1987) Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem Biophys Res Commun 149:180-186]. However, no similar peptide could be identified in other insects, nor could its prohormone be cloned, or its physiological actions be established. Here, we report that the recently sequenced genome from the red flour beetle Tribolium castaneum contains a gene coding for an oxytocin/vasopressin-like peptide, identical to the locust peptide, which we named inotocin (for insect oxytocin/vasopressin-like peptide) and a gene coding for an inotocin G protein-coupled receptor (GPCR). We cloned the Tribolium inotocin preprohormone and the inotocin GPCR and expressed the GPCR in CHO cells. This GPCR is strongly activated by low concentrations of inotocin (EC(50), 5 x 10(-9) M), demonstrating that it is the inotocin receptor. Quantitative RT-PCR (qPCR) showed that in adult Tribolium, the receptor is mainly expressed in the head and much less in the hindgut and Malpighian tubules, suggesting that the inotocin/receptor couple does not play a role in water homeostasis. Surprisingly, qPCR also showed that the receptor is 30x more expressed in the first larval stages than in adult animals. The inotocin/receptor couple can also be found in the recently sequenced genome from the parasitic wasp Nasonia vitripennis but not in any other holometabolous insect with a completely sequenced genome (12 Drosophila species, the malaria mosquito Anopheles gambiae, the yellow fever mosquito Aedes aegypti, the silk worm Bombyx mori, and the honey bee Apis mellifera), suggesting that this neuropeptide system is confined to basal holometabolous insects. Furthermore, we identified an oxytocin/vasopressin-like peptide and receptor in the recently sequenced genome from the water flea Daphnia pulex (Crustacea). To our knowledge, this is the first report on the molecular cloning of an oxytocin/vasopressin-like receptor and its ligand from arthropods.
Collapse
Affiliation(s)
- Elisabeth Stafflinger
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Karina K. Hansen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Martina Schneider
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Giuseppe Cazzamali
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Michael Williamson
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
179
|
Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 2007; 18:113-22. [DOI: 10.1101/gr.6714008] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|