151
|
Singer W, Frick M, Haller T, Bernet S, Ritsch-Marte M, Dietl P. Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers. Biophys J 2003; 84:1344-51. [PMID: 12547815 PMCID: PMC1302711 DOI: 10.1016/s0006-3495(03)74950-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to "pull" surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of approximately 12.5 pN/ micro m. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an "all-or-none" fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.
Collapse
Affiliation(s)
- Wolfgang Singer
- Department of Medical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
152
|
Neco P, Gil A, Del Mar Francés M, Viniegra S, Gutiérrez LM. The role of myosin in vesicle transport during bovine chromaffin cell secretion. Biochem J 2002; 368:405-13. [PMID: 12225290 PMCID: PMC1223018 DOI: 10.1042/bj20021090] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 08/28/2002] [Accepted: 09/12/2002] [Indexed: 11/17/2022]
Abstract
Bovine adrenomedullary cells in culture have been used to study the role of myosin in vesicle transport during exocytosis. Amperometric determination of calcium-dependent catecholamine release from individual digitonin-permeabilized cells treated with 3 microM wortmannin or 20 mM 2,3-butanedione monoxime (BDM) and stimulated by continuous as well as repetitive calcium pulses showed alteration of slow phases of secretion when compared with control untreated cells. The specificity of these drugs for myosin inhibition was further supported by the use of peptide-18, a potent peptide affecting myosin light-chain kinase activity. These results were supported also by studying the impact of these myosin inhibitors on chromaffin granule mobility using direct visualization by dynamic confocal microscopy. Wortmannin and BDM affect drastically vesicle transport throughout the cell cytoplasm, including the region beneath the plasma membrane. Immunocytochemical studies demonstrate the presence of myosin types II and V in the cell periphery. The capability of antibodies to myosin II in abrogating the secretory response from populations of digitonin-permeabilized cells compared with the modest effect caused by anti-myosin V suggests that myosin II plays a fundamental role in the active transport of vesicles occurring in the sub-plasmalemmal area during chromaffin cell secretory activity.
Collapse
Affiliation(s)
- Patricia Neco
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
153
|
Vitale N, Chasserot-Golaz S, Bailly Y, Morinaga N, Frohman MA, Bader MF. Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. J Cell Biol 2002; 159:79-89. [PMID: 12379803 PMCID: PMC2173505 DOI: 10.1083/jcb.200203027] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ADP ribosylation factor (ARF) GTP binding proteins are believed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. Here we show that ARF6 is specifically associated with dense-core secretory granules in neuroendocrine PC12 cells. Stimulation with a secretagogue triggers the recruitment of secretory granules to the cell periphery and the concomitant activation of ARF6 by the plasma membrane-associated guanine nucleotide exchange factor, ARF nucleotide binding site opener (ARNO). Expression of the constitutively inactive ARF6(T27N) mutant inhibits secretagogue-dependent exocytosis from PC12 cells. Using a mutant of ARF6 specifically impaired for PLD1 stimulation, we find that ARF6 is functionally linked to phospholipase D (PLD)1 in the exocytotic machinery. Finally, we show that ARNO, ARF6, and PLD1 colocalize at sites of exocytosis, and we demonstrate direct interaction between ARF6 and PLD1 in stimulated cells. Together, these results provide the first direct evidence that ARF6 plays a role in calcium-regulated exocytosis in neuroendocrine cells, and suggest that ARF6-stimulated PLD1 activation at the plasma membrane and consequent changes in membrane phospholipid composition are critical for formation of the exocytotic fusion pore.
Collapse
Affiliation(s)
- Nicolas Vitale
- Unité Propre de Recherche 2356, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|
154
|
Holz RW, Axelrod D. Localization of phosphatidylinositol 4,5-P(2) important in exocytosis and a quantitative analysis of chromaffin granule motion adjacent to the plasma membrane. Ann N Y Acad Sci 2002; 971:232-43. [PMID: 12438123 DOI: 10.1111/j.1749-6632.2002.tb04467.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A slow ATP-dependent priming step precedes a rapid, Ca(2+)-dependent triggering step in exocytosis in chromaffin cells and in most, if not all, differentiated secretory cells. A major component of ATP-dependent secretion in permeabilized cells reflects the maintenance of the polyphosphoinositides, especially PtdIns-4,5-P2. Here we summarize recent experiments with PH-GFP (binds to PtdIns-4,5-P2) that indicate that PtdIns-4,5-P2 is localized primarily on the plasma membrane in chromaffin cells, and that it is this pool that plays a role in exocytosis. It is demonstrated that transiently expressed PH-GFP inhibits secretion in subsequently permeabilized cells. Recent studies using total internal reflection fluorescent microscopy (TIRFM) to measure chromaffin granule motion adjacent to the plasma membrane are also summarized. The quantitative analysis indicates that chromaffin granule motion is highly restricted and suggests that chromaffin granules are caged or tethered immediately adjacent to the plasma membrane.
Collapse
Affiliation(s)
- Ronald W Holz
- Department of Pharmacology and Department of Physics, Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
155
|
Abstract
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis of secrctory vesicles or granules. Among the cell models that have provided insight into the molecular machinery underlying the successive steps of exocytosis, adrenal chromaffin cells have taken a prominent place. Thus, most of the molecular players that orchestrate the formation, targeting, docking, and fusion of secrctory granules have been identified in chromaffin cells. By offering the opportunity to combine the use of recent biophysical techniques allowing single-vesicle resolution and specific biochemical modifications in the protein machinery involved in exocytosis, chromaffn cells remain a powerful model to address new and still open questions in the field of secretion.
Collapse
Affiliation(s)
- Marie-France Bader
- CNRS UPR-2356 Neurotransmission et Sécrétion Neuroendocrine, 67084 Strasbourg cedex, France.
| | | | | | | |
Collapse
|
156
|
Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 2002; 158:669-79. [PMID: 12177043 PMCID: PMC2174018 DOI: 10.1083/jcb.200204089] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | | | | | |
Collapse
|
157
|
Ng YK, Lu X, Levitan ES. Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells. J Physiol 2002; 542:395-402. [PMID: 12122140 PMCID: PMC2290425 DOI: 10.1113/jphysiol.2002.021733] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It has been speculated that neurosecretion can be enhanced by increasing the motion, and hence, the availability of cytoplasmic secretory vesicles. However, facilitator-induced physical mobilization of secretory vesicles has not been observed directly in living cells, and recent experimental results call this hypothesis into question. Here, high resolution green fluorescent protein (GFP)-based measurements in nerve growth factor-differentiated PC12 cells are used to test whether altering dense core vesicle (DCV) motion affects neuropeptide release. Experiments with mycalolide B and jasplakinolide demonstrate that neuropeptidergic DCV motion at the ends of processes is proportional to F-actin. Furthermore, Ba2+ increases DCV mobility without detectably modifying F-actin. Finally, we show that altering DCV motion by changing F-actin or stimulating with Ba2+ proportionally changes sustained neuropeptide release. Therefore, increasing DCV mobility facilitates prolonged neuropeptide release.
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Pharmacology, E1351 Biomedical Science Tower, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
158
|
Nerve growth factor-induced differentiation changes the cellular organization of regulated Peptide release by PC12 cells. J Neurosci 2002. [PMID: 12019308 DOI: 10.1523/jneurosci.22-10-03890.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PC12 cells, like endocrine chromaffin cells, undergo neuronal-like differentiation in response to nerve growth factor (NGF). Here we report that this phenotype conversion produces major changes in release of a green fluorescent protein-tagged neuropeptide-hormone. First, the spatial distribution of the releasable pool is altered; peptide release from untreated cells is supported predominantly by membrane-proximal vesicles, whereas a diffuse pool at the ends of processes is used by NGF-treated cells. Second, the time course of release evoked by photolysis of caged Ca(2+) is faster after differentiation. High-resolution measurements suggest that a slow step before membrane fusion dominates the kinetics of release in untreated cells. Finally, the effect of actin microfilament depolymerization on total release is altered by NGF treatment. This implies that the mechanism that limits the size of the releasable pool is altered by phenotype conversion. Therefore, the cellular organization of peptide release is plastic and changes in response to NGF. This flexibility may be used to generate cell-specific release properties.
Collapse
|
159
|
Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K. The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 2002; 157:291-302. [PMID: 11956230 PMCID: PMC2199248 DOI: 10.1083/jcb.200111026] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) alpha and beta. Gem binds ROKbeta independently of RhoA in the ROKbeta coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKbeta-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKbeta. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKbeta- and Rad opposed ROKalpha-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKbeta containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKbeta is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.
Collapse
Affiliation(s)
- Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Neuhaus EM, Almers W, Soldati T. Morphology and dynamics of the endocytic pathway in Dictyostelium discoideum. Mol Biol Cell 2002; 13:1390-407. [PMID: 11950947 PMCID: PMC102277 DOI: 10.1091/mbc.01-08-0392] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Revised: 12/27/2001] [Accepted: 01/18/2002] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechanisms of endocytosis, but the morphological characterization of the organelles along this pathway and the comparison with equivalent and/or different organelles in animal cells and yeasts were lagging. Herein, we used a combination of evanescent wave microscopy and electron microscopy of rapidly frozen samples to visualize primary endocytic vesicles, vesicular-tubular structures of the early and late endo-lysosomal system, such as multivesicular bodies, and the specialized secretory lysosomes. In addition, we present biochemical and morphological evidence for the existence of a micropinocytic pathway, which contributes to the uptake of membrane along side macropinocytosis, which is the major fluid phase uptake process. This complex endosomal compartment underwent continuous cycles of tubulation/vesiculation as well as homo- and heterotypic fusions, in a way reminiscent of mechanisms and structures documented in leukocytes. Finally, egestion of fluid phase from the secretory lysosomes was directly observed.
Collapse
Affiliation(s)
- Eva M Neuhaus
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
161
|
Abstract
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.
Collapse
Affiliation(s)
- Barbara Wäsle
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK
| | | |
Collapse
|
162
|
Holst J, Sim ATR, Ludowyke RI. Protein phosphatases 1 and 2A transiently associate with myosin during the peak rate of secretion from mast cells. Mol Biol Cell 2002; 13:1083-98. [PMID: 11907284 PMCID: PMC99621 DOI: 10.1091/mbc.01-12-0587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mast cells undergo cytoskeletal restructuring to allow secretory granules passage through the cortical actomyosin barrier to fuse with the plasma membrane and release inflammatory mediators. Protein phosphorylation is believed to regulate these rearrangements. Although some of the protein kinases implicated in this phosphorylation are known, the relevant protein phosphatases are not. At the peak rate of antigen-induced granule mediator release (2.5 min), protein phosphatases PP1 and PP2A, along with actin and myosin II, are transiently relocated to ruffles on the apical surface and a band at the peripheral edge of the cell. This leaves an area between the nucleus and the peripheral edge significantly depleted (3-5-fold) in these proteins. Phorbol 12-myristate 13-acetate (PMA) plus A23187 induces the same changes, at a time coincident with its slower rate of secretion. Coimmunoprecipitation experiments demonstrated a significantly increased association of myosin with PP1 and PP2A at the time of peak mediator release, with levels of association decreasing by 5 min. Jasplakinolide, an inhibitor of actin assembly, inhibits secretion and the cytoskeletal rearrangements. Surprisingly, jasplakinolide also affects myosin, inducing the formation of short rods throughout the cytoplasm. Inhibition of PP2A inhibited secretion, the cytoskeletal rearrangements, and led to increased phosphorylation of the myosin heavy and light chains at protein kinase C-specific sites. These findings indicate that a dynamic actomyosin cytoskeleton, partially regulated by both PP1 and PP2A, is required for mast cell secretion.
Collapse
Affiliation(s)
- Jeff Holst
- Centre for Immunology, St. Vincent's Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
163
|
Frantz C, Coppola T, Regazzi R. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells. Exp Cell Res 2002; 273:119-26. [PMID: 11822867 DOI: 10.1006/excr.2001.5432] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the involvement of Rho GTPases in the secretory process of PC12 cells. Overexpression of wild-type RhoA, Rac1, or Cdc42 did affect exocytosis. In contrast, secretion elicited by depolarizing K(+) concentrations was enhanced by the dominant negative mutants RhoA(N19), Rac1(N17), and Cdc42(N17) and was diminished by the constitutively active mutants RhoA(V14), Rac1(V12), and Cdc42(V12). The inhibition observed in the presence of RhoA(V14) was likely a result of the activation of ROK(alpha), since the catalytic domain of this kinase was able to mimic both the reorganization of the actin cytoskeleton and the decrease in exocytosis induced by the RhoA mutant. Part of the effect of Rac1(V12) may be due to POR1 activation. Thus, overexpression of full-length POR1 diminished K(+)-stimulated exocytosis, and a point mutation in the effector domain of Rac1(V12) that prevents the interaction with POR1 abolished the inhibitory effect of the GTPase. We also searched for the Cdc42(V12) target but overexpression of the Cdc42 effector WASP did not mimic the inhibition of exocytosis observed in cells transfected with the activated GTPase. Our findings indicate that different signaling cascades resulting in the activation of RhoA, Rac1, or Cdc42 can modulate the exocytotic process of neuroendocrine cells.
Collapse
Affiliation(s)
- Christian Frantz
- Institut de Biologie Cellulaire et de Morphologie, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
164
|
Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 2001; 276:42436-44. [PMID: 11546823 DOI: 10.1074/jbc.m108297200] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process.
Collapse
Affiliation(s)
- M Kanzaki
- Department of Physiology and Biophysics, the University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
165
|
Abstract
Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique has many other applications as well, most notably for studying biochemical kinetics and single biomolecule dynamics at surfaces. A brief summary of these applications is provided, followed by presentations of the physical basis for the technique and the various ways to implement total internal reflection fluorescence in a standard fluorescence microscope.
Collapse
Affiliation(s)
- D Axelrod
- Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
166
|
Abstract
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.
Collapse
Affiliation(s)
- G Eitzen
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | | | |
Collapse
|
167
|
Abstract
Membrane fusion reactions have been considered to be primarily regulated by Rab GTPases. In the model system of homotypic vacuole fusion in the yeast Saccharomyces cerevisiae, we show that Cdc42p, a member of the Rho family of GTPases, has a direct role in membrane fusion. Genetic evidence suggested a relationship between Cdc42p and Vtc1p/Nrf1p, a central part of the vacuolar membrane fusion machinery. Vacuoles from cdc42 temperature-sensitive mutants are deficient for fusion at the restrictive temperature. Specific amino acid changes on the Cdc42p protein surface in these mutants define the putative interaction domain that is crucial for its function in membrane fusion. Affinity-purified antibodies to this domain inhibited the in vitro fusion reaction. Using these antibodies in kinetic analyses and assays for subreactions of the priming, docking and post-docking phase of the reaction, we show that Cdc42p action follows Ypt7p-dependent tethering, but precedes the formation of trans-SNARE complexes. Thus, our data define an effector binding domain of Cdc42p by which it regulates the docking reaction of vacuole fusion.
Collapse
Affiliation(s)
| | - Douglas I. Johnson
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstrasse 37–39, 72076 Tübingen, Germany and
Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA Corresponding author e-mail:
| | - Andreas Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstrasse 37–39, 72076 Tübingen, Germany and
Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA Corresponding author e-mail:
| |
Collapse
|
168
|
Suginta W, Karoulias N, Aitken A, Ashley RH. Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 2001; 359:55-64. [PMID: 11563969 PMCID: PMC1222121 DOI: 10.1042/0264-6021:3590055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian chloride intracellular channel (CLIC) (p64-related) proteins are widely expressed, with an unusual dual localization as both soluble and integral membrane proteins. The molecular basis for their cellular localization and ion channel activity remains unclear. To help in addressing these problems, we identified novel rat brain CLIC4 (p64H1) binding partners by affinity chromatography, mass spectrometric analysis and microsequencing. Brain CLIC4 binds dynamin I, alpha-tubulin, beta-actin, creatine kinase and two 14-3-3 isoforms; the interactions are confirmed in vivo by immunoprecipitation. Gel overlay and reverse pull-down assays indicate that the binding of CLIC4 to dynamin I and 14-3-3zeta is direct. In HEK-293 cells, biochemical and immunofluorescence analyses show partial co-localization of recombinant CLIC4 with caveolin and with functional caveolae, which is consistent with a dynamin-associated role for CLIC4 in caveolar endocytosis. We speculate that brain CLIC4 might be involved in the dynamics of neuronal plasma membrane microdomains (micropatches) containing caveolin-like proteins and might also have other cellular roles related to membrane trafficking. Our results provide the basis for new hypotheses concerning novel ways in which CLIC proteins might be associated with cell membrane remodelling, the control of cell shape, and anion channel activity.
Collapse
Affiliation(s)
- W Suginta
- Department of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
169
|
Rudolf R, Salm T, Rustom A, Gerdes HH. Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 2001; 12:1353-65. [PMID: 11359927 PMCID: PMC34589 DOI: 10.1091/mbc.12.5.1353] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory granules store neuropeptides and hormones and exhibit regulated exocytosis upon appropriate cellular stimulation. They are generated in the trans-Golgi network as immature secretory granules, short-lived vesicular intermediates, which undergo a complex and poorly understood maturation process. Due to their short half-life and low abundance, real-time studies of immature secretory granules have not been previously possible. We describe here a pulse/chase-like system based on the expression of a human chromogranin B-GFP fusion protein in neuroendocrine PC12 cells, which permits direct visualization of the budding of immature secretory granules and their dynamics during maturation. Live cell imaging revealed that newly formed immature secretory granules are transported in a direct and microtubule-dependent manner within a few seconds to the cell periphery. Our data suggest that the cooperative action of microtubules and actin filaments restricts immature secretory granules to the F-actin-rich cell cortex, where they move randomly and mature completely within a few hours. During this maturation period, secretory granules segregate into pools of different motility. In a late phase of maturation, 60% of secretory granules were found to be immobile and about half of these underwent F-actin-dependent tethering.
Collapse
Affiliation(s)
- R Rudolf
- Department of Neurobiology, Interdisciplinary Center for Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
170
|
Ort T, Voronov S, Guo J, Zawalich K, Froehner SC, Zawalich W, Solimena M. Dephosphorylation of beta2-syntrophin and Ca2+/mu-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. EMBO J 2001; 20:4013-23. [PMID: 11483505 PMCID: PMC149140 DOI: 10.1093/emboj/20.15.4013] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Islet cell autoantigen (ICA) 512 is a receptor-tyrosine phosphatase-like protein associated with the secretory granules of neuroendocrine cells, including pancreatic beta-cells. Binding of its cytoplasmic tail to beta2-syntrophin suggests that ICA512 connects secretory granules to the utrophin complex and the actin cytoskeleton. Here we show that stimulation of insulin secretion from INS-1 cells triggers the biosynthesis of pro-ICA512 and the degradation of its mature form. Inhibition of calpain, which is activated upon stimulation of insulin secretion, prevents the Ca2+-dependent proteolysis of ICA512. In vitro mu-calpain cleaves ICA512 between a putative PEST domain and the beta2-syntrophin binding site, whereas binding of ICA512 to beta2-syntrophin protects the former from cleavage. beta2-syntrophin and its F-actin-binding protein utrophin are enriched in subcellular fractions containing secretory granules. ICA512 preferentially binds phospho-beta2-syntrophin and stimulation of insulin secretion induces the Ca2+-dependent, okadaic acid-sensitive dephosphorylation of beta2-syntrophin. Similarly to calpeptin, okadaic acid inhibits ICA512 proteolysis and insulin secretion. Thus, stimulation of insulin secretion might promote the mobilization of secretory granules by inducing the dissociation of ICA512 from beta2-syntrophin-utrophin complexes and the cleavage of the ICA512 cytoplasmic tail by mu-calpain.
Collapse
Affiliation(s)
- Tatiana Ort
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Sergei Voronov
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Jun Guo
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Kathleen Zawalich
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Stanley C. Froehner
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Walter Zawalich
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| | - Michele Solimena
- Department of Internal Medicine, Section of Endocrinology, School of Nursing and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8020 and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA Corresponding author at: Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8020, USA e-mail:
| |
Collapse
|
171
|
Landriscina M, Soldi R, Bagalá C, Micucci I, Bellum S, Tarantini F, Prudovsky I, Maciag T. S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro. J Biol Chem 2001; 276:22544-52. [PMID: 11410600 DOI: 10.1074/jbc.m100546200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100A13, a member of the S100 gene family of Ca(2+)-binding proteins has been previously characterized as a component of a brain-derived heparin-binding multiprotein aggregate/complex containing fibroblast growth factor 1 (FGF1). We report that while expression of S100A13 in NIH 3T3 cells results in the constitutive release of S100A13 into the extracellular compartment at 37 degrees C, co-expression of S100A13 with FGF1 represses the constitutive release of S100A13 and enables NIH 3T3 cells to release S100A13 in response to temperature stress. S100A13 release in response to stress occurs with kinetics similar to that observed for the stress-induced release of FGF1, but S100A13 expression is able to reverse the sensitivity of FGF1 release to inhibitors of transcription and translation. The release of FGF1 and S100A13 in response to heat shock results in the solubility of FGF1 at 100% (w/v) ammonium sulfate saturation, and the expression of a S100A13 deletion mutant lacking its novel basic residue-rich domain acts as a dominant negative effector of FGF1 release in vitro. Surprisingly, the expression of S100A13 also results in the stress-induced release of a Cys-free FGF1 mutant, which is normally not released from NIH 3T3 cells in response to heat shock. These data suggest that S100A13 may be a component of the pathway for the release of the signal peptide-less polypeptide, FGF1, and may involve a role for S100A13 in the formation of a noncovalent FGF1 homodimer.
Collapse
Affiliation(s)
- M Landriscina
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 2001; 153:177-90. [PMID: 11285284 PMCID: PMC2185529 DOI: 10.1083/jcb.153.1.177] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 01/29/2001] [Indexed: 11/22/2022] Open
Abstract
We used total internal reflection fluorescence microscopy to study quantitatively the motion and distribution of secretory granules near the plasma membrane (PM) of living bovine chromaffin cells. Within the approximately 300-nm region measurably illuminated by the evanescent field resulting from total internal reflection, granules are preferentially concentrated close to the PM. Granule motion normal to the substrate (the z direction) is much slower than would be expected from free Brownian motion, is strongly restricted over tens of nanometer distances, and tends to reverse directions within 0.5 s. The z-direction diffusion coefficients of granules decrease continuously by two orders of magnitude within less than a granule diameter of the PM as granules approach the PM. These analyses suggest that a system of tethers or a heterogeneous matrix severely limits granule motion in the immediate vicinity of the PM. Transient expression of the light chains of tetanus toxin and botulinum toxin A did not disrupt the restricted motion of granules near the PM, indicating that SNARE proteins SNAP-25 and VAMP are not necessary for the decreased mobility. However, the lack of functional SNAREs on the plasma or granule membranes in such cells reduces the time that some granules spend immediately adjacent to the PM.
Collapse
Affiliation(s)
- Laura M. Johns
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109
| | - Edwin S. Levitan
- Department of Pharmacology, The University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Eric A. Shelden
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109
| | - Ronald W. Holz
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Axelrod
- Department of Physics and Biophysics Research Division, The University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
173
|
Steyer JA, Almers W. A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2001; 2:268-75. [PMID: 11283724 DOI: 10.1038/35067069] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma membrane is a two-dimensional compartment that relays most biological signals sent or received by a cell. Signalling involves membrane receptors and their associated enzyme cascades as well as organelles such as exocytic and endocytic vesicles. Advances in light microscope design, new organelle-specific vital stains and fluorescent proteins have renewed the interest in evanescent field fluorescence microscopy, a method uniquely suited to image the plasma membrane with its associated organelles and macromolecules in living cells. The method shows even the smallest vesicles made by cells, and can image the dynamics of single protein molecules.
Collapse
Affiliation(s)
- J A Steyer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
174
|
Jahraus A, Egeberg M, Hinner B, Habermann A, Sackman E, Pralle A, Faulstich H, Rybin V, Defacque H, Griffiths G. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 2001; 12:155-70. [PMID: 11160830 PMCID: PMC30575 DOI: 10.1091/mbc.12.1.155] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Revised: 10/12/2000] [Accepted: 11/08/2000] [Indexed: 11/11/2022] Open
Abstract
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.
Collapse
Affiliation(s)
- A Jahraus
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Magoulas C, McGuinness L, Balthasar N, Carmignac DF, Sesay AK, Mathers KE, Christian H, Candeil L, Bonnefont X, Mollard P, Robinson IC. A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice. Endocrinology 2000; 141:4681-9. [PMID: 11108283 DOI: 10.1210/endo.141.12.7828] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In stable transfection experiments in the GH-producing GC cell line, a construct containing the entire signal peptide and the first 22 residues of human GH linked in frame with enhanced green fluorescent protein (eGFP), produced brightly fluorescent cells with a granular distribution of eGFP. This eGFP reporter was then inserted into a 40-kb cosmid transgene containing the locus control region for the hGH gene and used to generate transgenic mice. Anterior pituitaries from these GH-eGFP transgenic mice showed numerous clusters of strongly fluorescent cells, which were also immunopositive for GH, and which could be isolated and enriched by fluorescence-activated cell sorting. Confocal scanning microscopy of pituitary GH cells from GH-eGFP transgenic mice showed a markedly granular appearance of fluorescence. Immunogold electron microscopy and RIA confirmed that the eGFP product was packaged in the dense cored secretory vesicles of somatotrophs and was secreted in parallel with GH in response to stimulation by GRF. Using eGFP fluorescence, it was possible to identify clusters of GH cells in acute pituitary slices and to observe spontaneous transient rises in their intracellular Ca2+ concentrations after loading with Ca2+ sensitive dyes. This transgenic approach opens the way to direct visualization of spontaneous and secretagogue-induced secretory mechanisms in identified GH cells.
Collapse
Affiliation(s)
- C Magoulas
- Division of Neurophysiology, National Institute for Medical Research Mill Hill, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Zenisek D, Steyer JA, Almers W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 2000; 406:849-54. [PMID: 10972279 DOI: 10.1038/35022500] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To sustain high rates of transmitter release, synaptic terminals must rapidly re-supply vesicles to release sites and prime them for exocytosis. Here we describe imaging of single synaptic vesicles near the plasma membrane of live ribbon synaptic terminals. Vesicles were captured at small, discrete active zones near the terminal surface. An electric stimulus caused them to undergo rapid exocytosis, seen as the release of a fluorescent lipid from the vesicles into the plasma membrane. Next, vesicles held in reserve about 20 nm from the plasma membrane advanced to exocytic sites, and became release-ready 250 ms later. Apparently a specific structure holds vesicles at an active zone to bring v-SNAREs and t-SNAREs, the proteins that mediate vesicle fusion, within striking distance of each other, and then allows the triggered movement of such vesicles to the plasma membrane.
Collapse
Affiliation(s)
- D Zenisek
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|