151
|
Ohba K, Sehara Y, Enoki T, Mineno J, Ozawa K, Mizukami H. Adeno-associated virus vector system controlling capsid expression improves viral quantity and quality. iScience 2023; 26:106487. [PMID: 37096037 PMCID: PMC10122016 DOI: 10.1016/j.isci.2023.106487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are promising tools for gene therapy. The current AAV vector system produces an abundance of empty capsids that are eliminated before clinical use, leading to increased costs for gene therapy. In the present study, we established an AAV production system that regulates the timing of capsid expression using a tetracycline-dependent promoter. Tetracycline-regulating capsid expression increased viral yield and reduced empty capsids in various serotypes without altering AAV vector infectivity in vitro and in vivo. The replicase expression pattern change observed in the developed AAV vector system improved viral quantity and quality, whereas timing control of capsid expression reduced empty capsids. These findings provide a new perspective on the development of AAV vector production systems in gene therapy.
Collapse
Affiliation(s)
- Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Corresponding author
| | - Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuji Enoki
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Junichi Mineno
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Department of Immuno-Gene & Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
152
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
153
|
Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis 2023; 14:398-417. [PMID: 37008065 PMCID: PMC10017145 DOI: 10.14336/ad.2022.00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid advancements have taken place in gene therapy technology. However, effective methods for treating aging- or age-related chronic diseases, which are often closely related to genes or even multiple genes, are still lacking. The path to developing cures is winding, while gene therapy that targets genes related to aging represents an exciting research direction with tremendous potential. Among aging-related genes, some candidates have been studied at different levels, from cell to organismal levels (e.g., mammalian models) with different methods, from overexpression to gene editing. The TERT and APOE have even entered the stage of clinical trials. Even those displaying only a preliminary association with diseases have potential applications. This article discusses the foundations and recent breakthroughs in the field of gene therapy, providing a summary of current mainstream strategies and gene therapy products with clinical and preclinical applications. Finally, we review representative target genes and their potential for treating aging or age-related diseases.
Collapse
Affiliation(s)
| | | | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| |
Collapse
|
154
|
Chou JY, Mansfield BC. Gene therapy and genome editing for type I glycogen storage diseases. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1167091. [PMID: 39086673 PMCID: PMC11285695 DOI: 10.3389/fmmed.2023.1167091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 08/02/2024]
Abstract
Type I glycogen storage diseases (GSD-I) consist of two major autosomal recessive disorders, GSD-Ia, caused by a reduction of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity and GSD-Ib, caused by a reduction in the glucose-6-phosphate transporter (G6PT or SLC37A4) activity. The G6Pase-α and G6PT are functionally co-dependent. Together, the G6Pase-α/G6PT complex catalyzes the translocation of G6P from the cytoplasm into the endoplasmic reticulum lumen and its subsequent hydrolysis to glucose that is released into the blood to maintain euglycemia. Consequently, all GSD-I patients share a metabolic phenotype that includes a loss of glucose homeostasis and long-term risks of hepatocellular adenoma/carcinoma and renal disease. A rigorous dietary therapy has enabled GSD-I patients to maintain a normalized metabolic phenotype, but adherence is challenging. Moreover, dietary therapies do not address the underlying pathological processes, and long-term complications still occur in metabolically compensated patients. Animal models of GSD-Ia and GSD-Ib have delineated the disease biology and pathophysiology, and guided development of effective gene therapy strategies for both disorders. Preclinical studies of GSD-I have established that recombinant adeno-associated virus vector-mediated gene therapy for GSD-Ia and GSD-Ib are safe, and efficacious. A phase III clinical trial of rAAV-mediated gene augmentation therapy for GSD-Ia (NCT05139316) is in progress as of 2023. A phase I clinical trial of mRNA augmentation for GSD-Ia was initiated in 2022 (NCT05095727). Alternative genetic technologies for GSD-I therapies, such as gene editing, are also being examined for their potential to improve further long-term outcomes.
Collapse
Affiliation(s)
- Janice Y. Chou
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
155
|
Zhu X, Gao M, Yang Y, Li W, Bao J, Li Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030984. [PMID: 36986843 PMCID: PMC10053467 DOI: 10.3390/pharmaceutics15030984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems can precisely manipulate DNA sequences to change the characteristics of cells and organs, which has potential in the mechanistic research on genes and the treatment of diseases. However, clinical applications are restricted by the lack of safe, targeted and effective delivery vectors. Extracellular vesicles (EVs) are an attractive delivery platform for CRISPR/Cas9. Compared with viral and other vectors, EVs present several advantages, including safety, protection, capacity, penetrating ability, targeting ability and potential for modification. Consequently, EVs are profitably used to deliver the CRISPR/Cas9 in vivo. In this review, the advantages and disadvantages of the delivery form and vectors of the CRISPR/Cas9 are concluded. The favorable traits of EVs as vectors, such as the innate characteristics, physiological and pathological functions, safety and targeting ability of EVs, are summarized. Furthermore, in terms of the delivery of the CRISPR/Cas9 by EVs, EV sources and isolation strategies, the delivery form and loading methods of the CRISPR/Cas9 and applications have been concluded and discussed. Finally, this review provides future directions of EVs as vectors of the CRISPR/Cas9 system in clinical applications, such as the safety, capacity, consistent quality, yield and targeting ability of EVs.
Collapse
Affiliation(s)
- Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyu Gao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
156
|
Genome-engineering technologies for modeling and treatment of cystic fibrosis. Adv Med Sci 2023; 68:111-120. [PMID: 36917892 DOI: 10.1016/j.advms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the CF transmembrane conductance regulator (CFTR) protein. Due to the genetic nature of the disease, interventions in the genome can target any underlying alterations and potentially provide permanent disease resolution. The current development of gene-editing tools, such as designer nuclease technology capable of genome correction, holds great promise for both CF and other genetic diseases. In recent years, Cas9-based technologies have enabled the generation of genetically defined human stem cell and disease models based on induced pluripotent stem cells (iPSC). In this article, we outline the potential and possibilities of using CRISPR/Cas9-based gene-editing technology in CF modeling.
Collapse
|
157
|
Hacker UT. On the way to developing AAV-based vaccines as novel tools for cancer immunotherapy. Mol Ther Methods Clin Dev 2023; 28:394-395. [PMID: 36874246 PMCID: PMC9982205 DOI: 10.1016/j.omtm.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ulrich T Hacker
- Department of Medicine II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
158
|
Hu Z, Wu Y, Xiao R, Zhao J, Chen Y, Wu L, Zhou M, Liang D. Correction of F8 intron 1 inversion in hemophilia A patient-specific iPSCs by CRISPR/Cas9 mediated gene editing. Front Genet 2023; 14:1115831. [PMID: 36968612 PMCID: PMC10033665 DOI: 10.3389/fgene.2023.1115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Hemophilia A (HA) is the most common genetic bleeding disorder caused by mutations in the F8 gene encoding coagulation factor VIII (FVIII). As the second predominant pathogenic mutation in hemophilia A severe patients, F8 Intron one inversion (Inv1) completely splits the F8 gene into two parts and disrupts the F8 transcription, resulting in no FVIII protein production. The part which contains exon 2-exon 26 covers 98% of F8 coding region.Methods: We hypothesized that in situ genetic manipulation of F8 to add a promoter and exon one before the exon two could restore the F8 expression. The donor plasmid included human alpha 1-antitrypsin (hAAT) promoter, exon one and splicing donor site (SD) based on homology-mediated end joining (HMEJ) strategy was targeted addition in hemophilia A patient-derived induced pluripotent stem cell (HA-iPSCs) using CRISPR/Cas9. The iPSCs were differentiated into hepatocyte-like cells (HPLCs).Results: The hAAT promoter and exon one were targeted addition in HA-iPSCs with a high efficiency of 10.19% via HMEJ. The FVIII expression, secretion, and activity were detected in HPLCs derived from gene-targeted iPSCs.Discussion: Thus, we firstly rescued the 140 kb reversion mutation by gene addition of a 975 bp fragment in the HA-iPSCs with Inv1 mutation, providing a promising gene correction strategy for genetic disease with large sequence variants.
Collapse
Affiliation(s)
- Zhiqing Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yong Wu
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Rou Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Junya Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yan Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Miaojin Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Miaojin Zhou, ; Desheng Liang,
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Miaojin Zhou, ; Desheng Liang,
| |
Collapse
|
159
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
160
|
Padmaswari MH, Agrawal S, Jia MS, Ivy A, Maxenberger DA, Burcham LA, Nelson CE. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. BIOPHYSICS REVIEWS 2023; 4:011307. [PMID: 36864908 PMCID: PMC9969352 DOI: 10.1063/5.0131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Duchene muscular dystrophy (DMD) is an X-linked neuromuscular disorder that affects about one in every 5000 live male births. DMD is caused by mutations in the gene that codes for dystrophin, which is required for muscle membrane stabilization. The loss of functional dystrophin causes muscle degradation that leads to weakness, loss of ambulation, cardiac and respiratory complications, and eventually, premature death. Therapies to treat DMD have advanced in the past decade, with treatments in clinical trials and four exon-skipping drugs receiving conditional Food and Drug Administration approval. However, to date, no treatment has provided long-term correction. Gene editing has emerged as a promising approach to treating DMD. There is a wide range of tools, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and, most notably, RNA-guided enzymes from the bacterial adaptive immune system clustered regularly interspaced short palindromic repeats (CRISPR). Although challenges in using CRISPR for gene therapy in humans still abound, including safety and efficiency of delivery, the future for CRISPR gene editing for DMD is promising. This review will summarize the progress in CRISPR gene editing for DMD including key summaries of current approaches, delivery methodologies, and the challenges that gene editing still faces as well as prospective solutions.
Collapse
Affiliation(s)
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mary S. Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Daniel A. Maxenberger
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Landon A. Burcham
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
161
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
162
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
163
|
Lekstrom-Himes J, Brooks PJ, Koeberl DD, Brower A, Goldenberg A, Green RC, Morris JA, Orsini JJ, Yu TW, Augustine EF. Moving away from one disease at a time: Screening, trial design, and regulatory implications of novel platform technologies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:30-43. [PMID: 36738469 PMCID: PMC10038900 DOI: 10.1002/ajmg.c.32031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023]
Abstract
Most rare diseases are caused by single-gene mutations, and as such, lend themselves to a host of new gene-targeted therapies and technologies including antisense oligonucleotides, phosphomorpholinos, small interfering RNAs, and a variety of gene delivery and gene editing systems. Early successes are encouraging, however, given the substantial number of distinct rare diseases, the ability to scale these successes will be unsustainable without new development efficiencies. Herein, we discuss the need for genomic newborn screening to match pace with the growing development of targeted therapeutics and ability to rapidly develop individualized therapies for rare variants. We offer approaches to move beyond conventional "one disease at a time" preclinical and clinical drug development and discuss planned regulatory innovations that are necessary to speed therapy delivery to individuals in need. These proposals leverage the shared properties of platform classes of therapeutics and innovative trial designs including master and platform protocols to better serve patients and accelerate drug development. Ultimately, there are risks to these novel approaches; however, we believe that close partnership and transparency between health authorities, patients, researchers, and drug developers present the path forward to overcome these challenges and deliver on the promise of gene-targeted therapies for rare diseases.
Collapse
Affiliation(s)
| | - P J Brooks
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy Brower
- American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| | - Aaron Goldenberg
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert C Green
- Mass General Brigham, Broad Institute, Ariadne Labs and Harvard Medical School, Boston, MA, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Orsini
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, USA
| | - Erika F Augustine
- Department of Neurology and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
164
|
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther 2023:10.1038/s41417-023-00597-z. [PMID: 36854897 PMCID: PMC9971689 DOI: 10.1038/s41417-023-00597-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fahimeh Shahriyary
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Ofoghi
- Division of Clinical Laboratory, Tehran Hospital of Petroleum Industry, Tehran, Iran ,grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Davood Fattahi
- grid.411600.2Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
165
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
166
|
Su J, Jin X, She K, Liu Y, Song L, Zhao Q, Xiao J, Li R, Deng H, Lu F, Yang Y. In vivo adenine base editing corrects newborn murine model of Hurler syndrome. MOLECULAR BIOMEDICINE 2023; 4:6. [PMID: 36813914 PMCID: PMC9947215 DOI: 10.1186/s43556-023-00120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a severe disease caused by loss-of-function mutation variants in the α-L-iduronidase (Idua) gene. In vivo genome editing represents a promising strategy to correct Idua mutations, and has the potential to permanently restore IDUA function over the lifespan of patients. Here, we used adenine base editing to directly convert A > G (TAG>TGG) in a newborn murine model harboring the Idua-W392X mutation, which recapitulates the human condition and is analogous to the highly prevalent human W402X mutation. We engineered a split-intein dual-adeno-associated virus 9 (AAV9) adenine base editor to circumvent the package size limit of AAV vectors. Intravenous injection of the AAV9-base editor system into MPS IH newborn mice led to sustained enzyme expression sufficient for correction of metabolic disease (GAGs substrate accumulation) and prevention of neurobehavioral deficits. We observed a reversion of the W392X mutation in 22.46 ± 6.74% of hepatocytes, 11.18 ± 5.25% of heart and 0.34 ± 0.12% of brain, along with decreased GAGs storage in peripheral organs (liver, spleen, lung and kidney). Collectively, these data showed the promise of a base editing approach to precisely correct a common genetic cause of MPS I in vivo and could be broadly applicable to the treatment of a wide array of monogenic diseases.
Collapse
Affiliation(s)
- Jing Su
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Xiu Jin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Kaiqin She
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Li Song
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Qinyu Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Jianlu Xiao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Ruiting Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Hongxin Deng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Fang Lu
- grid.13291.380000 0001 0807 1581Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
167
|
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol 2023; 11:1138596. [PMID: 36873375 PMCID: PMC9978118 DOI: 10.3389/fbioe.2023.1138596] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
CRISPR offers new hope for many patients and promises to transform the way we think of future therapies. Ensuring safety of CRISPR therapeutics is a top priority for clinical translation and specific recommendations have been recently released by the FDA. Rapid progress in the preclinical and clinical development of CRISPR therapeutics leverages years of experience with gene therapy successes and failures. Adverse events due to immunogenicity have been a major setback that has impacted the field of gene therapy. As several in vivo CRISPR clinical trials make progress, the challenge of immunogenicity remains a significant roadblock to the clinical availability and utility of CRISPR therapeutics. In this review, we examine what is currently known about the immunogenicity of CRISPR therapeutics and discuss several considerations to mitigate immunogenicity for the design of safe and clinically translatable CRISPR therapeutics.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Newgiza, Egypt
| | - Karen S. Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
168
|
Kuoch H, Krotova K, Graham ML, Brantly ML, Aslanidi G. Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines 2023; 11:biomedicines11020523. [PMID: 36831059 PMCID: PMC9953293 DOI: 10.3390/biomedicines11020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.
Collapse
Affiliation(s)
- Hisae Kuoch
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Karina Krotova
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Melanie L. Graham
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55108, USA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Medical School, University of Florida, Gainesville, FL 32610, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Correspondence: ; Tel.: +1-507-437-9622; Fax: +1-507-437-9606
| |
Collapse
|
169
|
Nguyen NH, Chak V, Keller K, Wu H, Balu-Iyer SV. Phosphatidylserine-mediated oral tolerance. Cell Immunol 2023; 384:104660. [PMID: 36586393 PMCID: PMC11034824 DOI: 10.1016/j.cellimm.2022.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Phosphatidylserine (PS) is an anionic phospholipid exposed on the surface of apoptotic cells. The exposure of PS typically recruits and signals phagocytes to engulf and silently clear these dying cells to maintain tolerance via immunological ignorance. However, recent and emerging evidence has demonstrated that PS converts an "immunogen" into a "tolerogen", and PS exposure on the surface of cells or vesicles actively promotes a tolerogenic environment. This tolerogenic property depends on the biophysical characteristics of PS-containing vesicles, including PS density on the particle surface to effectively engage tolerogenic receptors, such as TIM-4, which is exclusively expressed on the surface of antigen-presenting cells. We harnessed the cellular and molecular mechanistic insight of PS-mediated immune regulation to design an effective oral tolerance approach. This immunotherapy has been shown to prevent/reduce immune response against life-saving protein-based therapies, food allergens, autoantigens, and the antigenic viral capsid peptide commonly used in gene therapy, suggesting a broad spectrum of potential clinical applications. Given the good safety profile of PS together with the ease of administration, oral tolerance achieved with PS-based nanoparticles has a very promising therapeutic impact.
Collapse
Affiliation(s)
| | - Vincent Chak
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Katherine Keller
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Helen Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
170
|
Carroll MS, Giacca M. CRISPR activation and interference as investigative tools in the cardiovascular system. Int J Biochem Cell Biol 2023; 155:106348. [PMID: 36563996 PMCID: PMC10265131 DOI: 10.1016/j.biocel.2022.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
CRISPR activation and interference (CRISPRa/i) technology offers the unprecedented possibility of achieving regulated gene expression both in vitro and in vivo. The DNA pairing specificity of a nuclease dead Cas9 (dCas9) is exploited to precisely target a transcriptional activator or repressor in proximity to a gene promoter. This permits both the study of phenotypes arising from gene modulation for investigative purposes, and the development of potential therapeutics. As with virtually all other organ systems, the cardiovascular system can deeply benefit from a broader utilisation of CRISPRa/i. However, application of this technology is still in its infancy. Significant areas for improvement include the identification of novel and more effective transcriptional regulators that can be docked to dCas9, and the development of more efficient methods for their delivery and expression in vivo.
Collapse
Affiliation(s)
- Melissa S Carroll
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London UK
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London UK.
| |
Collapse
|
171
|
Leading Edge: Intratumor Delivery of Monoclonal Antibodies for the Treatment of Solid Tumors. Int J Mol Sci 2023; 24:ijms24032676. [PMID: 36768997 PMCID: PMC9917067 DOI: 10.3390/ijms24032676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.
Collapse
|
172
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
173
|
Abstract
Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.
Collapse
|
174
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
175
|
Hermans C, Gruel Y, Frenzel L, Krumb E. How to translate and implement the current science of gene therapy into haemophilia care? Ther Adv Hematol 2023; 14:20406207221145627. [PMID: 36654740 PMCID: PMC9841832 DOI: 10.1177/20406207221145627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gene-based therapy opens an entirely new paradigm in managing people with haemophilia (PWH), offering them the possibility of a functional cure by enabling continuous expression of factor VIII (FVIII) or factor IX (FIX) after transfer of a functional gene designed to replace the PWH's own defective gene. In recent years, significant advances in gene therapy have been made, resulting in clotting factor activity attaining near-normal levels, as reflected by 'zero bleeding rates' in previously severely inflicted patients following a single administration of adeno-associated viral (AAV) vectors. While this new approach represents a major advancement, there are still several issues that must be resolved before applying this technology in clinical practice. First, awareness, communication, and education about the therapeutic potential and modalities of gene therapy must be further strengthened. To this end, objective, unbiased, transparent, and regularly updated information must be shared, in an appropriate way and understandable language with the support of patients' organizations. Second, healthcare providers should adopt a patient-centred approach, as the 'one size fits all' approach is inappropriate when considering gene therapy. Instead, a holistic patient view taking into account their physical and mental dimensions, along with unexpressed expectations and preferences, is mandatory. Third, the consent procedure must be improved, ensuring that patients' interests are maximally protected. Finally, gene therapy is likely to be first delivered in a few centres, with the highest expertise and experience in this domain. Thus, patients should be managed based on a hub-and-spoke model, taking into account that the key to gene therapy's success lies in an optimal communication and collaboration both within and between haemophilia centres sharing their experiences in the frame of international registries. This review describes recent progress and explains outstanding hurdles that must be tackled to ease the implementation of this paradigm-changing new therapy.
Collapse
Affiliation(s)
- Cedric Hermans
- Haemostasis and Thrombosis Unit, Division of Adult Haematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Yves Gruel
- Centre Régional de Traitement de l’Hémophilie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Laurent Frenzel
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Labex GR-Ex, Imagine Institute, Inserm, Paris Descartes – Sorbonne Paris Cité University, Paris, France
- Hematology unit care, Hemophilia Center, Necker Hospital, Paris, France
| | - Evelien Krumb
- Haemostasis and Thrombosis Unit, Division of Adult Haematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
176
|
Zheng Z, Ye J, Leng M, Gan C, Tang N, Li W, Valencia CA, Dong B, Chow HY. Enhanced sensitivity of neutralizing antibody detection for different AAV serotypes using HeLa cells with overexpressed AAVR. Front Pharmacol 2023; 14:1188290. [PMID: 37188274 PMCID: PMC10176094 DOI: 10.3389/fphar.2023.1188290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
A cell-based transduction inhibition assay (TI) is widely used in clinical trials to detect neutralizing antibody (NAb) titers against recombinant adeno-associated virus (rAAV), one of the most important criteria to exclude patients in gene therapy. Different cell lines are used in cell-based TI because the rAAV transduction efficiencies vary largely among serotypes. A cell line suitable for TI for most serotypes is highly desirable, especially for those with very low transduction efficiencies in vitro such as rAAV8 and rAAV9. Herein, we report an AAVR-HeLa, a stable cell line with overexpressed AAVR, a newly identified receptor for rAAVs, was established for cell-based TIs. The AAVR expression level in AAVR-HeLa cells was approximately 10-fold higher than in HeLa cells, and was stably transfected after twenty three passages. For all AAV serotypes (AAV1-10), except for AAV4, the transduction efficiencies increased significantly in AAVR-HeLa cells. It was demonstrated that the AAVR enhancement of transduction efficiency was only for rAAV and not for lentiviral and adenoviral vectors. According to the minimal multiplicity of infection (MOIs) for the assay, the NAb detection sensitivity increased at least 10 and 20 fold for AAV8 and AAV9, respectively. The seroprevalence of NAbs were investigated at the 1:30 level as a cutoff value using AAVR-HeLa cells. It was shown that the seropositive rate for AAV2 was 87% in serum samples from 99 adults, followed by lower seropositive rates for AAV5 (7%), AAV8 (7%) and AAV9 (1%). Venn diagram analysis showed the presence of cross-reactivity of NAbs to two or three serotypes in 13 samples (13.1%). However, no patient was found to possess NAbs for all the four serotypes. These results demonstrated that the AAVR-HeLa cell line may be utilized to detect the NAbs through cell-based TI assays for most of AAV serotypes.
Collapse
Affiliation(s)
- Zhaoyue Zheng
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingya Ye
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mi Leng
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunmei Gan
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Na Tang
- Sichuan Real and Best Biotech Co., Ltd., Chengdu, China
| | - Wei Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - C. Alexander Valencia
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu, China
- *Correspondence: Hoi Yee Chow, ; Biao Dong,
| | - Hoi Yee Chow
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hoi Yee Chow, ; Biao Dong,
| |
Collapse
|
177
|
Zaman H, Khan A, Khan K, Toheed S, Abdullah M, Zeeshan HM, Hameed A, Umar M, Shahid M, Malik K, Afzal S. Adeno-Associated Virus-Mediated Gene Therapy. Crit Rev Eukaryot Gene Expr 2023; 33:87-100. [PMID: 37522547 DOI: 10.1615/critreveukaryotgeneexpr.2023048135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Choice of vector is the most critical step in gene therapy. Adeno-associated viruses (AAV); third generation vectors, are getting much attention of scientists to be used as vehicles due to their non-pathogenicity, excellent safety profile, low immune responses, great efficiency to transduce non-dividing cells, large capacity to transfer genetic material and long-term expression of genetic payload. AAVs have multiple serotypes and each serotype shows tropism for a specific cell. Different serotypes are used to target liver, lungs, muscles, retina, heart, CNS, kidneys, etc. Furthermore, AAV based gene therapies have tremendous marketing applications that can be perfectly incorporated in the anticipated sites of the host target genome resulting in life long expression of transgenes. Some therapeutic products use AAV vectors that are used to treat lipoprotein lipase deficiency (LPLD) and it is injected intramuscularly, to treat mutated retinal pigment epithelium RPE65 (RPE65) that is introduced to subretinal space, an intravenous infusion to treat spinal muscular atrophy and rAAV2-CFTR vector is introduced into nasal epithelial cells to treat cystic fibrosis. AAV therapies and other such interdisciplinary methodologies can create the miracles for the generation of precision gene therapies for the treatment of most serious and sometimes fatal disorders.
Collapse
Affiliation(s)
- Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khalid Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazma Toheed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Abdullah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Abdul Hameed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
178
|
Nieuwenhuis B, Osborne A. Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:155-174. [PMID: 37558970 DOI: 10.1007/978-1-0716-3409-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The injection of therapies into the eye is common practice, both clinically and pre-clinically. The most straightforward delivery route is via an intravitreal injection, which introduces the treatment into the largest cavity at the posterior of the eye. This technique is frequently used to deliver gene therapies, including those containing recombinant adeno-associated viral vectors (AAVs), to the back of the eye to enable inner retinal targeting. This chapter provides detailed methodology on how to successfully perform an intravitreal injection in mice. The chapter covers vector preparation considerations, advice on how to minimize vector loss in the injection device, and ways to reduce vector reflux from the eye when administering a therapy. Finally, a protocol is provided on common retinal histology processing techniques to assess vector-mediated expression in retinal ganglion cells. It is hoped that this chapter will enable researchers to carry out effective and consistent intravitreal injections that transduce the inner retinal surface while avoiding common pitfalls.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
179
|
Sun C, Chen S. Gene Augmentation for Autosomal Dominant CRX-Associated Retinopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:135-141. [PMID: 37440026 PMCID: PMC11010719 DOI: 10.1007/978-3-031-27681-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The cone-rod homeobox (CRX) protein is a key transcription factor essential for photoreceptor function and survival. Mutations in human CRX gene are linked to a wide spectrum of blinding diseases ranging from mild macular dystrophy to severe Leber congenital amaurosis (LCA), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). These diseases are still incurable and mostly inherited in an autosomal dominant form. Dysfunctional mutant CRX protein interferes with the function of wild-type CRX protein, demonstrating the dominant negative effect. At present, gene augmentation is the most promising treatment strategy for hereditary diseases. This study aims to review the pathogenic mechanisms of various CRX mutations and propose two therapeutic strategies to rescue sick photoreceptors in CRX-associated retinopathies, namely, Tet-On-hCRX system and adeno-associated virus (AAV)-mediated gene augmentation. The outcome of proposed studies will guide future translational research and suggest guidelines for therapy evaluation in terms of treatment safety and efficacy.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
- Department of Developmental Biology, Washington University, St. Louis, MO, USA
| |
Collapse
|
180
|
Simmons E, Wen Y, Li J, Qian YW, Wong LC, Konrad RJ, Bivi N. A sensitive and drug tolerant assay for detecting anti-AAV9 antibodies using affinity capture elution. J Immunol Methods 2023; 512:113397. [PMID: 36481208 DOI: 10.1016/j.jim.2022.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Adeno-associated virus (AAV) based gene therapies are gaining significant momentum as a novel therapeutic modality. However, a yet unsolved concern for using AAV as a vector is the high potential to elicit humoral and cellular responses, which are often exacerbated by pre-existing immunity due to exposure to wild type AAV. Therefore, characterization of pre-existing and treatment emergent anti-AAV antibodies is of great importance to the development of AAV based gene therapies. In this project, a sensitive and drug tolerant total antibody (TAb) assay was developed using recombinant AAV9-GFP (green fluorescent protein) as a surrogate AAV9. The assay format was affinity capture and elution (ACE) with ruthenium labeled AAV9-GFP as detection. Upon evaluation, three commercial anti-AAV9 monoclonal antibodies (clones HI17, HI35, and HL2374) were chosen and mixed at equal concentrations as positive control material. The assay sensitivity was estimated to be 11.2 ng/mL. Drug tolerance was estimated to be 5.4 × 10E10 DRP/mL AAV9-GFP at 100 ng/mL anti-AAV9 antibodies and to be at least 1 × 10E11 DRP/mL at 500 ng/mL and 250 ng/mL anti-AAV9 antibodies. The assay showed desirable specificity and precision. Using this TAb assay, significant pre-existing antibodies were detected from normal human sera.
Collapse
Affiliation(s)
- Emma Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Jingling Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Li Chin Wong
- Prevail Therapeutics - a Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY 10016, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
181
|
Liao J, Wu Y. Gene Editing in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:177-199. [PMID: 38228965 DOI: 10.1007/978-981-99-7471-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) can be isolated and collected from the body, genetically modified, and expanded ex vivo. The invention of innovative and powerful gene editing tools has provided researchers with great convenience in genetically modifying a wide range of cells, including hematopoietic stem and progenitor cells (HSPCs). In addition to being used to modify genes to study the functional role that specific genes play in the hematopoietic system, the application of gene editing platforms in HSCs is largely focused on the development of cell-based gene editing therapies to treat diseases such as immune deficiency disorders and inherited blood disorders. Here, we review the application of gene editing tools in HSPCs. In particular, we provide a broad overview of the development of gene editing tools, multiple strategies for the application of gene editing tools in HSPCs, and exciting clinical advances in HSPC gene editing therapies. We also outline the various challenges integral to clinical translation of HSPC gene editing and provide the possible corresponding solutions.
Collapse
Affiliation(s)
- Jiaoyang Liao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
182
|
Strecker M, Wlotzka K, Strassheimer F, Roller B, Ludmirski G, König S, Röder J, Opitz C, Alekseeva T, Reul J, Sevenich L, Tonn T, Wels W, Steinbach J, Buchholz C, Burger M. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology 2022; 11:2127508. [PMID: 36249274 PMCID: PMC9559045 DOI: 10.1080/2162402x.2022.2127508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GB) is the most common primary brain tumor, which is characterized by low immunogenicity of tumor cells and prevalent immunosuppression in the tumor microenvironment (TME). Targeted local combination immunotherapy is a promising strategy to overcome these obstacles. Here, we evaluated tumor-cell specific delivery of an anti-PD-1 immunoadhesin (aPD-1) via a targeted adeno-associated viral vector (AAV) as well as HER2-specific NK-92/5.28.z (anti-HER2.CAR/NK-92) cells as components for a combination immunotherapy. In co-culture experiments, target-activated anti-HER2.CAR/NK-92 cells modified surrounding tumor cells and bystander immune cells by triggering the release of inflammatory cytokines and upregulation of PD-L1. Tumor cell-specific delivery of aPD-1 was achieved by displaying a HER2-specific designed ankyrin repeat protein (DARPin) on the AAV surface. HER2-AAV mediated gene transfer into GB cells correlated with HER2 expression levels, without inducing anti-viral responses in transduced cells. Furthermore, AAV-transduction did not interfere with anti-HER2.CAR/NK-92 cell-mediated tumor cell lysis. After selective transduction of HER2+ cells, aPD-1 expression was detected at the mRNA and protein level. The aPD-1 immunoadhesin was secreted in a time-dependent manner, bound its target on PD-1-expressing cells and was able to re-activate T cells by efficiently disrupting the PD-1/PD-L1 axis. Moreover, high intratumoral and low systemic aPD-1 concentrations were achieved following local injection of HER2-AAV into orthotopic tumor grafts in vivo. aPD-1 was selectively produced in tumor tissue and could be detected up to 10 days after a single HER2-AAV injection. In subcutaneous GL261-HER2 and Tu2449-HER2 immunocompetent mouse models, administration of the combination therapy significantly prolonged survival, including complete tumor control in several animals in the GL261-HER2 model. In summary, local therapy with aPD-1 encoding HER2-AAVs in combination with anti-HER2.CAR/NK-92 cells may be a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce systemic side effects of immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- M.I. Strecker
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - K. Wlotzka
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - F. Strassheimer
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - B. Roller
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - G. Ludmirski
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - S. König
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - J. Röder
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - C. Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - T. Alekseeva
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J. Reul
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
| | - L. Sevenich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - T. Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - W.S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J.P. Steinbach
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - C.J. Buchholz
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - M.C. Burger
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
183
|
Comprehensive profiling of antibody responses to the human anellome using programmable phage display. Cell Rep 2022; 41:111754. [PMID: 36543141 DOI: 10.1016/j.celrep.2022.111754] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Anelloviruses represent a major constituent of the commensal human virome; however, little is known about their immunobiology. Here, we present "AnelloScan," a T7 phage library representing the open reading frame 1 (ORF1), ORF2, ORF3, and torque teno virus (TTV)-derived apoptosis-inducing protein (TAIP) sequences of more than 800 human anelloviruses and profile the antibody reactivities of serum samples from a cross-sectional cohort of 156 subjects by using phage-immunoprecipitation sequencing (PhIP-Seq). A majority of anellovirus peptides are not reactive in any of the subjects tested (n = ∼28,000; ∼85% of the library). Antibody-reactive peptides are largely restricted to the C-terminal region of the capsid protein ORF1. Moreover, using a longitudinal cohort of matched blood-transfusion donors and recipients, we find that most transmitted anelloviruses do not elicit a detectable antibody reactivity in the recipient and that the remainder elicit delayed responses appearing ∼100-150 days after transfusion.
Collapse
|
184
|
Guide SV, Gonzalez ME, Bağcı IS, Agostini B, Chen H, Feeney G, Steimer M, Kapadia B, Sridhar K, Quesada Sanchez L, Gonzalez F, Van Ligten M, Parry TJ, Chitra S, Kammerman LA, Krishnan S, Marinkovich MP. Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa. N Engl J Med 2022; 387:2211-2219. [PMID: 36516090 DOI: 10.1056/nejmoa2206663] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dystrophic epidermolysis bullosa is a rare genetic blistering skin disease caused by mutations in COL7A1, which encodes type VII collagen (C7). Beremagene geperpavec (B-VEC) is a topical investigational herpes simplex virus type 1 (HSV-1)-based gene therapy designed to restore C7 protein by delivering COL7A1. METHODS We conducted a phase 3, double-blind, intrapatient randomized, placebo-controlled trial involving patients 6 months of age or older with genetically confirmed dystrophic epidermolysis bullosa. For each patient, a primary wound pair was selected, with the wounds matched according to size, region, and appearance. The wounds within each pair were randomly assigned in a 1:1 ratio to receive weekly application of either B-VEC or placebo for 26 weeks. The primary end point was complete wound healing of treated as compared with untreated wounds at 6 months. Secondary end points included complete wound healing at 3 months and the change from baseline to weeks 22, 24, and 26 in pain severity during changes in wound dressing, assessed with the use of a visual analogue scale (scores range from 0 to 10, with higher scores indicating greater pain). RESULTS Primary wound pairs were exposed to B-VEC and placebo in 31 patients. At 6 months, complete wound healing occurred in 67% of the wounds exposed to B-VEC as compared with 22% of those exposed to placebo (difference, 46 percentage points; 95% confidence interval [CI], 24 to 68; P = 0.002). Complete wound healing at 3 months occurred in 71% of the wounds exposed to B-VEC as compared with 20% of those exposed to placebo (difference, 51 percentage points; 95% CI, 29 to 73; P<0.001). The mean change from baseline to week 22 in pain severity during wound-dressing changes was -0.88 with B-VEC and -0.71 with placebo (adjusted least-squares mean difference, -0.61; 95% CI, -1.10 to -0.13); similar mean changes were observed at weeks 24 and 26. Adverse events with B-VEC and placebo included pruritus and chills. CONCLUSIONS Complete wound healing at 3 and 6 months in patients with dystrophic epidermolysis bullosa was more likely with topical administration of B-VEC than with placebo. Pruritus and mild systemic side effects were observed in patients treated with B-VEC. Longer and larger trials are warranted to determine the durability and side effects of B-VEC for this disease. (Funded by Krystal Biotech; GEM-3 ClinicalTrials.gov number, NCT04491604.).
Collapse
Affiliation(s)
- Shireen V Guide
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Mercedes E Gonzalez
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - I Sinem Bağcı
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Brittani Agostini
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Hubert Chen
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Gloria Feeney
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Molly Steimer
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Binoy Kapadia
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Kunju Sridhar
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Lori Quesada Sanchez
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Franshesca Gonzalez
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Matthew Van Ligten
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Trevor J Parry
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Surya Chitra
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Lisa A Kammerman
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - Suma Krishnan
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| | - M Peter Marinkovich
- From the Mission Dermatology Center, Department of Dermatology, Children's Hospital of Orange County, University of California Irvine, Rancho Santa Margarita (S.V.G., M.V.L.), the Department of Dermatology, Stanford University School of Medicine, Stanford (I.S.B., K.S., M.P.M.), and the Veterans Affairs Medical Center, Palo Alto (M.P.M.) - all in California; Pediatric Skin Research, Coral Gables, FL (M.E.G., L.Q.S., F.G.); Krystal Biotech, Pittsburgh (B.A., H.C., G.F., M.S., B.K., T.J.P., S.K.); Savio Group Analytics, Hockessin, DE (S.C.); and Kammerman Consulting, Chevy Chase, MD (L.A.K.)
| |
Collapse
|
185
|
Patterned Stimulation of the Chrimson Opsin in Glutamatergic Motor Thalamus Neurons Improves Forelimb Akinesia in Parkinsonian Rats. Neuroscience 2022; 507:64-78. [PMID: 36343721 DOI: 10.1016/j.neuroscience.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD) is a motor disorder charactertised by altered neural activity throughout the basal ganglia-thalamocortical circuit. Electrical deep brain stimulation (DBS) is efficacious in alleviating motor symptoms, but has several notable side-effects, most likely reflecting the non-specific nature of electrical stimulation and/or the brain regions targeted. We determined whether specific optogenetic activation of glutamatergic motor thalamus (Mthal) neurons alleviated forelimb akinesia in a chronic rat model of PD. Parkinsonian rats (unilateral 6-hydroxydopamine injection) were injected with an adeno-associated viral vector (AAV5-CaMKII-Chrimson-GFP) to transduce glutamatergic Mthal neurons with the red-shifted Chrimson opsin. Optogenetic stimulation with orange light at 15 Hz tonic and a physiological pattern, previously recorded from a Mthal neuron in a control rat, significantly increased forelimb use in the reaching test (p < 0.01). Orange light theta burst stimulation, 15 Hz and control reaching patterns significantly reduced akinesia (p < 0.0001) assessed by the step test. In contrast, forelimb use in the cylinder test was unaffected by orange light stimulation with any pattern. Blue light (control) stimulation failed to alter behaviours. Activation of Chrimson using complex patterns in the Mthal may be an alternative treatment to recover movement in PD. These vector and opsin changes are important steps towards translating optogenetic stimulation to humans.
Collapse
|
186
|
Gao H, Wu J, Sun Z, Zhang F, Shi T, Lu K, Qian D, Yin Z, Zhao Y, Qin J, Xue B. Influence of lecithin cholesterol acyltransferase alteration during different pathophysiologic conditions: A 45 years bibliometrics analysis. Front Pharmacol 2022; 13:1062249. [PMID: 36588724 PMCID: PMC9795195 DOI: 10.3389/fphar.2022.1062249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for free cholesterol (FC) esterification, which is critical for high density lipoprotein (HDL) maturation and the completion of the reverse cholesterol transport (RCT) process. Plasma LCAT activity and concentration showed various patterns under different physiological and pathological conditions. Research on LCAT has grown rapidly over the past 50 years, but there are no bibliometric studies summarizing this field as a whole. This study aimed to use the bibliometric analysis to demonstrate the trends in LCAT publications, thus offering a brief perspective with regard to future developments in this field. Methods: We used the Web of Science Core Collection to retrieve LCAT-related studies published from 1975 to 2020. The data were further analyzed in the number of studies, the journal which published the most LCAT-related studies, co-authorship network, co-country network, co-institute network, co-reference and the keywords burst by CiteSpace V 5.7. Results: 2584 publications contained 55,311 references were used to analyzed. The number of included articles fluctuated in each year. We found that Journal of lipid research published the most LCAT-related studies. Among all the authors who work on LCAT, they tend to collaborate with a relatively stable group of collaborators to generate several major authors clusters which Albers, J. published the most studies (n = 53). The United States of America contributed the greatest proportion (n = 1036) of LCAT-related studies. The LCAT-related studies have been focused on the vascular disease, lecithin-cholesterol acyltransferase reaction, phospholipid, cholesterol efflux, chronic kidney disease, milk fever, nephrotic syndrome, platelet-activating factor acetylhydrolase, reconstituted lpa-i, reverse cholesterol transport. Four main research frontiers in terms of burst strength for LCAT-related studies including "transgenic mice", "oxidative stress", "risk", and "cholesterol metabolism "need more attention. Conclusion: This is the first study that demonstrated the trends and future development in LCAT publications. Further studies should focus on the accurate metabolic process of LCAT dependent or independent of RCT using metabolic marker tracking techniques. It was also well worth to further studying the possibility that LCAT may qualify as a biomarker for risk prediction and clinical treatment.
Collapse
Affiliation(s)
- Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,School of Clinical Medicine, Wannan Medical College, Wuhu, China,Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Sun
- School of Health Policy and Management, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Furong Zhang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ke Lu
- Research Center for Computer-Aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
| | - Dongfu Qian
- School of Health Policy and Management, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zicheng Yin
- Nanjing Foreign Language School, Nanjing, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| | - Jian Qin
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| |
Collapse
|
187
|
Handyside B, Ismail AM, Zhang L, Yates B, Xie L, Sihn CR, Murphy R, Bouwman T, Kim CK, De Angelis R, Karim OA, McIntosh NL, Doss MX, Shroff S, Pungor E, Bhat VS, Bullens S, Bunting S, Fong S. Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther 2022; 30:3570-3586. [PMID: 36348622 PMCID: PMC9734079 DOI: 10.1016/j.ymthe.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.
Collapse
Affiliation(s)
- Britta Handyside
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Lening Zhang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Lin Xie
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Choong-Ryoul Sihn
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Ryan Murphy
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Taren Bouwman
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Chan Kyu Kim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Omair A. Karim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | | | - Shilpa Shroff
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Erno Pungor
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Vikas S. Bhat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA,Corresponding author: Sylvia Fong, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
188
|
Butterfield JSS, Yamada K, Bertolini TB, Syed F, Kumar SRP, Li X, Arisa S, Piñeros AR, Tapia A, Rogers CA, Li N, Rana J, Biswas M, Terhorst C, Kaufman RJ, de Jong YP, Herzog RW. IL-15 blockade and rapamycin rescue multifactorial loss of factor VIII from AAV-transduced hepatocytes in hemophilia A mice. Mol Ther 2022; 30:3552-3569. [PMID: 35821634 PMCID: PMC9734025 DOI: 10.1016/j.ymthe.2022.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.
Collapse
Affiliation(s)
- John S S Butterfield
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Kentaro Yamada
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Thais B Bertolini
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Farooq Syed
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sandeep R P Kumar
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Xin Li
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sreevani Arisa
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Annie R Piñeros
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Alejandro Tapia
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Christopher A Rogers
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Ning Li
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Jyoti Rana
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Moanaro Biswas
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Randal J Kaufman
- Center for Genetic Disorders and Aging Research, Samford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roland W Herzog
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
189
|
Lopes JA, Rghei AD, Thompson B, Susta L, Khursigara CM, Wootton SK. Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis. Biomedicines 2022; 10:biomedicines10123162. [PMID: 36551918 PMCID: PMC9775905 DOI: 10.3390/biomedicines10123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a bacterial pathogen of global concern and is responsible for 10-15% of nosocomial infections worldwide. This opportunistic bacterial pathogen is known to cause serious complications in immunocompromised patients and is notably the leading cause of morbidity and mortality in patients suffering from cystic fibrosis. Currently, the only line of defense against P. aeruginosa infections is antibiotic treatment. Due to the acquired and adaptive resistance mechanisms of this pathogen, the prevalence of multidrug resistant P. aeruginosa strains has increased, presenting a major problem in healthcare settings. To date, there are no approved licensed vaccines to protect against P. aeruginosa infections, prompting the urgent need alternative treatment options. An alternative to traditional vaccines is vectored immunoprophylaxis (VIP), which utilizes a safe and effective adeno-associated virus (AAV) gene therapy vector to produce sustained levels of therapeutic monoclonal antibodies (mAbs) in vivo from a single intramuscular injection. In this review, we will provide an overview of P. aeruginosa biology and key mechanisms of pathogenesis, discuss current and emerging treatment strategies for P. aeruginosa infections and highlight AAV-VIP as a promising novel therapeutic platform.
Collapse
Affiliation(s)
- Jordyn A. Lopes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amira D. Rghei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brad Thompson
- Avamab Pharma Inc., 120, 4838 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
190
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
191
|
Shiraishi Y, Adachi T, Cacicedo JM, Ido Y. Development of a high-yield, high-quality purification process for adeno-associated virus vectors that can be used in vivo without ultracentrifugation: Application to a lung endothelial cell-targeted adeno-associated virus. FASEB J 2022; 36:e22653. [PMID: 36374251 DOI: 10.1096/fj.202200840rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are useful vectors for expressing genes of interest in vivo because of their low immunogenicity and long-term gene expression. Various mutations have been introduced in recent years and have enabled high-efficacy, stabilized, and organ-oriented transduction. Our purpose for using rAAV is to express our target gene in the mouse lung to investigate pulmonary artery hypertension. We constructed a self-complementary AAV having mutant capsids with the ESGHGYF insert, which directs the vectors to lung endothelial cells. However, when this mutant virus was purified from the producing cells by the conventional method using an ultracentrifuge, it resulted in a low yield. In addition, the purification method using an ultracentrifuge is tedious and labor-intensive. Therefore, we aimed to develop a simple, high-quality method for obtaining enough lung-targeted rAAV. First, we modified amino acids (T491V and Y730F) of the capsid to stabilize the rAAV from degradation, and we optimized culture conditions. Next, we noticed that many rAAVs were released from the cells into the culture medium. We, therefore, improved our purification method by purifying from the culture medium without the ultracentrifugation step. Purification without ultracentrifugation had the problem that impurities were mixed in, causing inflammation. However, by performing PEG precipitation and chloroform extraction twice, we were able to purify rAAV that caused only as little inflammation as that obtained by the ultracentrifuge method. Sufficient rAAV was obtained and can now be administered to a rat as well as mice from a single dish: 1.50 × 1013 ± 3.58 × 1012 vector genome from one φ150 mm dish (mean ± SEM).
Collapse
Affiliation(s)
- Yasunaga Shiraishi
- Division of Environmental Medicine, National Defense Medical College Research Institute, National Defense Medical College, Saitama, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Adachi
- Division of Cardiovascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jose M Cacicedo
- Department of Research and Development, ALPCO Diagnostics, Salem, New Hampshire, USA
| | - Yasuo Ido
- Division of Cardiovascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
192
|
Fan S, Yoo JH, Park G, Yeh S, Conrady CD. Type I Interferon Signaling Is Critical During the Innate Immune Response to HSV-1 Retinal Infection. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 36583876 PMCID: PMC9807183 DOI: 10.1167/iovs.63.13.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/10/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Acute retinal necrosis (ARN) is a herpesvirus infection of the retina with blinding complications. In this study, we sought to create a reproducible mouse model of ARN that mimics human disease to better understand innate immunity within the retina during virus infection. Methods C57Bl/6J wild type (WT) and type I interferon receptor-deficient (IFNAR-/-) mice were infected with varying amounts of herpes simplex virus type 1 (HSV-1) via subretinal injection. Viral titers, optical coherence tomography (OCT) and fundus photography, the development of encephalitis, and ocular histopathology were scored and compared between groups of WT and IFNAR-/- mice. Results The retina of WT mice could be readily infected with HSV-1 via subretinal injection resulting in retinal whitening and full-thickness necrosis as determined by in vivo imaging and histopathology. In IFNAR-/- mice, HSV-1-induced retinal pathology was significantly worse when compared with WT mice, and viral titers were significantly elevated within two days after infection and persisted to day 5 after infection within the retina. These results were also observed in the brain where there were significantly higher viral titers and frequency of encephalitis in IFNAR-/- when compared to WT mice. Conclusions Collectively, these findings show that our new mouse model of ARN mimics human disease and can be used to study innate immunity within the retina. We conclude that type I interferons are critical in containing HSV-1 locally within retinal tissues and prohibiting spread into the brain.
Collapse
Affiliation(s)
- Shan Fan
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jae Hyuk Yoo
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Garam Park
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
193
|
Yamaguti-Hayakawa GG, Ozelo MC. Gene therapy for hemophilia: looking beyond factor expression. Exp Biol Med (Maywood) 2022; 247:2223-2232. [PMID: 36691324 PMCID: PMC9899988 DOI: 10.1177/15353702221147565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemophilia A (factor VIII [FVIII] deficiency) and hemophilia B (factor IX [FIX] deficiency) are the X-linked recessive bleeding disorders that clinically manifest with recurrent bleeding, predominantly into muscles and joints. In its severe presentation, when factor activity is less than 1% of normal, hemophilia presents with spontaneous musculoskeletal bleeds and may progress to debilitating chronic arthropathy. Management of hemophilia has changed profoundly in the past decades. From on-demand to prophylactic factor concentrate replacement, the treatment goal shifted from controlling bleeds to preventing bleeds and improving quality of life. In this new scenario, gene therapy has arisen as a paradigm-changing therapeutic option, a one-time treatment with the potential to achieve sustained coagulation FVIII or FIX expression even within the normal range. This review discusses the critical impact of adeno-associated virus (AAV) gene transfer in hemophilia care, including the recent clinical outcomes, changes in disease perceptions, and its treatment burden. We also discuss the challenging scenario of the AAV-directed immune response in the clinical setting and potential strategies to improve the long-lasting efficacy of hemophilia gene therapy efficacy.
Collapse
Affiliation(s)
- Gabriela G Yamaguti-Hayakawa
- Department of Internal Medicine,
School of Medical Sciences, University of Campinas, UNICAMP, Campinas
13083-878, Brazil,Hemocentro UNICAMP, University of
Campinas, Campinas 13083-878, Brazil
| | - Margareth C Ozelo
- Department of Internal Medicine,
School of Medical Sciences, University of Campinas, UNICAMP, Campinas
13083-878, Brazil,Hemocentro UNICAMP, University of
Campinas, Campinas 13083-878, Brazil,Margareth C Ozelo.
| |
Collapse
|
194
|
Shi C, Tian L, Zheng W, Zhu Y, Sun P, Liu L, Liu W, Song Y, Xia X, Xue X, Zheng X. Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates. Emerg Microbes Infect 2022; 11:1439-1451. [PMID: 35579916 PMCID: PMC9154782 DOI: 10.1080/22221751.2022.2078226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three or four intramuscular doses of the inactivated human rabies virus vaccines are needed for pre- or post-exposure prophylaxis in humans. This procedure has made a great contribution to prevent human rabies deaths, which bring huge economic burdens in developing countries. Herein, a recombinant adeno-associated virus serotype 9, AAV9-RABVG, harbouring a RABV G gene, was generated to serve as a single dose rabies vaccine candidate. The RABV G protein was stably expressed in the 293T cells infected with AAV9-RABVG. A single dose of 2 × 1011 v.p. of AAV9-RABVG induced robust and long-term positive seroconversions in BALB/c mice with a 100% survival from a lethal RABV challenge. In Cynomolgus Macaques vaccinated with a single dose of 1 × 1013 v.p. of AAV9-RABVG, the titres of rabies VNAs increased remarkably from 2 weeks after immunity, and maintained over 31.525 IU/ml at 52 weeks. More DCs were activated significantly for efficient antigen presentations of RABV G protein, and more B cells were activated to be responsible for antibody responses. Significantly more RABV G specific IFN-γ-secreting CD4+ and CD8+ T cells, and IL-4-secreting CD4+ T cells were activated, and significantly higher levels of IL-2, IFN-γ, IL-4, and IL-10 were secreted to aid immune responses. Overall, the AAV9-RABVG was a single dose rabies vaccine candidate with great promising by inducing robust, long-term humoral responses and both Th1 and Th2 cell-mediated immune responses in mice and non-human primates.
Collapse
Affiliation(s)
- Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yelei Zhu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Peilu Sun
- Institute of Materia Medical, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, People's Republic of China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
195
|
Tiyaboonchai A, Vonada A, Posey J, Pelz C, Wakefield L, Grompe M. Self-cleaving guide RNAs enable pharmacological selection of precise gene editing events in vivo. Nat Commun 2022; 13:7391. [PMID: 36450762 PMCID: PMC9712609 DOI: 10.1038/s41467-022-35097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Expression of guide RNAs in the CRISPR/Cas9 system typically requires the use of RNA polymerase III promoters, which are not cell-type specific. Flanking the gRNA with self-cleaving ribozyme motifs to create a self-cleaving gRNA overcomes this limitation. Here, we use self-cleaving gRNAs to create drug-selectable gene editing events in specific hepatocyte loci. A recombinant Adeno Associated Virus vector targeting the Albumin locus with a promoterless self-cleaving gRNA to create drug resistance is linked in cis with the therapeutic transgene. Gene expression of both are dependent on homologous recombination into the target locus. In vivo drug selection for the precisely edited hepatocytes allows >30-fold expansion of gene-edited cells and results in therapeutic levels of a human Factor 9 transgene. Importantly, self-cleaving gRNA expression is also achieved after targeting weak hepatocyte genes. We conclude that self-cleaving gRNAs are a powerful system to enable cell-type specific in vivo drug resistance for therapeutic gene editing applications.
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Anne Vonada
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jeffrey Posey
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Carl Pelz
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
196
|
miRNA Pathway Alteration in Response to Non-Coding RNA Delivery in Viral Vector-Based Gene Therapy. Int J Mol Sci 2022; 23:ijms232314954. [PMID: 36499289 PMCID: PMC9741442 DOI: 10.3390/ijms232314954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Gene therapy is widely used to treat incurable disorders and has become a routine procedure in clinical practice. Since viruses can exhibit specific tropisms, effectively penetrate the cell, and are easy to use, most gene therapy approaches are based on viral delivery of genetic material. However, viral vectors have some disadvantages, such as immune response and cytotoxicity induced by a disturbance of cell metabolism, including miRNA pathways that are an important part of transcription regulation. Therefore, any viral-based gene therapy approach involves the evaluation of side effects and safety. It is possible for such effects to be caused either by the viral vectors themselves or by the delivered genetic material. Many gene therapy techniques use non-coding RNA delivery as an effective agent for gene expression regulation, with the risk of cellular miRNA pathways being affected due to the nature of the non-coding RNAs. This review describes the effect of viral vector entry and non-coding RNA delivery by these vectors on miRNA signaling pathways.
Collapse
|
197
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
198
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
199
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
200
|
Development and validation of methods that enable high-quality droplet digital PCR and hematological profiling data from microvolume blood samples. Bioanalysis 2022; 14:1197-1211. [PMID: 36331037 DOI: 10.4155/bio-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: Mouse models have been crucial to preclinical studies in the increasingly relevant fields of cell and gene therapy. However, only small quantities of mouse blood can be collected without producing adverse physiological effects that compromise data integrity. Results: To address this limitation, two combined methods were developed to create detailed droplet digital PCR (ddPCR) and hematological profiles using only ∼20 μl of mouse blood. The validation of these methods, which can serve as a foundation for a standardized regulatory pipeline for ddPCR, is discussed. Even when using small amounts of input, this ddPCR protocol is accurate, precise, selective, specific, stable and robust. Conclusion: These techniques enable more frequent sample collection for higher-resolution pharmacokinetic data that meets or exceeds quality standards.
Collapse
|