151
|
Liu Z, Gong R. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action. Am J Kidney Dis 2015; 66:846-56. [PMID: 26271146 DOI: 10.1053/j.ajkd.2015.06.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
Preventing acute kidney injury (AKI) in high-risk patients following medical interventions is a paramount challenge for clinical practice. Recent data from animal experiments and clinical trials indicate that remote ischemic preconditioning, represented by limb ischemic preconditioning, confers a protective action on the kidney. Ischemic preconditioning is effective in reducing the risk for AKI following cardiovascular interventions and the use of iodinated radiocontrast media. Nevertheless, the underlying mechanisms for this protective effect are elusive. A protective signal is conveyed from the remote site undergoing ischemic preconditioning, such as the limb, to target organs, such as the kidney, by multiple potential communication pathways, which may involve humoral, neuronal, and systemic mechanisms. Diverse transmitting pathways trigger a variety of signaling cascades, including the reperfusion injury salvage kinase and survivor activating factor enhancement pathways, all of which converge on glycogen synthase kinase 3β (GSK3β). Inhibition of GSK3β subsequent to ischemic preconditioning reinforces the Nrf2-mediated antioxidant defense, diminishes the nuclear factor-κB-dependent proinflammatory response, and exerts prosurvival effects ensuing from the desensitized mitochondria permeability transition. Thus, therapeutic targeting of GSK3β by ischemic preconditioning or by pharmacologic preconditioning with existing US Food and Drug Administration-approved drugs having GSK3β-inhibitory activities might represent a pragmatic and cost-effective adjuvant strategy for kidney protection and prophylaxis against AKI.
Collapse
Affiliation(s)
- Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI.
| |
Collapse
|
152
|
Kelly-Laubscher RF, King JC, Hacking D, Somers S, Hastie S, Stewart T, Imamdin A, Maarman G, Pedretti S, Lecour S. Cardiac preconditioning with sphingosine-1-phosphate requires activation of signal transducer and activator of transcription-3. Cardiovasc J Afr 2015; 25:118-23. [PMID: 25000441 PMCID: PMC4120131 DOI: 10.5830/cvja-2014-016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/31/2014] [Indexed: 02/05/2023] Open
Abstract
Aims Sphingosine-1-phosphate (S1P) is a cardioprotective agent. Signal transducer and activator of transcription 3 (STAT-3) is a key mediator of many cardioprotective agents. We aimed to explore whether STAT-3 is a key mediator in S1P-induced preconditioning. Methods Langendorff-perfused hearts from Wistar rats and wild-type or cardiomyocyte-specific STAT-3 knockout mice were pre-treated with S1P (10 nmol/l), with or without the STAT-3 pathway inhibitor AG490, before an ischaemia–reperfusion insult. Triphenyltetrazolium chloride and Evans blue staining were used for the determination of infarct size. Western blot analysis was carried out on the S1P pre-treated hearts for detection of cytosolic, nuclear and mitochondrial phosphorylated and total STAT-3 proteins. Results Pre-treatment with S1P decreased the infarct size in isolated rat (5 ± 3% vs control 26 ± 8%, p < 0.01) and wild-type mouse hearts (13 ± 1% vs control 33 ± 3%, p < 0.05). This protective effect was abolished in the rat hearts pre-treated with AG490 (30 ± 10%, p = ns vs control) and in the hearts from STAT-3 knockout mice (35 ± 4% vs control 30 ± 3%, p = ns). Levels of phosphorylated STAT-3 were significantly increased in both the nuclear (p < 0.05 vs control) and mitochondrial (p < 0.05 vs control) fractions in the S1P pre-treated hearts, but remained unchanged in the cytosolic fraction (p = ns vs control). Conclusion These novel results demonstrate that pharmacological preconditioning with S1P in the isolated heart is mediated by activation of mitochondrial and nuclear STAT-3, therefore suggesting that S1P may be a novel therapeutic target to modulate mitochondrial and nuclear function in cardiovascular disease in order to protect the heart against ischaemia–reperfusion.
Collapse
Affiliation(s)
- Roisin F Kelly-Laubscher
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Jonathan C King
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Damian Hacking
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sarin Somers
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Samantha Hastie
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Tessa Stewart
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Aqeela Imamdin
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Gerald Maarman
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Chris Barnard Building, Medical School Campus, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
153
|
Penna C, Angotti C, Pagliaro P. Protein S-nitrosylation in preconditioning and postconditioning. Exp Biol Med (Maywood) 2015; 239:647-62. [PMID: 24668550 DOI: 10.1177/1535370214522935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.
Collapse
|
154
|
Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G. Across-Species Transfer of Protection by Remote Ischemic Preconditioning With Species-Specific Myocardial Signal Transduction by Reperfusion Injury Salvage Kinase and Survival Activating Factor Enhancement Pathways. Circ Res 2015; 117:279-88. [PMID: 26058828 DOI: 10.1161/circresaha.117.306878] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Reduction of myocardial infarct size by remote ischemic preconditioning (RIPC), that is, cycles of ischemia/reperfusion in an organ remote from the heart before sustained myocardial ischemia/reperfusion, was confirmed in all species so far, including humans. OBJECTIVE To identify myocardial signal transduction of cardioprotection by RIPC. METHODS AND RESULTS Anesthetized pigs were subjected to RIPC (4×5/5 minutes hindlimb ischemia/reperfusion) or placebo (PLA) before 60/180 minutes coronary occlusion/reperfusion. Phosphorylation of protein kinase B, extracellular signal-regulated kinase 1/2 (reperfusion injury salvage kinase [RISK] pathway), and signal transducer and activator of transcription 3 (survival activating factor enhancement [SAFE] pathway) in the area at risk was determined by Western blot. Wortmannin/U0126 or AG490 was used for pharmacological RISK or SAFE blockade, respectively. Plasma sampled after RIPC or PLA, respectively, was transferred to isolated bioassay rat hearts subjected to 30/120 minutes global ischemia/reperfusion. RIPC reduced infarct size in pigs to 16±11% versus 43±11% in PLA (% area at risk; mean±SD; P<0.05). RIPC increased the phosphorylation of signal transducer and activator of transcription 3 at early reperfusion, and AG490 abolished the protection, whereas RISK blockade did not. Signal transducer and activator of transcription 5 phosphorylation was decreased at early reperfusion in both RIPC and PLA. In isolated rat hearts, pig plasma taken after RIPC reduced infarct size (25±5% of ventricular mass versus 38±5% in PLA; P<0.05) and activated both RISK and SAFE. RISK or SAFE blockade abrogated this protection. CONCLUSIONS Cardioprotection by RIPC in pigs causally involves activation of signal transducer and activator of transcription 3 but not of RISK. Protection can be transferred with plasma from pigs to isolated rat hearts where activation of both RISK and SAFE is causally involved. The myocardial signal transduction of RIPC is the same as that of ischemic postconditioning.
Collapse
Affiliation(s)
- Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Sabine Gent
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Georgios Amanakis
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Christiane Schulte
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
155
|
Pipicz M, Varga ZV, Kupai K, Gáspár R, Kocsis GF, Csonka C, Csont T. Rapid ventricular pacing-induced postconditioning attenuates reperfusion injury: effects on peroxynitrite, RISK and SAFE pathways. Br J Pharmacol 2015; 172:3472-83. [PMID: 25827015 DOI: 10.1111/bph.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Rapid ventricular pacing (RVP) applied before an index ischaemia has anti-ischaemic effects. Here, we investigated whether RVP applied after index ischaemia attenuates reperfusion injury and whether peroxynitrite, reperfusion injury salvage kinase (RISK) and survival activating factor enhancement (SAFE) pathways as well as haem oxygenase 1 (HO1) are involved in the mechanism of RVP-induced postconditioning. EXPERIMENTAL APPROACH Langendorff perfused rat hearts were subjected to 30 min regional ischaemia and 120 min reperfusion with or without ischaemic postconditioning (6 × 10/10 s reperfusion/ischaemia; IPost) or RVP (6 × 10/10 s non-pacing/rapid pacing at 600 bpm) applied at the onset of reperfusion. KEY RESULTS Meta-analysis of our previous studies revealed an association between longer reperfusion-induced ventricular tachycardia/fibrillation with decreased infarct size. In the present experiments, we tested whether RVP is cardioprotective and found that both IPost and RVP significantly decreased infarct size; however, only RVP attenuated the incidence of reperfusion-induced ventricular tachycardia. Both postconditioning methods increased the formation of cardiac 3-nitrotyrosine and superoxide, and non-significantly enhanced Akt phosphorylation at the beginning of reperfusion without affecting ERK1/2 and STAT3, while IPost alone induced HO1. Application of brief ischaemia/reperfusion cycles or RVP without preceding index ischaemia also facilitated peroxynitrite formation; nevertheless, only brief RVP increased STAT3 phosphorylation. CONCLUSIONS AND IMPLICATIONS Short periods of RVP at the onset of reperfusion are cardioprotective and increase peroxynitrite formation similarly to IPost and thus may serve as an alternative postconditioning method. However, downstream mechanisms of the protection elicited by IPost and RVP seem to be partially different. LINKED ARTICLES This article is part of a themed section on Conditioning the Heart - Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-8.
Collapse
Affiliation(s)
- Márton Pipicz
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Krisztina Kupai
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | - Csaba Csonka
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
156
|
Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia 2015; 70:467-82. [PMID: 25764404 PMCID: PMC4402000 DOI: 10.1111/anae.12975] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Preconditioning has been shown to reduce myocardial damage caused by ischaemia–reperfusion injury peri-operatively. Volatile anaesthetic agents have the potential to provide myocardial protection by anaesthetic preconditioning and, in addition, they also mediate renal and cerebral protection. A number of proof-of-concept trials have confirmed that the experimental evidence can be translated into clinical practice with regard to postoperative markers of myocardial injury; however, this effect has not been ubiquitous. The clinical trials published to date have also been too small to investigate clinical outcome and mortality. Data from recent meta-analyses in cardiac anaesthesia are also not conclusive regarding intra-operative volatile anaesthesia. These inconclusive clinical results have led to great variability currently in the type of anaesthetic agent used during cardiac surgery. This review summarises experimentally proposed mechanisms of anaesthetic preconditioning, and assesses randomised controlled clinical trials in cardiac anaesthesia that have been aimed at translating experimental results into the clinical setting.
Collapse
Affiliation(s)
- G Kunst
- Department of Anaesthetics, King's College Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
157
|
Liang Y, Li YP, He F, Liu XQ, Zhang JY. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease. ACTA ACUST UNITED AC 2015; 48:568-76. [PMID: 25923462 PMCID: PMC4470317 DOI: 10.1590/1414-431x20144452] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 02/14/2023]
Abstract
Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of
this study was to assess the beneficial effects of long-term regular RIPre on human
arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery
were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group
(n=20). Twenty patients scheduled for mastectomy were enrolled as a control group.
RIPre was achieved by occluding arterial blood flow 5 min with a mercury
sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4
times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients,
arterial fragments discarded during surgery were collected to evaluate endothelial
function by flow-mediated dilation (FMD), CD34+ monocyte count, and
endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3
and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD
group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4
vs 4.9±4.2%, P<0.05) and significantly reduced troponin after
CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and
increased CD34+ endothelial progenitor cell counts found in arteries.
Long-term, regular RIPre improved endothelial function in patients with CHD, possibly
due to STAT-3 activation, and this may have led to an increase in endothelial
progenitor cells.
Collapse
Affiliation(s)
- Y Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y P Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Q Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Y Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
158
|
Chang ST, Chung CM, Chu CM, Yang TY, Pan KL, Hsu JT, Hsiao JF. Platelet Glycoprotein IIb/IIIa Inhibitor Tirofiban Ameliorates Cardiac Reperfusion Injury. Int Heart J 2015; 56:335-40. [PMID: 25912900 DOI: 10.1536/ihj.14-322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are many published articles on the effects of the antithrombolytic function of platelet glycoprotein IIb/IIIa inhibitors (GP IIb/IIIa inhibitors) in myocardial infarction. However, few studies have explored the effects and optimal concentration of tirofibans in diminishing the extent of myocardial reperfusion injury (RI).Rats received 120 minutes of coronary ligation and 180 minutes of reperfusion. The rats were then divided into 7 groups based on the concentration of tirofiban administered intravenously 30 minutes prior to coronary reperfusion to the end of reperfusion. The ratio of myocardial necrotic area to area at risk (AAR), and myocardial malondialdehyde (MDA) and plasma myeloperoxidase (MPO) activities were measured. The apoptotic index (AI) was the percentage of myocytes positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) out of all myocytes stained by 4', 6-diamidino-2-phenylindole (DAPI).The ratio of myocardial necrotic area to AAR significantly decreased in all tirofiban subgroups. The MDA activity for tirofiban concentrations of 2 and 5 ug/kg/minute showed a slight reduction. MPO activity was significantly decreased at a tirofiban concentration of 2 ug/kg/minute. The AI was significantly decreased at a tirofiban concentration of ≥ 0.4 ug/kg/minute.The results indicate that a tirofiban can significantly ameliorate the cardiac RI and myocyte apoptosis in rats.
Collapse
Affiliation(s)
- Shih-Tai Chang
- 1. Division of Cardiology, Chiayi Chang Gung Memorial Hospital, Chiayi School, Chang Gung Institute of Technology; 2. School of Traditional Chinese Medicine, College of Medicine, Chang Gung University
| | | | | | | | | | | | | |
Collapse
|
159
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
160
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
161
|
Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol 2015; 172:1913-32. [PMID: 25205071 PMCID: PMC4386972 DOI: 10.1111/bph.12903] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/22/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Ischaemic pre- and postconditioning are potent cardioprotective interventions that spare ischaemic myocardium and decrease infarct size after periods of myocardial ischaemia/reperfusion. They are dependent on complex signalling pathways involving ligands released from ischaemic myocardium, G-protein-linked receptors, membrane growth factor receptors, phospholipids, signalling kinases, NO, PKC and PKG, mitochondrial ATP-sensitive potassium channels, reactive oxygen species, TNF-α and sphingosine-1-phosphate. The final effector is probably the mitochondrial permeability transition pore and the signalling produces protection by preventing pore formation. Many investigators have worked to produce a roadmap of this signalling with the hope that it would reveal where one could intervene to therapeutically protect patients with acute myocardial infarction whose hearts are being reperfused. However, attempts to date to show efficacy of such an intervention in large clinical trials have been unsuccessful. Reasons for this inability to translate successes in the experimental laboratory to the clinical arena are evaluated in this review. It is suggested that all patients with acute coronary syndromes currently presenting to the hospital and being treated with platelet P2Y12 receptor antagonists, the current standard of care, are indeed already benefiting from protection from the conditioning pathways outlined earlier. If that proves to be the case, then future attempts to further decrease infarction will have to rely on interventions which protect by a different mechanism.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
- Department of Medicine, University of South Alabama College of MedicineMobile, AL, USA
| | - James M Downey
- Department of Physiology, University of South Alabama College of MedicineMobile, AL, USA
| |
Collapse
|
162
|
Torina AG, Reichert K, Lima F, de Souza Vilarinho KA, de Oliveira PPM, do Carmo HRP, de Carvalho DD, Saad MJA, Sposito AC, Petrucci O. Diacerein improves left ventricular remodeling and cardiac function by reducing the inflammatory response after myocardial infarction. PLoS One 2015; 10:e0121842. [PMID: 25816098 PMCID: PMC4376692 DOI: 10.1371/journal.pone.0121842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The inflammatory response has been implicated in the pathogenesis of left ventricular (LV) remodeling after myocardial infarction (MI). An anthraquinone compound with anti-inflammatory properties, diacerein inhibits the synthesis and activity of pro-inflammatory cytokines, such as tumor necrosis factor and interleukins 1 and 6. The purpose of this study was to investigate the effects of diacerein on ventricular remodeling in vivo. METHODS AND RESULTS Ligation of the left anterior descending artery was used to induce MI in an experimental rat model. Rats were divided into two groups: a control group that received saline solution (n = 16) and a group that received diacerein (80 mg/kg) daily (n = 10). After 4 weeks, the LV volume, cellular signaling, caspase 3 activity, and nuclear factor kappa B (NF-κB) transcription were compared between the two groups. After 4 weeks, end-diastolic and end-systolic LV volumes were reduced in the treatment group compared to the control group (p < .01 and p < .01, respectively). Compared to control rats, diacerein-treated rats exhibited less fibrosis in the LV (14.65%± 7.27% vs. 22.57%± 8.94%; p < .01), lower levels of caspase-3 activity, and lower levels of NF-κB p65 transcription. CONCLUSIONS Treatment with diacerein once a day for 4 weeks after MI improved ventricular remodeling by promoting lower end-systolic and end-diastolic LV volumes. Diacerein also reduced fibrosis in the LV. These effects might be associated with partial blockage of the NF-κB pathway.
Collapse
Affiliation(s)
- Anali Galluce Torina
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Karla Reichert
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Fany Lima
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Pedro Paulo Martins de Oliveira
- Department of Surgery, Discipline of Cardiac Surgery, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Helison Rafael Pereira do Carmo
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Daniela Diógenes de Carvalho
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Andrei Carvalho Sposito
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Orlando Petrucci
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
- Department of Surgery, Discipline of Cardiac Surgery, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
163
|
Wang M, Sun GB, Zhang JY, Luo Y, Yu YL, Xu XD, Meng XB, Zhang MD, Lin WB, Sun XB. Elatoside C protects the heart from ischaemia/reperfusion injury through the modulation of oxidative stress and intracellular Ca²⁺ homeostasis. Int J Cardiol 2015; 185:167-76. [PMID: 25796004 DOI: 10.1016/j.ijcard.2015.03.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/27/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND We have previously shown that Elatoside C reduces cardiomyocyte apoptosis during ischaemia/reperfusion (I/R). Here, we investigated whether Elatoside C improves heart function in isolated rat hearts subjected to I/R and elucidated the potential mechanisms involved in Elatoside C-induced protection. METHODS AND RESULTS Isolated rat hearts were subjected to global ischaemia followed by reperfusion in the absence or presence of Elatoside C. We found that Elatoside C significantly attenuated cardiac dysfunction and depressed oxidative stress induced by I/R. Consistently, Elatoside C prevented I/R-induced mitochondrial dysfunction, which was evident by the inhibition of mitochondrial ROS production, mitochondrial permeability transition pore (mPTP) opening, cytochrome c release from the mitochondria and Bax translocation. Moreover, Elatoside C improved abnormal calcium handling during I/R, including increasing sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity, alleviating [Ca(2+)]ER depletion, and reducing the expression levels of ER stress protein markers. All of these protective effects of Elatoside C were partially abolished by the PI3K/Akt inhibitor LY294002, ERK1/2 inhibitor PD98059, and JAK2/STAT3 inhibitor AG490. Further assessment in isolated cardiomyocytes showed that Elatoside C maintained the Ca(2+) transients and cell shortening against I/R. CONCLUSIONS Elatoside C protects against cardiac injury during I/R by attenuating oxidative stress and [Ca(2+)]i overload through the activation of both the reperfusion injury salvage kinase (RISK) pathway (including PI3K/Akt and ERK1/2) and the survivor activating factor enhancement (SAFE) pathway (including JAK2/STAT3) and, subsequently, inhibiting the opening of mPTPs.
Collapse
Affiliation(s)
- Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Jing-Yi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Ying-Li Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xu-Dong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xiang-Bao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Miao-di Zhang
- Harbin University of Commerce, Harbin 150076, Heilongjiang, PR China
| | - Wen-Bin Lin
- Harbin University of Commerce, Harbin 150076, Heilongjiang, PR China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
164
|
Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. Br J Anaesth 2015; 114:204-16. [DOI: 10.1093/bja/aeu302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
165
|
Ong SB, Dongworth RK, Cabrera-Fuentes HA, Hausenloy DJ. Role of the MPTP in conditioning the heart - translatability and mechanism. Br J Pharmacol 2015; 172:2074-84. [PMID: 25393318 PMCID: PMC4386982 DOI: 10.1111/bph.13013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 01/06/2023] Open
Abstract
Mitochondria have long been known to be the gatekeepers of cell fate. This is particularly so in the response to acute ischaemia‐reperfusion injury (IRI). Following an acute episode of sustained myocardial ischaemia, the opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion, mediates cell death. Preventing MPTP opening at the onset of reperfusion using either pharmacological inhibitors [such as cyclosporin A (CsA) ] or genetic ablation has been reported to reduce myocardial infarct (MI) size in animal models of acute IRI. Interestingly, the endogenous cardioprotective intervention of ischaemic conditioning, in which the heart is protected against MI by applying cycles of brief ischaemia and reperfusion to either the heart itself or a remote organ or tissue, appears to be mediated through the inhibition of MPTP opening at reperfusion. Small proof‐of‐concept clinical studies have demonstrated the translatability of this therapeutic approach to target MPTP opening using CsA in clinical settings of acute myocardial IRI. However, given that CsA is a not a specific MPTP inhibitor, more novel and specific inhibitors of the MPTP need to be discovered – the molecular identification of the MPTP should facilitate this. In this paper, we review the role of the MPTP as a target for cardioprotection, the potential mechanisms underlying MPTP inhibition in the setting of ischaemic conditioning, and the translatability of MPTP inhibition as a therapeutic approach in the clinical setting. Linked Articles This article is part of a themed section on Conditioning the Heart – Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue‐8
Collapse
Affiliation(s)
- S-B Ong
- The Hatter Cardiovascular Institute, University College London, London, UK
| | | | | | | |
Collapse
|
166
|
Ebner B, Lange SA, Hollenbach D, Steinbronn N, Ebner A, Fischaleck C, Braun-Dullaeus R, Weinbrenner C, Strasser RH. In Situ Postconditioning With Neuregulin-1β Is Mediated by a PI3K/Akt-Dependent Pathway. Can J Cardiol 2015; 31:76-83. [DOI: 10.1016/j.cjca.2014.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/12/2014] [Accepted: 10/26/2014] [Indexed: 11/27/2022] Open
|
167
|
Schmidt MR, Redington A, Bøtker HE. Remote conditioning the heart overview: translatability and mechanism. Br J Pharmacol 2014; 172:1947-60. [PMID: 25219984 DOI: 10.1111/bph.12933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Conditioning the heart to resist predictable and unpredictable ischaemia-reperfusion (IR) injury is one of the fastest growing areas of bench to bedside research within cardiology. Basic science has provided important insights into signalling pathways and protective mechanisms in the heart, and a growing number of clinical studies have, with important exceptions, shown the potential applicability and beneficial effect of various mechanical conditioning strategies achieved by intermittent short-lasting-induced ischaemia of the heart itself or a remote tissue. Remote ischaemic conditioning (RIC) in particular has been utilized in a number of clinical settings with promising results. However, while many novel 'downstream' mechanisms of RIC have been discovered, translation to pharmacological conditioning has not yet been convincingly demonstrated in clinical studies. One explanation for this apparent failure may be that most pharmacological approaches mimic a single instrument in a complex orchestra activated by mechanical conditioning. Recent studies, however, provide important insights into upstream events occurring in RIC, which may allow for development of drugs activating more complex systems of biological organ protection. With this review, we will systematically examine the first generation of pharmacological cardioprotection studies and then provide a summary of the recent discoveries in basic science that could illuminate the path towards more advanced approaches in the next generation of pharmacological agents that may work by reproducing the diverse effects of RIC, thereby providing protection against IR injury.
Collapse
|
168
|
Barsukevich V, Basalay M, Sanchez J, Mrochek A, Whittle J, Ackland GL, Gourine AV, Gourine A. Distinct cardioprotective mechanisms of immediate, early and delayed ischaemic postconditioning. Basic Res Cardiol 2014; 110:452. [PMID: 25449894 PMCID: PMC4250560 DOI: 10.1007/s00395-014-0452-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 12/18/2022]
Abstract
Cardioprotection against ischaemia/reperfusion injury in mice can be achieved by delayed ischaemic postconditioning (IPost) applied as late as 30 min after the onset of reperfusion. We determined the efficacy of delayed IPost in a rat model of myocardial infarction (MI) and investigated potential underlying mechanisms of this phenomenon. Rats were subjected to 20, 30 or 45 min of coronary artery occlusion followed by 120 min of reperfusion (I/R). Immediate and early IPost included six cycles of I/R (10/10 s) applied 10 s or 10 min after reperfusion onset. In the second series of experiments, the rats were subjected to 30 min of coronary occlusion followed by IPost applied 10 s, 10, 30, 45 or 60 min after the onset of reperfusion. Immediate and early IPost (applied 10 s or 10 min of reperfusion) established cardioprotection only when applied after a period of myocardial ischaemia lasting 30 min. Delayed IPost applied after 30 or 45 min of reperfusion reduced infarct sizes by 36 and 41 %, respectively (both P < 0.01). IPost applied 60 min after reperfusion onset was ineffective. Inhibition of RISK pathway (administration of ERK1/2 inhibitor PD-98059 or PI3K inhibitor LY-294002) abolished cardioprotection established by immediate IPost but had no effect on cardioprotection conferred by early IPost. Blockade of SAFE pathway using JAK/STAT inhibitor AG490 had no effect on the immediate or early IPost cardioprotection. Blockade of mitochondrial KATP (mitoKATP) channels (with 5-Hydroxydecanoate) abolished cardioprotection achieved by immediate and early IPost, but had no effect on cardioprotection when IPost was applied 30 or 45 min into the reperfusion period. Immediate IPost increased phosphorylation of PI3K-AKT and ERK1/2. Early or delayed IPost had no effect on phosphorylation of PI3K-AKT, ERK1/2 or STAT3. These data show that in the rat model, delayed IPost confers significant cardioprotection even if applied 45 min after onset of reperfusion. Cardioprotection induced by immediate and early postconditioning involves recruitment of RISK pathway and/or mitoKATP channels, while delayed postconditioning appears to rely on a different mechanism.
Collapse
|
169
|
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2014; 78:23-34. [PMID: 25446182 DOI: 10.1016/j.yjmcc.2014.11.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Sang-Bing Ong
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Parisa Samangouei
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Siavash Beikoghli Kalkhoran
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
170
|
Cardio-protective signalling by glyceryl trinitrate and cariporide in a model of donor heart preservation. Heart Lung Circ 2014; 24:306-18. [PMID: 25459486 DOI: 10.1016/j.hlc.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Storage of donor hearts in cardioplegic solutions supplemented with agents that mimic the ischaemic preconditioning response enhanced their post-reperfusion function. The present study examines the minimisation of cell death and activation of pro-survival signalling directed towards maintenance of mitochondrial homeostasis in hearts arrested and stored in two such agents, glyceryl-trinitrate, a nitric oxide donor and cariporide, (a sodium-hydrogen exchange inhibitor). METHODS After baseline functional measurement, isolated working rat hearts were arrested and stored for 6h at 4°C in either Celsior(®), Celsior(®) containing 0.1mg/ml glyceryl-trinitrate, 10μM cariporide or both agents. After reperfusion, function was remeasured. Hearts were then processed for immunoblotting or histology. RESULTS Necrotic and apoptotic markers present in the Celsior(®) group post-reperfusion were abolished by glyceryl-trinitrate, cariporide or both. Increased phosphorylation of ERK and Bcl2, after reperfusion in groups stored in glyceryl-trinitrate, cariporide or both along with increased phospho-STAT3 levels in the glyceryl-trinitrate/cariporide group correlated with functional recovery. Inhibition of STAT3 phosphorylation blocked recovery. No phospho-Akt increase was seen in any treatment. CONCLUSIONS Activation of signalling pathways that favour mitophagy activation (ERK and Bcl2 phosphorylation) and maintenance of mitochondrial transition pore closure after reperfusion (STAT3 and ERK phosphorylation) were crucial for functional recovery of the donor heart.
Collapse
|
171
|
Nduhirabandi F, Huisamen B, Strijdom H, Blackhurst D, Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res 2014; 57:317-32. [PMID: 25187154 DOI: 10.1111/jpi.12171] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022]
Abstract
Chronic melatonin treatment has been shown to prevent the harmful effects of diet-induced obesity and reduce myocardial susceptibility to ischaemia-reperfusion injury (IRI). However, the exact mechanism whereby it exerts its beneficial actions on the heart in obesity/insulin resistance remains unknown. Herein, we investigated the effects of relatively short-term melatonin treatment on the heart in a rat model of diet-induced obesity. Control and diet-induced obese Wistar rats (fed a high calorie diet for 20 wk) were each subdivided into three groups receiving drinking water with or without melatonin (4 mg/kg/day) for the last 6 or 3 wk of experimentation. A number of isolated hearts were perfused in the working mode, subjected to regional or global ischaemia-reperfusion; others were nonperfused. Metabolic parameters, myocardial infarct sizes (IFS), baseline and postischaemic activation of PKB/Akt, ERK42/44, GSK-3β and STAT-3 were determined. Diet-induced obesity caused increases in body weight gain, visceral adiposity, fasting blood glucose, serum insulin and triglyceride (TG) levels with a concomitant cardiac hypertrophy, large postischaemic myocardial IFSs and a reduced cardiac output. Melatonin treatment (3 and 6 wk) decreased serum insulin levels and the HOMA index (P < 0.05) with no effect on weight gain (after 3 wk), visceral adiposity, serum TG and glucose levels. It increased serum adiponectin levels, reduced myocardial IFSs in both groups and activated baseline myocardial STAT-3 and PKB/Akt, ERK42/44 and GSK-3β during reperfusion. Overall, short-term melatonin administration to obese/insulin resistant rats reduced insulin resistance and protected the heart against ex vivo myocardial IRI independently of body weight change and visceral adiposity.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
172
|
Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN. Hexokinases and cardioprotection. J Mol Cell Cardiol 2014; 78:107-15. [PMID: 25264175 DOI: 10.1016/j.yjmcc.2014.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022]
Abstract
As mediators of the first enzymatic step in glucose metabolism, hexokinases (HKs) orchestrate a variety of catabolic and anabolic uses of glucose, regulate antioxidant power by generating NADPH for glutathione reduction, and modulate cell death processes by directly interacting with the voltage-dependent anion channel (VDAC), a regulatory component of the mitochondrial permeability transition pore (mPTP). Here we summarize the current state-of-knowledge about HKs and their role in protecting the heart from ischemia/reperfusion (I/R) injury, reviewing: 1) the properties of different HK isoforms and how their function is regulated by their subcellular localization; 2) how HKs modulate glucose metabolism and energy production during I/R; 3) the molecular mechanisms by which HKs influence mPTP opening and cellular injury during I/R; and 4) how different metabolic and HK profiles correlate with susceptibility to I/R injury and cardioprotective efficacy in cancer cells, neonatal hearts, and normal, hypertrophied and failing adult hearts, and how these difference may guide novel therapeutic strategies to limit I/R injury in the heart. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Bernard Ribalet
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott John
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peipei Ping
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
173
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
174
|
Salminen PR, Dahle GO, Moen CA, Jonassen AK, Haaverstad R, Matre K, Grong K. Intracoronary insulin administered at reperfusion in a porcine model of acute coronary syndrome. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2014; 4:230-40. [PMID: 25147200 DOI: 10.1177/2048872614547689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Experimental studies have demonstrated that insulin elicits cardioprotection in coronary occlusion-reperfusion models. We studied the effects of intracoronary insulin on regional cardiac function in a porcine model with reperfusion after a critical coronary artery stenosis. METHODS In 20 anaesthetized pigs with an extracorporeal shunt from the brachiocephalic to the left anterior descending coronary artery, a fixed stenosis was applied, obtaining 50% reduction of shunt flow for 60 min. Intracoronary insulin 1 1U [DOSAGE ERROR CORRECTED] or 0.9% saline was infused for 15 min, starting 5 min prior to initiation of 180 min of reperfusion. Microsphere injections confirmed ischaemia and reperfusion. Epicardial echocardiographic multilayer radial tissue Doppler strain and strain rate and one-layer speckle-tracking strain evaluated myocardial function. Apoptosis was evaluated by cleaved caspase-3 activity. Area at risk and infarct size were determined with Evans Blue and triphenyltetrazolium chloride staining. RESULTS In both groups, the area at risk constituted approximately 26% of the left ventricular mass. Minor areas of infarction were predominantly seen subendocardially, where tissue blood flow rate was severely reduced during stenosis. After 180 min of reperfusion, recovery of speckle-tracking circumferential strain averaged 57.5 ± 11.4% of baseline values in insulin treated animals compared to 22.3 ± 8.7% in controls (p = 0.025). Multilayer radial strain and strain rate did not differ between groups. Cleaved caspase-3 activity was most prominent in the subepicardial layer in the saline-treated group. CONCLUSIONS Intracoronary insulin at the onset of reperfusion alleviated regional myocardial dysfunction in acute ischaemia-reperfusion and was associated with a reduction of apoptosis.
Collapse
Affiliation(s)
- Pirjo-Riitta Salminen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Geir Olav Dahle
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Christian Arvei Moen
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Anne Kristine Jonassen
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Rune Haaverstad
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Knut Matre
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Ketil Grong
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway
| |
Collapse
|
175
|
Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 2014; 45:898-905. [PMID: 22948409 PMCID: PMC3854176 DOI: 10.1590/s0100-879x2012007500090] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 05/11/2012] [Indexed: 01/22/2023] Open
Abstract
The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt(max)) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Heng-Fei Luan
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
176
|
Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection: Role of STAT3 as part of the SAFE pathway. JAKSTAT 2014; 1:92-100. [PMID: 24058758 PMCID: PMC3670301 DOI: 10.4161/jkst.19754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High density lipoprotein (HDL) cholesterol has beneficial effects beyond its atheroprotective function in reverse cholesterol transport, including cardioprotection against ischemia reperfusion (IR) injuries. Two major constituents of HDL, namely the structural protein apolipoprotein AI (apoAI) and the sphingolipid sphingosine-1-phosphate (S1P) appear to contribute to this cardioprotective effect via the activation of intrinsic prosurvival signaling pathways that still remain to be clarified.
Recently, a powerful prosurvival signaling pathway, termed the survivor activating factor enhancement (SAFE) pathway, which involves the activation of signal transducer and activator of transcription 3 (STAT3) and tumor necrosis factor α (TNF), has been shown to protect against ischemia-reperfusion injuries.
The present review summarizes the evidence for the roles of HDL and S1P in cardioprotection and discusses the signaling pathways that have been implicated. It thus provides support for our contention that S1P should be considered in potential formulations of reconstituted HDL (reHDL) that may be tested for cardioprotection against coronary artery disease via the activation of the SAFE pathway.
Collapse
Affiliation(s)
- Miguel A Frias
- Department of Internal Medicine; Clinical Diabetes Unit; Medical Faculty; University of Geneva; Geneva, Switzerland
| | | | | | | |
Collapse
|
177
|
Shravah J, Wang B, Pavlovic M, Kumar U, Chen DD, Luo H, Ansley DM. Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT. JAKSTAT 2014; 3:e29554. [PMID: 25105067 PMCID: PMC4124059 DOI: 10.4161/jkst.29554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 01/01/2023] Open
Abstract
We previously demonstrated that propofol, an intravenous anesthetic with anti-oxidative properties, activated the phosphoinositide 3-kinase (PI3K)/AKT pathway to increase the expression of B cell lymphoma (Bcl)-2 and, therefore the anti-apoptotic potential on cardiomyocytes. Here, we wanted to determine if propofol can also activate the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway, another branch of cardioprotective signaling. The cellular response of nuclear factor kappa B (NFκB) and STAT3 was also evaluated. Cardiac H9c2 cells were treated by propofol alone or in combination with pretreatment by inhibitors for JAK2/STAT3 or PI3K/AKT pathway. STAT3 and AKT phosphorylation, and STAT3 translocation were measured by western blotting and immunofluorescence staining, respectively. Propofol treatment significantly increased STAT3 phosphorylation at both tyrosine 705 and serine 727 residues. Sustained early phosphorylation of STAT3 was observed with 25~75 μM propofol at 10 and 30 min. Nuclear translocation of STAT3 was seen at 4 h after treatment with 50 μM propofol. In cultured H9c2 cells, we further demonstrated that propofol-induced STAT3 phosphorylation was reduced by pretreatment with PI3K/AKT pathway inhibitors wortmannin or API-2. Conversely, pretreatment with JAK2/STAT3 pathway inhibitor AG490 or stattic inhibited propofol-induced AKT phosphorylation. In addition, propofol induced NFκB p65 subunit perinuclear translocation. Inhibition or knockdown of STAT3 was associated with increased levels of the NFκB p65 subunit. Our results suggest that propofol induces an adaptive response by dual activation and crosstalk of cytoprotective PI3K/AKT and JAK2/STAT3 pathways. Rationale to apply propofol clinically as a preemptive cardioprotectant during cardiac surgery is supported by our findings.
Collapse
Affiliation(s)
- Jayant Shravah
- Department of Anesthesiology, Pharmacology and Therapeutics; The University of British Columbia; Vancouver, BC Canada
| | - Baohua Wang
- Department of Anesthesiology, Pharmacology and Therapeutics; The University of British Columbia; Vancouver, BC Canada
| | - Marijana Pavlovic
- Department of Anesthesiology, Pharmacology and Therapeutics; The University of British Columbia; Vancouver, BC Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver, BC Canada
| | - David Dy Chen
- Department of Chemistry; The University of British Columbia; Vancouver, BC Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation/Department of Pathology and Laboratory Medicine; The University of British Columbia; Vancouver, BC Canada
| | - David M Ansley
- Department of Anesthesiology, Pharmacology and Therapeutics; The University of British Columbia; Vancouver, BC Canada
| |
Collapse
|
178
|
Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014; 383:1933-43. [PMID: 24831770 PMCID: PMC4330973 DOI: 10.1016/s0140-6736(14)60107-0] [Citation(s) in RCA: 553] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remodelling is a response of the myocardium and vasculature to a range of potentially noxious haemodynamic, metabolic, and inflammatory stimuli. Remodelling is initially functional, compensatory, and adaptive but, when sustained, progresses to structural changes that become self-perpetuating and pathogenic. Remodelling involves responses not only of the cardiomyocytes, endothelium, and vascular smooth muscle cells, but also of interstitial cells and matrix. In this Review we characterise the remodelling processes in atherosclerosis, vascular and myocardial ischaemia-reperfusion injury, and heart failure, and we draw attention to potential avenues for innovative therapeutic approaches, including conditioning and metabolic strategies.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Universitätsklinikum Essen, Essen, Germany
| | - Peter Libby
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, and Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Derek Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Gary Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Lionel Opie
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
179
|
Longnus SL, Mathys V, Dornbierer M, Dick F, Carrel TP, Tevaearai HT. Heart transplantation with donation after circulatory determination of death. Nat Rev Cardiol 2014; 11:354-63. [DOI: 10.1038/nrcardio.2014.45] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
180
|
The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol Ther 2014; 142:33-40. [DOI: 10.1016/j.pharmthera.2013.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
|
181
|
Bromage DI, Davidson SM, Yellon DM. Stromal derived factor 1α: a chemokine that delivers a two-pronged defence of the myocardium. Pharmacol Ther 2014; 143:305-15. [PMID: 24704323 PMCID: PMC4127789 DOI: 10.1016/j.pharmthera.2014.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/03/2023]
Abstract
Alleviating myocardial injury associated with ST elevation myocardial infarction is central to improving the global burden of coronary heart disease. The chemokine stromal cell-derived factor 1α (SDF-1α) has dual potential benefit in this regard. Firstly, SDF-1α is up-regulated in experimental and clinical studies of acute myocardial infarction (AMI) and regulates stem cell migration to sites of injury. SDF-1α delivery to the myocardium after AMI is associated with improved stem cell homing, angiogenesis, and left ventricular function in animal models, and improvements in heart failure and quality of life in humans. Secondly, SDF-1α may have a role in remote ischaemic conditioning (RIC), the phenomenon whereby non-lethal ischaemia–reperfusion applied to an organ or tissue remote from the heart protects the myocardium from lethal ischaemia–reperfusion injury (IRI). SDF-1α is increased in the serum of rats subjected to RIC and protects against myocardial IRI in ex vivo studies. Despite these potential pleiotropic effects, a limitation of SDF-1α is its short plasma half-life due to cleavage by dipeptidyl peptidase-4 (DPP-4). However, DPP-4 inhibitors increase the half-life of SDF-1α by preventing its degradation and are also protective against lethal IRI. In summary, SDF-1 potentially delivers a ‘two-pronged’ defence of the myocardium: acutely protecting it from IRI while simultaneously stimulating repair by recruiting stem cells to the site of injury. In this article we examine the evidence for acute and chronic cardioprotective roles of SDF-1α and discuss potential therapeutic manipulations of this mechanism with DPP-4 inhibitors to protect against lethal tissue injury in the clinical setting.
Collapse
Affiliation(s)
- Daniel I Bromage
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
182
|
McCafferty K, Byrne C, Yaqoob MM. Ischaemic conditioning strategies for the nephrologist: a promise lost in translation? Nephrol Dial Transplant 2014; 29:1827-40. [PMID: 24589718 DOI: 10.1093/ndt/gfu034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the last quarter of a century, a huge effort has been made to develop interventions that can minimise ischaemia reperfusion injury. The most potent of these are the ischaemic conditioning strategies, which comprise ischaemic preconditioning, remote ischaemic preconditioning and ischaemic postconditioning. While much of the focus for these interventions has been on protecting the myocardium, other organs including the kidney can be similarly protected. However, translation of these beneficial effects from animal models into routine clinical practice has been less straightforward than expected. In this review, we examine the role of ischaemic conditioning strategies in reducing tissue injury from the 'bench to the bedside' and discuss the barriers to their greater translation.
Collapse
Affiliation(s)
- Kieran McCafferty
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Conor Byrne
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
183
|
Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J Mol Cell Cardiol 2014; 68:79-88. [PMID: 24434643 DOI: 10.1016/j.yjmcc.2014.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in the protection conferred by ischemic preconditioning (IP) by not fully elucidated mechanisms. We investigated whether IP protects mitochondria against ischemia-reperfusion (IR) injury through mechanisms independent of cytosolic signaling. In isolated rat hearts, sublethal IR increased superoxide production and reduced complex-I- and II-mediated respiration in subsarcolemmal (SS), but not interfibrillar (IF) mitochondria. This effect of IR on mitochondrial respiration was significantly attenuated by IP. Similar results were obtained in isolated cardiac mitochondria subjected to in vitro IR. The reduction in SS mitochondrial respiration in the heart and in vitro model was paralleled by an increase in oxidized cysteine residues, which was also prevented by IP. IP was also protective in mitochondria submitted to lethal IR. The protective effect of IP against respiratory failure was unaffected by inhibition of mitochondrial KATP channels or mitochondrial permeability transition. However, IP protection was lost in mitochondria from genetically-modified animals in which connexin-43, a protein present in SS but not IF mitochondria, was replaced by connexin-32. Our results demonstrate the existence of a protective mitochondrial mechanism or "mitochondrial preconditioning" independent of cytosol that confers protection against IR-induced respiratory failure and oxidative damage, and requires connexin-43.
Collapse
|
184
|
Protection tissulaire: une nouvelle piste. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
185
|
Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, Heller Brown J. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal 2013; 6:ra108. [PMID: 24345679 DOI: 10.1126/scisignal.2004405] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.
Collapse
Affiliation(s)
- Sunny Y Xiang
- 1Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
187
|
Xu Y, Ma LL, Zhou C, Zhang FJ, Kong FJ, Wang WN, Qian LB, Wang CC, Liu XB, Yan M, Wang JA. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection. PLoS One 2013; 8:e76652. [PMID: 24124583 PMCID: PMC3790738 DOI: 10.1371/journal.pone.0076652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.
Collapse
Affiliation(s)
- Yong Xu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Lei-Lei Ma
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Chen Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Fei-Jiang Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Fei-Juan Kong
- Department of Anesthesiology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, Zhejaing, China
| | - Wen-Na Wang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Ling-Bo Qian
- Department of Physiology, Zhejiang Medical College, Hangzhou, Zhejaing, China
| | - Can-Can Wang
- Department of Physiology, Zhejiang Medical College, Hangzhou, Zhejaing, China
| | - Xian-Bao Liu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
- * E-mail: (MY); (JAW)
| | - Jian-An Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejaing, China
- * E-mail: (MY); (JAW)
| |
Collapse
|
188
|
Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KFJ, Wong GT, Vanhoutte PM, Irwin MG, Xia Z. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med 2013; 63:291-303. [PMID: 23747931 DOI: 10.1016/j.freeradbiomed.2013.05.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/07/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023]
Abstract
N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
How wonderful would it be if there were a simple, cheap, safe, non-invasive treatment that could be administered to a patient to protect their organs from ischemia and reperfusion? Such a treatment might be used to protect the organs during temporary loss of blood flow, as occurs for example during a heart attack or stroke. As unlikely as this may sound, such a treatment has indeed been discovered, although research into the mechanism is only just beginning. A recent paper by Heusch et al. in Circulation Research has taken the first step in this direction, as explained below.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute; University College London; London, UK
| | | |
Collapse
|
190
|
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 2013; 19:83-96. [PMID: 24038018 DOI: 10.1177/1074248413499973] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease remains a leading cause of deaths due to noncommunicable diseases, of which ischemic heart disease forms a large percentage. The main therapeutic strategy to treat ischemic heart disease is reperfusion that could either be medical or surgical. However, reperfusion following ischemia is known to increase the infarct size further. Newer strategies such as ischemic preconditioning (IPC), ischemic postconditioning, and remote IPC have been shown to condition the myocardium to ischemia-reperfusion injury and thus reduce the final infarct size. Research over the past 3 decades has deepened our understanding of cellular and subcellular pathways that mediate ischemia-reperfusion injury. This in turn has resulted in the development of several pharmacological agents that act as conditioning agents, which reduce the final myocardial infarct size following ischemia-reperfusion. This review discusses many of these agents, their mechanisms of action, and the animal and clinical evidence behind them.
Collapse
Affiliation(s)
- Vivek Sivaraman
- 1The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | | |
Collapse
|
191
|
Wang T, Yao S, Xia Z, Irwin MG. Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning. Front Med 2013; 7:301-5. [PMID: 23904036 DOI: 10.1007/s11684-013-0283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
Systemic inflammatory response following myocardial ischemia-reperfusion injury (IRI) to a specific organ may cause injuries. Ischemic post-conditioning (IPostC) has emerged as a promising method for myocardial protection against IRI both in experimental and in clinical settings. Enhancement of endogenous nitric oxide (NO) is one of the major mechanisms by which IPostC confers cardioprotection. However, the sensitivity of the diabetic heart to IPostC is impaired and the underlying mechanism is unknown. Adiponectin (APN) is an adipocytederived plasma protein with anti-diabetic and anti-inflammatory properties. Plasma levels of APN are decreased in obese subjects and in patients with type 2 diabetes. APN supplementation has been shown to increase NO production and attenuate myocardial IRI in normal (non-diabetic) animals. However, the effect of APN on myocardial injury in diabetic subjects, especially its potential in restoring the sensitivity of the diabetic heart to IPostC has not been investigated. In the current paper, we discussed the possible reasons why the myocardium of diabetic subjects loses sensitivity to IPostC and also highlighted the potential effectiveness and mechanism of APN in restoring IPostC cardioprotection in diabetes. This review proposes to conduct studies that may facilitate the development of novel and optimal therapies to enhance cardioprotection in patients with severe diseases such as diabetes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
192
|
Ma LL, Zhang FJ, Qian LB, Kong FJ, Sun JF, Zhou C, Peng YN, Xu HJ, Wang WN, Wen CY, Zhu MH, Chen G, Yu LN, Liu XB, Wang JA, Yan M. Hypercholesterolemia blocked sevoflurane-induced cardioprotection against ischemia-reperfusion injury by alteration of the MG53/RISK/GSK3β signaling. Int J Cardiol 2013; 168:3671-8. [PMID: 23856444 DOI: 10.1016/j.ijcard.2013.06.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 05/04/2013] [Accepted: 06/15/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that volatile anesthetic preconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. METHODS Normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane during three 5 min periods with and without PI3K antagonist wortmannin (10 μg/kg, Wort) or the ERK inhibitor PD 98059 (1 mg/kg, PD). The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. RESULTS Two hundred and six rats were analyzed in the study. In the healthy rats, sevoflurane significantly reduced infarct size by 42%, a phenomenon completely reversed by wortmannin and PD98059 and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β. In the hypercholesterolemic rats, sevoflurane failed to reduce infarct size and increase the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. CONCLUSIONS Hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Watson AJ, Gao L, Sun L, Tsun J, Doyle A, Faddy SC, Jabbour A, Orr Y, Dhital K, Hicks M, Jansz PC, Macdonald PS. Enhanced preservation of pig cardiac allografts by combining erythropoietin with glyceryl trinitrate and zoniporide. Am J Transplant 2013; 13:1676-87. [PMID: 23668842 DOI: 10.1111/ajt.12249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
Abstract
Erythropoietin has a tissue-protective effect independent of its erythropoietic effect that may be enhanced by combining it with the nitric oxide donor glyceryl trinitrate (GTN) and the sodium-hydrogen exchange inhibitor zoniporide in rat hearts stored with an extracellular-based preservation solution (EBPS). We thus sought to test this combination of agents in a porcine model of orthotopic heart transplantation incorporating donor brain death and total ischaemic time of approximately 260 min. Pig hearts were stored in one of four storage solutions: unmodified EBPS (CON), EBPS supplemented with GTN and zoniporide (GZ), EBPS supplemented with erythropoietin and zoniporide (EZ), or EBPS supplemented with all three agents (EGZ). A total of 4/5 EGZ hearts were successfully weaned from cardiopulmonary bypass compared with only 2/5 GZ hearts, 0/5 CON hearts and 0/5 EG hearts (p = 0.017). Following weaning from bypass EGZ hearts demonstrated superior contractility and haemodynamics than GZ hearts. All weaned hearts displayed impaired diastolic function. Release of troponin I from EGZ hearts was lower than all other groups. In conclusion, supplementation of EBPS with erythropoietin, glyceryl trinitrate and zoniporide provided superior donor heart preservation than all other strategies tested.
Collapse
Affiliation(s)
- A J Watson
- Transplant Program, The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Waldman M, Hochhauser E, Fishbein M, Aravot D, Shainberg A, Sarne Y. An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem Pharmacol 2013; 85:1626-33. [DOI: 10.1016/j.bcp.2013.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
|
195
|
Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart. Mol Biol Rep 2013; 40:4153-60. [PMID: 23652994 DOI: 10.1007/s11033-013-2495-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/24/2013] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia-reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential. Especially the binding of HK to mitochondria and prevention of HK solubilisation (HK detachment from mitochondria) during ischemia confers cardioprotection. It is unknown whether diabetes affects HK localisation during IR and IPC as compared to non-diabetes. In this study we hypothesize that DM alters cellular trafficking of hexokinase in response to IR and IPC, possibly explaining the altered response to IR and IPC in diabetic heart. Control (CON) and type I diabetic (DM) rat hearts (65 mg/kg streptozotocin, 4 weeks) were isolated and perfused in Langendorff-mode and subjected to 35 min I and 30 min R with or without IPC (3 times 5 min I). Cytosolic and mitochondrial fractions were obtained at (1) baseline, i.e. after IPC but before I, (2) 35 min I, (3) 5 min R and (4) 30 min R. DM improved rate-pressure product recovery (RPP; 71 ± 10 % baseline (DM) versus 9 ± 1 % baseline (CON) and decreased contracture (end-diastolic pressure: 24 ± 8 mmHg (DM) vs 77 ± 4 mmHg (CON)) after IR as compared to control, and was associated with prevention of HK solubilisation at 35 min I. IPC improved cardiac function in CON but not in DM hearts. IPC in CON prevented HK solubilisation at 35 min I and at 5 min R, with a trend for increased mitochondrial HK. In contrast, the non-effective IPC in DM was associated with solubilisation of HK and decreased mitochondrial HK at early reperfusion and a reciprocal behaviour at late reperfusion. We conclude that type I DM significantly altered cellular HK translocation patterns in the heart in response to IR and IPC, possibly explaining altered response to IR and IPC in diabetes.
Collapse
|
196
|
Assareh A, Haybar H, Yoosefi H, Bozorgmanesh M. Bedside-Friendly Prediction for Presence of Post-Myocardial lnfarction Systolic Dysfunction Using Multimarker Panel: Integrating Salivary Diagnostics into Clinical Practice. Korean Circ J 2013; 43:246-54. [PMID: 23682284 PMCID: PMC3654112 DOI: 10.4070/kcj.2013.43.4.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/18/2013] [Accepted: 03/08/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We investigated if a combination of plasma or salivary interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), and troponin can improve estimation of the pretest probability of the left ventricular systolic dysfunction (LVSD). SUBJECTS AND METHODS Eighty patients with newly-diagnosed myocardial infarction (MI) were echocardiographically examined for LVSD (ejection fraction ≤40%). Measurements included traditional MI risk factors, plasma and salivary concentrations of troponin, IL-2, IL-6, TNF-α, and TGF-β. With the LVSD as the outcome variable, we developed logistic regression models, starting with a basic model incorporating traditional risk factors and consecutively adding salivary and plasma biomarkers. Models were compared using several criteria, including (but not limited to) C statistic (discrimination) and net reclassification improvement index (NRI). RESULTS APART FROM TROPONIN, PLASMA, AND SALIVARY VALUES OF THE BIOMARKERS WERE CORRELATED: spearman's ρ was 0.19 (p=0.088) for troponin, 0.36 (p=0.001) for IL-2, 0.74 (p<0.001) for IL-6, 0.61 (p<0.001) for TNF-α, and 0.65 (p<0.001) for TGF-β. The predictive performances of the basic model for estimating the pretest probability of the presence of LVSD considerably improved when cytokines were added (salivary added: C-statistic from 0.77 to 0.82 and NRI 77%; plasma added: C-statistic to 0.80 and NRI 134%). CONCLUSION Multiple biomarkers added diagnostic value to the standard risk factors for predicting the presence of post-MI LVSD.
Collapse
Affiliation(s)
- Ahmadreza Assareh
- Cardiovascular Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | | | | | | |
Collapse
|
197
|
Frias MA, Pedretti S, Hacking D, Somers S, Lacerda L, Opie LH, James RW, Lecour S. HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis 2013; 228:110-6. [PMID: 23497785 DOI: 10.1016/j.atherosclerosis.2013.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/15/2013] [Accepted: 02/04/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE High density lipoproteins (HDL) protect against ischemia reperfusion injury (IRI). However the precise mechanisms are not clearly understood. The novel intrinsic prosurvival signaling pathway named survivor activating factor enhancement (SAFE) path involves the activation of tumor necrosis factor (TNF) alpha and signal transducer and activator of transcription 3 (STAT3). SAFE plays a crucial role in cardioprotection against IRI. We propose that HDL protect against IRI via activation of the SAFE pathway and modulation of the mitochondrial permeability transition pore (mPTP) opening. METHODS AND RESULTS Isolated mouse hearts were subjected to global ischemia (35 min) followed by reperfusion (45 min). HDL were given during the first 7 min of reperfusion. In control hearts, the post-reperfusion infarct size was 41.3 ± 2.3%. Addition of HDL during reperfusion reduced the infarct size in a dose-dependent manner (HDL 200 μg protein/ml: 25.5 ± 1.6%, p < 0.001 vs. control). This protective effect was absent in TNF deficient mice (TNF-KO) or cardiomyocyte-STAT3 deficient mice (STAT3-KO). Similarly, HDL, given as a preconditioning stimulus, improved cell survival and inhibited mPTP opening in isolated cardiomyocytes subjected to simulated ischemia. These protective responses were inhibited in cardiomyocytes from TNF-KO and STAT3-KO mice. CONCLUSION Our data demonstrate that HDL protect against IRI by inhibition of mPTP opening, an effect mediated via activation of the SAFE pathway.
Collapse
Affiliation(s)
- Miguel A Frias
- Division of Endocrinology, University Hospital Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013; 18:556-99. [PMID: 22668069 DOI: 10.1089/ars.2011.4459] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reperfusion therapy is the indispensable treatment of acute myocardial infarction (AMI) and must be applied as soon as possible to attenuate the ischemic insult. However, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore (mPTP). A great part of reperfusion injury occurs during the first minute of reperfusion. The prolonged opening of mPTP is considered one of the endpoints of the cascade to myocardial damage, causing loss of cardiomyocyte function and viability. Opening of mPTP and the consequent oxidative stress due to reactive oxygen and nitrogen species (ROS/RNS) are considered among the major mechanisms of mitochondrial and myocardial dysfunction. Kinases and mitochondrial components constitute an intricate network of signaling molecules and mitochondrial proteins, which interact in response to stressors. Cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning (PostC), obtained with brief intermittent ischemia or with pharmacological agents, which drastically reduce the lethal ischemia/reperfusion injury. The protective pathways converging on mitochondria may preserve their function. Protection involves kinases, adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP modulation. Some clinical studies using ischemic PostC during angioplasty support its protective effects, and an interesting alternative is pharmacological PostC. In fact, the mPTP desensitizer, cyclosporine A, has been shown to induce appreciable protections in AMI patients. Several factors and comorbidities that might interfere with cardioprotective signaling are considered. Hence, treatments adapted to the characteristics of the patient (i.e., phenotype oriented) might be feasible in the future.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | |
Collapse
|
199
|
Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013; 229:232-41. [PMID: 23011912 DOI: 10.1002/path.4113] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Reactive oxygen or nitrogen species play an integral role in both myocardial injury and repair. This dichotomy is differentiated at the level of species type, amount and duration of free radical generated. Homeostatic mechanisms designed to prevent free radical generation in the first instance, scavenge, or enzymatically convert them to less toxic forms and water, playing crucial roles in the maintenance of cellular structure and function. The outcome between functional recovery and dysfunction is dependent upon the inherent ability of these homeostatic antioxidant defences to withstand acute free radical generation, in the order of seconds to minutes. Alternatively, pre-existent antioxidant capacity (from intracellular and extracellular sources) may regulate the degree of free radical generation. This converts reactive oxygen and nitrogen species to the role of second messenger involved in cell signalling. The adaptive capacity of the cell is altered by the balance between death or survival signal converging at the level of the mitochondria, with distinct pathophysiological consequences that extends the period of injury from hours to days and weeks. Hyperglycaemia, hyperlipidaemia and insulin resistance enhance oxidative stress in the diabetic myocardium that cannot adapt to ischaemia-reperfusion. Altered glucose flux, mitochondrial derangements and nitric oxide synthase uncoupling in the presence of decreased antioxidant defence and impaired prosurvival cell signalling may render the diabetic myocardium more vulnerable to injury, remodelling and heart failure.
Collapse
Affiliation(s)
- David M Ansley
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
200
|
Hausenloy DJ, Erik Bøtker H, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, Lecour S, van Laake LW, Madonna R, Ruiz-Meana M, Schulz R, Sluijter JPG, Yellon DM, Ovize M. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2013; 98:7-27. [PMID: 23334258 DOI: 10.1093/cvr/cvt004] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise from acute myocardial ischaemia-reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term consequences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a significant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detrimental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardioprotective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these clinical studies have not taken into consideration the important data provided from previously published pre-clinical and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully result in new and effective therapeutic interventions for the future benefit of CHD patients.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|