151
|
Padmanabha H, Bolker B, Lord CC, Rubio C, Lounibos LP. Food availability alters the effects of larval temperature on Aedes aegypti growth. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:974-84. [PMID: 21936315 PMCID: PMC4226433 DOI: 10.1603/me11020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Variation in temperature and food availability in larval habitats can influence the abundance, body size, and vector competence of the mosquito Aedes aegypti. Although increased temperature has energetic costs for growing larvae, how food resources influence the developmental response of this mosquito species to thermal conditions is unknown. We explored how rearing temperature and food affect allometric scaling between wing size and epidermal cell size in Ae. aegypti. Mosquitoes were reared at 22 and 28 degrees C across a gradient of field-collected detritus designed to simulate commonly observed natural larval food resources. Overall, reduced temperature and increased food level increased wing size, but only temperature affected cell size. Females fed the least food had the longest time to maturation, and their increases in wing size induced by cold temperature were associated with larger, rather than more, cells. By contrast, males fed the most food had the shortest time to maturation, and their increases in wing size induced by cold temperature were associated with more, rather than larger, cells. Therefore, food levels can alter the underlying physiological mechanisms generating temperature-size patterns in mosquitoes, suggesting that the control of development is sensitive to the combination of nutrient and thermal conditions, rather than each independently. Conditions prolonging development time may favor increased cell division over growth. We suggest that understanding the effects of climate change on Ae. aegypti vectorial capacity requires an improved knowledge of how water temperature interacts with limited food resources and competition in aquatic container habitats.
Collapse
Affiliation(s)
- H Padmanabha
- Instituto Nacional de Salud de Colombia, Vigilancia y Control en Salud Publica, Bogota, Colombia.
| | | | | | | | | |
Collapse
|
152
|
Abstract
The regulation of organ size is a long-standing problem in animal development. Studies in this area have shown that organ-intrinsic patterning morphogens influence organ size, guiding growth in accordance with positional information. However, organ-extrinsic humoral factors such as insulin also affect organ size, synchronizing growth with nutrient levels. Proliferating cells must integrate instructions from morphogens with those from nutrition so that growth proceeds as a function of both inputs. Coordinating cell proliferation with morphogens and nutrients ensures organs scale appropriately with body size, but the basis of this coordination is unclear. Here, the problem is illustrated using the Drosophila wing--a paradigm for organ growth and size control--and a potential solution suggested.
Collapse
Affiliation(s)
- Joseph Parker
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
153
|
Dabour N, Bando T, Nakamura T, Miyawaki K, Mito T, Ohuchi H, Noji S. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor. Dev Growth Differ 2011; 53:857-69. [PMID: 21777227 DOI: 10.1111/j.1440-169x.2011.01291.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.
Collapse
Affiliation(s)
- Noha Dabour
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
154
|
Goodman RM, Heah TP. Temperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis. Integr Zool 2011; 5:208-17. [PMID: 21392339 DOI: 10.1111/j.1749-4877.2010.00206.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among ectotherms, individuals raised in cooler temperatures often have larger body size and/or larger cell size. The current study tested whether geographic variation in cell size and plasticity for cell size exist in a terrestrial, ectothermic vertebrate, Anolis carolinensis Voigt, 1832. We demonstrated temperature-induced plasticity in erythrocytes and epithelial cells of hatchlings lizards derived from the eggs of females sampled from four populations and incubated at multiple temperatures. Larger cells were produced in hatchlings from cooler treatments; however, hatchling body size was unaffected by temperature. Therefore, temperature-induced plasticity applies at the cellular, but not organismal, level in A. carolinensis. In addition, reaction norms for cell size differed among populations. There was a latitudinal trend in cell size and in plasticity of cell size among our study populations. The two southernmost populations showed plasticity in cell size, whereas the two northernmost ones did not. We suggest that selection pressure for larger cell size in northern, cooler environments has restricted plasticity in A. carolinensis applied at the cellular level in response to variable incubation environments.
Collapse
Affiliation(s)
- Rachel M Goodman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.
| | | |
Collapse
|
155
|
Dias FBS, Paula ASD, Belisário CJ, Lorenzo MG, Bezerra CM, Harry M, Diotaiuti L. Influence of the palm tree species on the variability of Rhodnius nasutus Stål, 1859 (Hemiptera, Reduviidae, Triatominae). INFECTION GENETICS AND EVOLUTION 2011; 11:869-77. [PMID: 21335104 DOI: 10.1016/j.meegid.2011.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
156
|
Jeanne RL, Suryanarayanan S. A new model for caste development in social wasps. Commun Integr Biol 2011; 4:373-7. [PMID: 21966550 DOI: 10.4161/cib.4.4.15262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022] Open
Abstract
Specialization into reproductive and non-reproductive castes is one of the defining traits of eusocial insects. Knowledge of the proximal causes of caste differentiation is therefore central to achieving an understanding of the evolution of eusociality. Castes are an example of a polyphenism, multiple, discrete phenotypes arising from a single genotype in response to differing environmental conditions. Here we focus on recent work in the social wasps to provide insight into how environmental conditions may trigger the development of caste across a range from independent- to swarm-founding social species. The amount of food larvae receive has long been recognized as a key input factor in the determination of caste, but that alone is insufficient to account for the range of combinations of size, development time and caste among the female offspring of Polistes, an independent-founding wasp. Recent experimental work on P. fuscatus has shown that vibrations that are associated with the feeding of larvae are another essential environmental input in the determination of caste. we present a model of how vibrational signaling in the context of feeding larvae could interact with nutritional input to account for the developmental patterns seen in these wasps. Mapping the distribution of vibrational signaling onto a phylogeny of the social wasps suggests that this trait characterized the common ancestor of the subfamilies vespinae + Polistinae, diversified in the independent-founding species, then was superseded by caste-determining mechanisms in the swarm-founding and vespine species that function more effectively in larger colonies.
Collapse
Affiliation(s)
- Robert L Jeanne
- Department of Entomology University of Wisconsin-Madison; Madison, WI USA
| | | |
Collapse
|
157
|
Walsh AL, Smith WA. Nutritional sensitivity of fifth instar prothoracic glands in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:809-818. [PMID: 21420972 DOI: 10.1016/j.jinsphys.2011.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
Insulin-regulated growth of the prothoracic glands appears to play a critical role in timing the last larval molt, and hence metamorphosis. The present study examined insulin signaling in relation to the growth and secretory activity of prothoracic glands in the tobacco hornworm, Manduca sexta. As larvae feed during the first half of the final larval stage, the prothoracic glands grow and ecdysone secretory capacity increases. During this period of growth, we verified the presence of insulin receptor transcript in the prothoracic glands and demonstrated that the glands were responsive to insulin, as evidenced by the in vitro phosphorylation of signaling proteins in the insulin pathway such as Akt/protein kinase B and FOXO. It was predicted that starvation would reduce ecdysone secretion with concomitant changes in insulin signaling. To test this prediction, larvae were starved and changes were quantified in two nutritionally sensitive transcripts, insulin receptor and the translation inhibitor 4EBP. In glands from starved larvae, growth and ecdysone secretory capacity were reduced, and insulin receptor and 4EBP transcripts were increased. The latter changes would be expected to accompany starvation in conjunction with enhanced insulin sensitivity and reduced protein synthesis. Increased transcription of insulin receptor and 4EBP strongly suggest that nutritional deprivation reduces the secretion of endogenous insulin-like hormones. When injected with insulin, 4EBP levels in the prothoracic glands of starved larvae decreased. Thus, insulin appeared to correct starvation-induced deficits in glandular protein synthesis. However, insulin injection did not enhance ecdysone secretion. Thus, although the prothoracic glands are insulin-responsive and insulin-like hormones may promote glandular growth as larvae feed, the effects of nutritional depletion on steroidogenesis in Manduca cannot be explained solely by reduced insulin.
Collapse
Affiliation(s)
- Amy L Walsh
- Department of Biology, Northeastern University, 360 Huntington Avenue, 134 Mugar Building, Boston, MA 02115, USA.
| | | |
Collapse
|
158
|
Cahan SH, Graves CJ, Brent CS. Intergenerational effect of juvenile hormone on offspring in Pogonomyrmex harvester ants. J Comp Physiol B 2011; 181:991-9. [PMID: 21618034 DOI: 10.1007/s00360-011-0587-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 11/24/2022]
Abstract
Parents can influence the phenotypes of their offspring via a number of mechanisms. In harvester ants, whether female progeny develop into workers or daughter queens is strongly influenced by the age and temperature conditions experienced by their mother, which is associated with variation in maternal ecdysteroid deposition in fertilized eggs. In many insects, juvenile hormone (JH) is antagonistic to ecdysteroid release, suggesting that seasonal and age-based variation in maternal JH titers may explain maternal effects on offspring size and reproductive caste. To test this hypothesis, we artificially increased maternal JH titers with methoprene, a JH analog, in laboratory colonies of two Pogonomyrmex populations exhibiting genetic caste determination. Increasing maternal JH resulted in a 50% increase in worker body size, as well as a sharp reduction in total number of progeny reared, but did not alter the genotype of progeny reared to adulthood. The intergenerational effect of JH manipulation was not mediated by a reduction in ecdysteroid deposition into eggs; instead, changes in egg size, trophic egg availability or brood/worker ratio may have altered the nutritional environment of developing larvae. Egg ecdysteroid content was significantly negatively correlated with natural variation in worker body size, however, suggesting that there are multiple independent routes by which queens can modify offspring phenotypes.
Collapse
Affiliation(s)
- Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
159
|
|
160
|
Nouvellet P, Ramirez-Sierra MJ, Dumonteil E, Gourbière S. Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in the Yucatán peninsula, Mexico. INFECTION GENETICS AND EVOLUTION 2011; 11:1243-9. [PMID: 21515410 DOI: 10.1016/j.meegid.2011.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
Triatoma dimidiata is one of the main vectors of Chagas disease, and it has been shown to be a species complex. In the Yucatán peninsula, Mexico, vector populations are non-domiciliated, and the transmission of Trypanosoma cruzi thus critically relies on vector dispersal. This leads us to study the morphologic variations in T. dimidiata wings with respect to genetic factors (sex and genotype at the ITS-2 locus), geographic location, and T. cruzi-infection status. Females were found to have larger and more symmetrical wings than males. Wing shape was influenced by ITS-2 genotypes, although differences are unlikely sufficient to allow taxonomic discrimination of the sibling species. Hybrids were shown to have similar fluctuating asymmetries in wing size and shape as parental species, but the level of asymmetry in shape varied slightly between villages. The two later findings are consistent with a high level of gene flow between parental species, and the high dispersal potential of these non-domiciliated vectors. More surprisingly, individuals infected with T. cruzi were found to have larger wings than non-infected ones. This effect, which was consistently observed across sexes, genotypes and villages, is likely to be due to a direct impact of T. cruzi on insect development. Sex and infection status are thus likely to be key factors influencing vector dispersal with important impacts on disease transmission, since dispersal directly controls the domestic abundance of these vectors. These aspects should be investigated further to fully capture the ecology and evolution of Chagas disease transmission by non-domiciliated vectors.
Collapse
Affiliation(s)
- Pierre Nouvellet
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | | | | |
Collapse
|
161
|
Lee SF, Chen Y, Varan AK, Wee CW, Rako L, Axford JK, Good RT, Blacket MJ, Reuter C, Partridge L, Hoffmann AA. Molecular basis of adaptive shift in body size in Drosophila melanogaster: functional and sequence analyses of the Dca gene. Mol Biol Evol 2011; 28:2393-402. [PMID: 21393605 DOI: 10.1093/molbev/msr064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Latitudinal body size clines in animals conforming to Bergmann's rule occur on many continents but isolating their underlying genetic basis remains a challenge. In Drosophila melanogaster, the gene Dca accounts for approximately 5-10% of the natural wing size variation (McKechnie SW, Blacket MJ, Song SV, Rako L, Carroll X, Johnson TK, Jensen LT, Lee SF, Wee CW, Hoffmann AA. 2010. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol Ecol. 19:775-784). We present here functional evidence that Dca is a negative regulator of wing size. A significant negative latitudinal cline of Dca gene expression was detected in synchronized third instar larvae. In addition, we clarified the evolutionary history of the three most common Dca promoter alleles (Dca237-1, Dca237-2, and Dca247) and showed that the insertion allele (Dca247), whose frequency increases with latitude, is associated with larger wing centroid size and higher average cell number in male flies. Finally, we showed that the overall linkage disequilibrium (LD) was low in the Dca promoter and that the insertion/deletion polymorphism that defines the Dca alleles was in strong LD with two other upstream sites. Our results provide strong support that Dca is a candidate for climatic adaptation in D. melanogaster.
Collapse
Affiliation(s)
- Siu F Lee
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Tobler A, Nijhout HF. Developmental constraints on the evolution of wing-body allometry in Manduca sexta. Evol Dev 2011; 12:592-600. [PMID: 21040425 DOI: 10.1111/j.1525-142x.2010.00444.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Artificial selection on body size in Manduca sexta produced genetic strains with large and small body sizes. The wing-body allometries of these strains differed significantly from the wild type. Selection on small body size led to a change in the scaling of wing and body size without changing the allometry: the wings were smaller relative to the body, but to the same degree at all body sizes. Selection for large body size led to a change in allometry with a decrease in the allometric coefficient, wing size becoming progressively smaller relative to body as body size increased. When larvae were deprived of food so as to produce adults of a range of small body sizes, all strains retained the same allometric coefficient but showed an increase in the scaling factor. Thus individuals starved as larvae had a smaller adult body size but had proportionally larger wings than fed individuals. We analyzed the developmental processes that could give rise to this pattern of allometries. Differences in the relative growth of body and wing disks can account for the differences in the allometric coefficients among the three body size strains. The change in wing-body allometry at large body sizes was primarily due to an insufficient time period for growth. The available time period for growth of the wing imaginal disks poses a significant constraint on the proportional growth of wings, and thus on the evolution of large body size.
Collapse
|
163
|
Puig O, Mattila J. Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid Redox Signal 2011; 14:635-47. [PMID: 20618068 DOI: 10.1089/ars.2010.3407] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drosophila melanogaster is one of the most widely used model organisms. About 77% of known human disease genes have an ortholog in Drosophila, and many of the cellular signaling pathways are common between fruit flies and mammals. For example, a key signaling pathway in the regulation of growth and metabolism, the insulin/insulin-like growth factor 1 signaling pathway, is well conserved between flies and humans. Downstream effectors of this pathway are the Forkhead box class O (FOXO) family of transcription factors, with four members in mammals and a single FOXO protein in Drosophila, dFOXO. Research in Drosophila has been critical to elucidate the molecular mechanisms by which FOXO transcription factors regulate insulin signaling. In this review, we summarize the studies leading to dFOXO identification and its characterization as a central regulator of metabolism, life span, cell cycle, growth, and stress resistance.
Collapse
Affiliation(s)
- Oscar Puig
- Molecular Profiling Research Informatics, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | |
Collapse
|
164
|
A mechanical signal biases caste development in a social wasp. Curr Biol 2011; 21:231-5. [PMID: 21256023 DOI: 10.1016/j.cub.2011.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/08/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022]
Abstract
Understanding the proximate mechanisms of caste development in eusocial taxa can reveal how social species evolved from solitary ancestors. In Polistes wasps, the current paradigm holds that differential amounts of nutrition during the larval stage cause the divergence of worker and gyne (potential queen) castes. But nutrition level alone cannot explain how the first few females to be produced in a colony develop rapidly yet have small body sizes and worker phenotypes. Here, we provide evidence that a mechanical signal biases caste toward a worker phenotype. In Polistes fuscatus, the signal takes the form of antennal drumming (AD), wherein a female trills her antennae synchronously on the rims of nest cells while feeding prey-liquid to larvae. The frequency of AD occurrence is high early in the colony cycle, when larvae destined to become workers are being reared, and low late in the cycle, when gynes are being reared. Subjecting gyne-destined brood to simulated AD-frequency vibrations caused them to emerge as adults with reduced fat stores, a worker trait. This suggests that AD influences the larval developmental trajectory by inhibiting a physiological element that is necessary to trigger diapause, a gyne trait.
Collapse
|
165
|
Nanjundiah V, Sathe S. Social selection and the evolution of cooperative groups: The example of the cellular slime moulds. Integr Biol (Camb) 2011; 3:329-42. [PMID: 21264374 DOI: 10.1039/c0ib00115e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Vidyanand Nanjundiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
166
|
Abstract
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions.
Collapse
|
167
|
Telang A, Peterson B, Frame L, Baker E, Brown MR. Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1925-34. [PMID: 20816681 PMCID: PMC2966511 DOI: 10.1016/j.jinsphys.2010.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/18/2010] [Accepted: 08/23/2010] [Indexed: 05/11/2023]
Abstract
The nutritional condition of fourth instar larvae of the yellow fever mosquito, Aedes aegypti, governs female longevity and egg production, both are key determinants of pathogen transmission. As well, nutrition provisions larval growth and development and attains its greatest pace in the last larval instar in preparation for metamorphosis to an adult. These developmental processes are regulated by a complex endocrine interplay of juvenile hormone, neuropeptides, and ecdysteroids that is nutrition sensitive. We previously determined that feeding for only 24h post-ecdysis was sufficient for fourth instar Ae. aegypti larvae to reach critical weight and accumulate sufficient nutritional stores to commit to metamorphosis. To understand the genetic basis of metamorphic commitment in Ae. aegypti, we profiled the expression of 16 genes known to be involved in the endocrine and nutritional regulation of insect metamorphosis in two ways. The first set is a developmental profile from the beginning of the fourth instar to early pupae, and the second set is for fourth instars starved or fed for up to 36 h. By comparing the two sets, we found that seven of the genes (AaegCYP302, AaegJHE43357, AaegBrCZ4, AaegCPF1-2, AaegCPR-7, AaegPpl, and AaegSlif) were expressed during metamorphic commitment in fourth instars and in fed but not starved larvae. Based on these results, the seven genes alone or in combination may serve as molecular indicators of nutritional and metamorphic status of fourth instar Ae. aegypti larvae and possibly other mosquito species in field and laboratory studies to gauge sub-lethal effects of novel and traditional cultural or chemical controls.
Collapse
Affiliation(s)
- A Telang
- Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | | | | | | | | |
Collapse
|
168
|
Bond ND, Hoshizaki DK, Gibbs AG. The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:398-404. [DOI: 10.1016/j.cbpa.2010.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/25/2022]
|
169
|
Nijhout HF, Grunert LW. The Cellular and Physiological Mechanism of Wing-Body Scaling in Manduca sexta. Science 2010; 330:1693-5. [DOI: 10.1126/science.1197292] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
170
|
Liu Y, Zhou S, Ma L, Tian L, Wang S, Sheng Z, Jiang RJ, Bendena WG, Li S. Transcriptional regulation of the insulin signaling pathway genes by starvation and 20-hydroxyecdysone in the Bombyx fat body. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1436-1444. [PMID: 20197069 DOI: 10.1016/j.jinsphys.2010.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 05/28/2023]
Abstract
Genetic studies in the fruitfly, Drosophila melanogaster, have uncovered a conserved insulin/insulin growth factor signaling (IIS) pathway that regulates nutrition-dependent growth rates of insects. From the silkworm, Bombyx mori, we have identified and characterized several key genes involved in the IIS pathway, including InR, IRS, PI3K110, PI3K60, PTEN, PDK, and Akt. Tissue distribution analysis showed that most of these genes were highly expressed in the fat body implying that the IIS pathway is functionally important within insect adipose tissue. Developmental profile studies revealed that the expression levels of InR, IRS, PI3K110, and PDK were elevated in the fat body during molting and pupation, periods when animals ceased feeding and hemolymph levels of 20-hydroxyecdysone (20E) were high. Starvation rapidly up-regulated the mRNA levels of these same genes in the fat body, while 20E slowly induced their transcription. We conclude that 20E slowly reduces food consumption and then indirectly induces a state of starvation resulting in the elevation of the mRNA levels of InR, IRS, PI3K110, and PDK in the Bombyx fat body during molting and pupation.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Insect Developmental Biology and Evolution, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Morphogen gradients play a fundamental role in organ patterning and organ growth. Unlike their role in patterning, their function in regulating the growth and the size of organs is poorly understood. How and why do morphogen gradients exert their mitogenic effects to generate uniform proliferation in developing organs, and by what means can morphogens impinge on the final size of organs? The decapentaplegic (Dpp) gradient in the Drosophila wing imaginal disc has emerged as a suitable and established system to study organ growth. Here, we review models and recent findings that attempt to address how the Dpp morphogen contributes to uniform proliferation of cells, and how it may regulate the final size of wing discs.
Collapse
|
172
|
Ghosh A, McBrayer Z, O'Connor MB. The Drosophila gap gene giant regulates ecdysone production through specification of the PTTH-producing neurons. Dev Biol 2010; 347:271-8. [PMID: 20816678 DOI: 10.1016/j.ydbio.2010.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/07/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
In Drosophila melanogaster, hypomorphic mutations in the gap gene giant (gt) have long been known to affect ecdysone titers resulting in developmental delay and the production of large (giant) larvae, pupae and adults. However, the mechanism by which gt regulates ecdysone production has remained elusive. Here we show that hypomorphic gt mutations lead to ecdysone deficiency and developmental delay by affecting the specification of the PG neurons that produce prothoracicotropic hormone (PTTH). The gt¹ hypomorphic mutation leads to random loss of PTTH production in one or more of the 4 PG neurons in the larval brain. In cases where PTTH production is lost in all four PG neurons, delayed development and giant larvae are produced. Since immunostaining shows no evidence for Gt expression in the PG neurons once PTTH production is detectable, it is unlikely that Gt directly regulates PTTH expression. Instead, we find that innervation of the prothoracic gland by the PG neurons is absent in gt hypomorphic larvae that do not express PTTH. In addition, PG neuron axon fasciculation is abnormal in many gt hypomorphic larvae. Since several other anteriorly expressed gap genes such as tailless and orthodenticle have previously been found to affect the fate of the cerebral labrum, a region of the brain that gives rise to the neuroendocrine cells that innervate the ring gland, we conclude that gt likely controls ecdysone production indirectly by contributing the peptidergic phenotype of the PTTH-producing neurons in the embryo.
Collapse
Affiliation(s)
- Arpan Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
173
|
Wegman LJ, Ainsley JA, Johnson WA. Developmental timing of a sensory-mediated larval surfacing behavior correlates with cessation of feeding and determination of final adult size. Dev Biol 2010; 345:170-9. [PMID: 20630480 DOI: 10.1016/j.ydbio.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/17/2022]
Abstract
Controlled organismal growth to an appropriate adult size requires a regulated balance between nutrient resources, feeding behavior and growth rate. Defects can result in decreased survival and/or reproductive capability. Since Drosophila adults do not grow larger after eclosion, timing of feeding cessation during the third and final larval instar is critical to final size. We demonstrate that larval food exit is preceded by a period of increased larval surfacing behavior termed the Intermediate Surfacing Transition (IST) that correlates with the end of larval feeding. This behavioral transition occurred during the larval Terminal Growth Period (TGP), a period of constant feeding and exponential growth of the animal. IST behavior was dependent upon function of a subset of peripheral sensory neurons expressing the Degenerin/Epithelial sodium channel (DEG/ENaC) subunit, Pickpocket1(PPK1). PPK1 neuron inactivation or loss of PPK1 function caused an absence of IST behavior. Transgenic PPK1 neuron hyperactivation caused premature IST behavior with no significant change in timing of larval food exit resulting in decreased final adult size. These results suggest a peripheral sensory mechanism functioning to alter the relationship between the animal and its environment thereby contributing to the length of the larval TGP and determination of final adult size.
Collapse
Affiliation(s)
- Lauren J Wegman
- University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
174
|
Anderson B, Terblanche JS, Ellis AG. Predictable patterns of trait mismatches between interacting plants and insects. BMC Evol Biol 2010; 10:204. [PMID: 20604973 PMCID: PMC2927919 DOI: 10.1186/1471-2148-10-204] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background There are few predictions about the directionality or extent of morphological trait (mis)matches between interacting organisms. We review and analyse studies on morphological trait complementarity (e.g. floral tube length versus insect mouthpart length) at the population and species level. Results Plants have consistently more exaggerated morphological traits than insects at high trait magnitudes and in some cases less exaggerated traits than insects at smaller trait magnitudes. This result held at the population level, as well as for phylogenetically adjusted analyses at the species-level and for both pollination and host-parasite interactions, perhaps suggesting a general pattern. Across communities, the degree of trait mismatch between one specialist plant and its more generalized pollinator was related to the level of pollinator specialization at each site; the observed pattern supports the "life-dinner principle" of selection acting more strongly on species with more at stake in the interaction. Similarly, plant mating system also affected the degree of trait correspondence because selfing reduces the reliance on pollinators and is analogous to pollination generalization. Conclusions Our analyses suggest that there are predictable "winners" and "losers" of evolutionary arms races and the results of this study highlight the fact that breeding system and the degree of specialization can influence the outcome.
Collapse
Affiliation(s)
- Bruce Anderson
- Plant Animal Interactions, Botany and Zoology Department, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | | | | |
Collapse
|
175
|
Tobler A, Nijhout HF. A switch in the control of growth of the wing imaginal disks of Manduca sexta. PLoS One 2010; 5:e10723. [PMID: 20502707 PMCID: PMC2873286 DOI: 10.1371/journal.pone.0010723] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/24/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. METHODOLOGY Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. PRINCIPAL FINDINGS Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, but not the brain, are required to drive continued growth. CONCLUSIONS During the last larval instar imaginal disk growth becomes decoupled from somatic growth at the time that the endocrine events of metamorphosis are initiated. These regulatory changes ensure that disk growth continues uninterrupted when the nutritive and endocrine signals undergo the drastic changes associated with metamorphosis.
Collapse
Affiliation(s)
- Alexandra Tobler
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - H. Frederik Nijhout
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
176
|
Target size and optimal life history when individual growth and energy budget are stochastic. J Theor Biol 2010; 264:510-6. [DOI: 10.1016/j.jtbi.2010.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
|
177
|
Powell AM, Davis M, Powell JR. Phenotypic plasticity across 50MY of evolution: drosophila wing size and temperature. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:380-382. [PMID: 19932115 PMCID: PMC2834809 DOI: 10.1016/j.jinsphys.2009.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
We studied the response in wing size to rearing at different temperatures of nine strains of Drosophila representing six species. The species varied in their natural habitats from tropical to temperate and one cosmopolitan. The evolutionary divergence of the species spans 50 million years. While some quantitative differences were found, all species responded to temperature very similarly: females increased an average of approximately 11% and males approximately 14% when reared at 19 degrees C compared to 25 degrees C. The phenotypic plasticity in wing size in response to temperature appears to be a fixed trait in Drosophila across long evolutionary time and diverse ecological settings. This likely reflects the close relationship between wing area (and thus wing loading) and insect body mass that is a crucial factor for flight regardless of ecology and is, thus, maintained across long evolutionary time.
Collapse
Affiliation(s)
- Alessandro M Powell
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem St, New Haven, CT 06520-8105, United States
| | | | | |
Collapse
|
178
|
Nijhout HF, Roff DA, Davidowitz G. Conflicting processes in the evolution of body size and development time. Philos Trans R Soc Lond B Biol Sci 2010; 365:567-75. [PMID: 20083633 DOI: 10.1098/rstb.2009.0249] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Body size and development time of Manduca sexta are both determined by the same set of three developmental-physiological factors. These define a parameter space within which it is possible to analyse and explain how phenotypic change is associated with changes in the underlying factors. Body size and development time are determined by the identical set of underlying factors, so they are not independent, but because the mechanisms by which these factors produce each phenotype are different, the two phenotypes are only weakly correlated, and the correlation is context dependent. We use a mathematical model of this mechanism to explore the association between body size and development time and show that the correlation between these two life-history traits can be positive, zero or negative, depending entirely on where in parameter space a population is located, and on which of the underlying factors has a greater variation. The gradient within this parameter space predicts the unconstrained evolutionary trajectory under directional selection on each trait. Calculations of the gradients for body size and development time revealed that these are nearly orthogonal through much of the parameter space. Therefore, simultaneous directional selection on body size and development time can be neither synergistic nor antagonistic but leads to conflicting selection on the underlying developmental parameters.
Collapse
|
179
|
Mangalika PR, Kawamoto T, Takahashi-Nakaguchi A, Iwabuchi K. Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:314-323. [PMID: 19913022 DOI: 10.1016/j.jinsphys.2009.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 05/28/2023]
Abstract
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.
Collapse
Affiliation(s)
- Priyanthi R Mangalika
- Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
180
|
Effects of cold-exposure and subsequent recovery on cellular proliferation with influence of 20-hydroxyecdysone in a lepidopteran cell line (IAL-PID2). Comp Biochem Physiol A Mol Integr Physiol 2010; 155:407-14. [DOI: 10.1016/j.cbpa.2009.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/16/2009] [Accepted: 12/19/2009] [Indexed: 11/24/2022]
|
181
|
Chown SL, Gaston KJ. Body size variation in insects: a macroecological perspective. Biol Rev Camb Philos Soc 2010; 85:139-69. [DOI: 10.1111/j.1469-185x.2009.00097.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
182
|
Calvo D, Molina J. Differences in foliage affect performance of the lappet moth, Streblote panda: implications for species fitness. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:177. [PMID: 21062148 PMCID: PMC3016955 DOI: 10.1673/031.010.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 04/19/2010] [Indexed: 05/30/2023]
Abstract
Implications for adults' fitness through the foliage effects of five different host plants on larval survival and performance of the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae), as well as their effect on species fitness were assayed. Larvae were reared under controlled laboratory conditions on excised foliage. Long-term developmental experiments were done using first instar larvae to adult emergence, and performance experiments were done using fifth instar larvae. Survival, development rates, and food use were measured. Foliar traits analysis indicated that leaves of different host plants varied, significantly affecting larvae performance and adult fitness. Pistacia lentiscus L. (Sapindales: Anacardiaceae), Arbutus unedo L. (Ericales: Ericaceae), and Retama sphaerocarpa (L.) Boiss. (Fabales: Fabaceae) were the most suitable hosts. Larvae fed on Tamarix gallica L. (Caryophyllales: Tamaricaceae) and Spartium junceum L. (Fabales: Fabaceae) showed the lowest survival, rates of development and pupal and adult weight. In general, S. panda showed a relatively high capacity to buffer low food quality, by reducing developmental rates and larvae development thereby reaching the minimum pupal weight that ensures adult survival. Less suitable plants seem to have indirect effects on adult fitness, producing smaller adults that could disperse to other habitats.
Collapse
Affiliation(s)
- D. Calvo
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales (Consejo Superior de Investigaciones Cientificas). C/ Serrano 115 dpdo. 28006. Madrid, Spain
| | - J.M. Molina
- Crop Protection Area. IFAPA Centro-“Las Torres-Tomejil”. Apdo. Oficial. 41200. Alcalá del Río, Sevilla, Spain
| |
Collapse
|
183
|
Pruijssers AJ, Falabella P, Eum JH, Pennacchio F, Brown MR, Strand MR. Infection by a symbiotic polydnavirus induces wasting and inhibits metamorphosis of the moth Pseudoplusia includens. ACTA ACUST UNITED AC 2009; 212:2998-3006. [PMID: 19717683 DOI: 10.1242/jeb.030635] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insect pathogens and parasites often affect the growth and development of their hosts, but understanding of these processes is fragmentary. Among the most species-rich and important mortality agents of insects are parasitoid wasps that carry symbiotic polydnaviruses (PDVs). Like many PDV-carrying wasps, Microplitis demolitor inhibits growth and pupation of its lepidopteran host, Pseudoplusia includens, by causing host hemolymph juvenile hormone (JH) titers to remain elevated and preventing ecdysteroid titers from rising. Here we report these alterations only occurred if P. includens was parasitized prior to achieving critical weight, and were fully mimicked by infection with only M. demolitor bracovirus (MdBV). Metabolic assays revealed that MdBV infection of pre-critical weight larvae caused a rapid and persistent state of hyperglycemia and reduced nutrient stores. In vitro ecdysteroid assays further indicated that prothoracic glands from larvae infected prior to achieving critical weight remained in a refractory state of ecdysteroid release, whereas infection of post-critical weight larvae had little or no effect on ecdysteroid release by prothoracic glands. Taken together, our results suggest MdBV causes alterations in metabolic physiology, which prevent the host from achieving critical weight. This in turn inhibits the endocrine events that normally trigger metamorphosis.
Collapse
Affiliation(s)
- A J Pruijssers
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
184
|
Gordon SD, Strand MR. The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 2009; 219:445-54. [PMID: 19904557 DOI: 10.1007/s00427-009-0306-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/21/2009] [Indexed: 01/12/2023]
Abstract
Eggs of the polyembryonic wasp Copidosoma floridanum undergo a clonal phase of proliferation, which results in the formation of thousands of embryos called secondary morulae and two castes called reproductive and soldier larvae. C. floridanum establishes the germ line early in development, and prior studies indicate that embryos with primordial germ cells (PGCs) develop into reproductive larvae while embryos without PGCs develop into soldiers. However, it is unclear how embryos lacking PGCs form and whether all or only some morulae contribute to the proliferation process. Here, we report that most embryos lacking PGCs form by division of a secondary morula into one daughter embryo that inherits the germ line and another that does not. C. floridanum embryos also incorporate 5-bromo-2'-deoxyuridine (BrdU), which allows PGCs and other cell types to be labeled during the S phase of the cell cycle. Continuous BrdU labeling indicated that all secondary morulae cycle during the proliferation phase of embryogenesis. Double labeling with BrdU and the mitosis marker anti-phospho-histone H3 indicated that the median length of the G2 phase of the cell cycle was 18 h with a minimum duration of 4 h. Mitosis of PGCs and presumptive somatic stem cells in secondary morulae was asynchronous, but cells of the inner membrane exhibited synchronous mitosis. Overall, our results suggest that all secondary morulae contribute to the formation of new embryos during the proliferation phase of embryogenesis and that PGCs are involved in regulating both proliferation and caste formation.
Collapse
Affiliation(s)
- Shira D Gordon
- Department of Entomology, University of Georgia, Athens, GA 30605, USA
| | | |
Collapse
|
185
|
Schachter-Broide J, Gürtler RE, Kitron U, Dujardin JP. Temporal variations of wing size and shape of Triatoma infestans (Hemiptera: Reduviidae) populations from northwestern Argentina using geometric morphometry. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:994-1000. [PMID: 19769028 PMCID: PMC3061344 DOI: 10.1603/033.046.0504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wing geometric morphometry of Triatoma infestans (Klug) (Hemiptera: Reduviidae) populations in northwestern Argentina showed that individual collection sites represent the discrete unit where metric differentiation took place. Here we studied temporal variations in wing size and shape of T. infestans populations from defined capture sites on three occasions between 2000 and 2003. Bugs collected from domiciles and/or storerooms had significantly larger right-wing centroid size than bugs collected at goat and/or pig corrals by the end of summer 2000 for both sexes. Conversely, male bugs collected from domiciles and/or storerooms had significantly smaller centroid size than bugs collected from pig corrals in spring 2002. The inversion in wing centroid size between seasons was consistent between sexes. Wing shape analysis from the south-central extreme of the study village showed divergence between collection dates for both sexes. Wing shape divergence was highly significant between male bugs collected by the end of summer 2000 and those collected in spring 2002 and by the end of summer 2003. For females, wing shape divergence was marginally significant between the end of summer 2000 and spring 2002, and significant between spring 2002 and the end of summer 2003. Unlike season-related variations in wing centroid size, shape differentiation was related to the time period elapsed between sample collections and suggested genetic influences acting on shape. Simultaneous consideration of wing size and shape provided complementary information on the direction and timing of bug dispersal. Morphological studies may allow determining the degree of relatedness of different bug populations and to associate morphological heterogeneity with temporal patterns of reinfestation.
Collapse
Affiliation(s)
- Judith Schachter-Broide
- Laboratorio de Eco-Epidemiología, Dpto. de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Dpto. de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Uriel Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322
| | - Jean-Pierre Dujardin
- Unité Mixte de Recherche (UMR), Institut de Recherches pour le Développment (IRD)-Centre National de Recherche Scientifique (CNRS), F-34394 Montpellier, France
| |
Collapse
|
186
|
Denver RJ, Hopkins PM, McCormick SD, Propper CR, Riddiford L, Sower SA, Wingfield JC. Comparative endocrinology in the 21st century. Integr Comp Biol 2009; 49:339-48. [PMID: 21665824 DOI: 10.1093/icb/icp082] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hormones coordinate developmental, physiological, and behavioral processes within and between all living organisms. They orchestrate and shape organogenesis from early in development, regulate the acquisition, assimilation, and utilization of nutrients to support growth and metabolism, control gamete production and sexual behavior, mediate organismal responses to environmental change, and allow for communication of information between organisms. Genes that code for hormones; the enzymes that synthesize, metabolize, and transport hormones; and hormone receptors are important targets for natural selection, and variation in their expression and function is a major driving force for the evolution of morphology and life history. Hormones coordinate physiology and behavior of populations of organisms, and thus play key roles in determining the structure of populations, communities, and ecosystems. The field of endocrinology is concerned with the study of hormones and their actions. This field is rooted in the comparative study of hormones in diverse species, which has provided the foundation for the modern fields of evolutionary, environmental, and biomedical endocrinology. Comparative endocrinologists work at the cutting edge of the life sciences. They identify new hormones, hormone receptors and mechanisms of hormone action applicable to diverse species, including humans; study the impact of habitat destruction, pollution, and climatic change on populations of organisms; establish novel model systems for studying hormones and their functions; and develop new genetic strains and husbandry practices for efficient production of animal protein. While the model system approach has dominated biomedical research in recent years, and has provided extraordinary insight into many basic cellular and molecular processes, this approach is limited to investigating a small minority of organisms. Animals exhibit tremendous diversity in form and function, life-history strategies, and responses to the environment. A major challenge for life scientists in the 21st century is to understand how a changing environment impacts all life on earth. A full understanding of the capabilities of organisms to respond to environmental variation, and the resilience of organisms challenged by environmental changes and extremes, is necessary for understanding the impact of pollution and climatic change on the viability of populations. Comparative endocrinologists have a key role to play in these efforts.
Collapse
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
187
|
Perić - Mataruga V, Mirčić D, Vlahović M, Mrdaković M, Todorović D, Stevanović D, Milošević V. Effects of ghrelin on the feeding behavior of Lymantria dispar L. (Lymantriidae) caterpillars. Appetite 2009; 53:147-50. [DOI: 10.1016/j.appet.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
188
|
COX RM, STENQUIST DS, CALSBEEK R. Testosterone, growth and the evolution of sexual size dimorphism. J Evol Biol 2009; 22:1586-98. [PMID: 19549143 DOI: 10.1111/j.1420-9101.2009.01772.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. M. COX
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - D. S. STENQUIST
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - R. CALSBEEK
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
189
|
Simon MA, Trimmer BA. Movement encoding by a stretch receptor in the soft-bodied caterpillar, Manduca sexta. ACTA ACUST UNITED AC 2009; 212:1021-31. [PMID: 19282499 DOI: 10.1242/jeb.023507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a wide variety of animals, stretch receptors provide proprioceptive feedback for motion control. However, for animals that lack a stiff skeleton, it is unclear what information is being detected and how this is incorporated into behavior. Because such animals can change their body shape from moment-to-moment, information about body configuration could be particularly important for coordination. This study uses larval stage Lepidoptera (Manduca sexta) to examine how the longitudinal stretch receptor organ (SRO) responds to behaviorally appropriate movements. We characterized the responses of the SRO to changes in strain using magnitudes and velocities matching those seen physiologically. We found that the SRO response characteristics are compatible with the regulation of stance and with the defensive response to noxious stimuli. However, we also found that movements during crawling produce SRO responses that are dominated by the interdependence of phasic, tonic and slowly adaptive components. Ablation of stretch receptors in the proleg-bearing, fourth abdominal segment did not have any observable effect on behaviors, which suggests that the SROs are not essential for coordinating overt movements. We discuss the implications of these findings in the context of specific behaviors, and explore how the SRO response might be utilized during animal behavior.
Collapse
Affiliation(s)
- Michael A Simon
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
190
|
Mirth CK, Truman JW, Riddiford LM. The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs. Development 2009; 136:2345-53. [PMID: 19515698 DOI: 10.1242/dev.032672] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In holometabolous insects, a species-specific size, known as critical weight, needs to be reached for metamorphosis to be initiated in the absence of further nutritional input. Previously, we found that reaching critical weight depends on the insulin-dependent growth of the prothoracic glands (PGs) in Drosophila larvae. Because the PGs produce the molting hormone ecdysone, we hypothesized that ecdysone signaling switches the larva to a nutrition-independent mode of development post-critical weight. Wing discs from pre-critical weight larvae [5 hours after third instar ecdysis (AL3E)] fed on sucrose alone showed suppressed Wingless (WG), Cut (CT) and Senseless (SENS) expression. Post-critical weight, a sucrose-only diet no longer suppressed the expression of these proteins. Feeding larvae that exhibit enhanced insulin signaling in their PGs at 5 hours AL3E on sucrose alone produced wing discs with precocious WG, CT and SENS expression. In addition, knocking down the Ecdysone receptor (EcR) selectively in the discs also promoted premature WG, CUT and SENS expression in the wing discs of sucrose-fed pre-critical weight larvae. EcR is involved in gene activation when ecdysone is present, and gene repression in its absence. Thus, knocking down EcR derepresses genes that are normally repressed by unliganded EcR, thereby allowing wing patterning to progress. In addition, knocking down EcR in the wing discs caused precocious expression of the ecdysone-responsive gene broad. These results suggest that post-critical weight, EcR signaling switches wing discs to a nutrition-independent mode of development via derepression.
Collapse
Affiliation(s)
- Christen K Mirth
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
191
|
FILIN I. A diffusion-based approach to stochastic individual growth and energy budget, with consequences to life-history optimization and population dynamics. J Evol Biol 2009; 22:1252-67. [DOI: 10.1111/j.1420-9101.2009.01741.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
192
|
Sim C, Denlinger DL. A shut-down in expression of an insulin-like peptide, ILP-1, halts ovarian maturation during the overwintering diapause of the mosquito Culex pipiens. INSECT MOLECULAR BIOLOGY 2009; 18:325-32. [PMID: 19523064 PMCID: PMC3835429 DOI: 10.1111/j.1365-2583.2009.00872.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Short day-length is used to programme adult diapause in the mosquito, Culex pipiens. The downstream endocrine event that halts ovarian maturation is a shut-down in juvenile hormone (JH) production, and recent evidence suggests that the insulin signalling pathway may be a key upstream player in executing this developmental arrest. Genes encoding insulin-like peptides-1, -2 and -5 were identified in C. pipiens, and we report that transcript levels of insulin-like peptides-1 and -5 were significantly lower in diapausing females than in their nondiapausing counterparts. Genes encoding both insulin-like peptides-1 and -5 were suppressed using RNA interference in mosquitoes programmed for nondiapause, and ovarian maturation was monitored. Knocking down insulin-like peptide-1 with RNAi in nondiapausing mosquitoes resulted in a cessation of ovarian development akin to diapause, and this arrest in development could be reversed with an application of JH. Knocking down insulin-like peptide-5 did not alter ovarian development. These results are consistent with a role for insulin-like peptide-1 in the signalling pathway leading from the perception of short day-lengths to the shut-down in JH production that characterizes adult diapause in C. pipiens.
Collapse
Affiliation(s)
- C Sim
- Department of Entomology, Ohio State University, Columbus, USA
| | | |
Collapse
|
193
|
No male agonistic experience effect on pre-copulatory mate choice in female earwigs. Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
194
|
Morphometrics applied to medical entomology. INFECTION GENETICS AND EVOLUTION 2008; 8:875-90. [DOI: 10.1016/j.meegid.2008.07.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/18/2022]
|
195
|
Body size in Drosophila: genetic architecture, allometries and sexual dimorphism. Heredity (Edinb) 2008; 102:246-56. [PMID: 19018274 DOI: 10.1038/hdy.2008.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Even though substantial progress has been made to elucidate the physiological and environmental factors underpinning differences in body size, little is known about its genetic architecture. Furthermore, all animal species bear a specific relationship between the size of each organ and overall body size, so different body size traits should be investigated as well as their sexual dimorphism that may have an important impact on the evolution of body size. We have surveyed 191 co-isogenic lines of Drosophila melanogaster, each one of them homozygous for a single P-element insertion, and assessed the effects of mutations on different body size traits compared to the P-element-free co-isogenic control. Nearly 60% of the lines showed significant differences with respect to the control for these traits in one or both sexes and almost 35% showed trait- and sex-specific effects. Candidate gene mutations frequently increased body size in males and decreased it in females. Among the 92 genes identified, most are involved in development and/or metabolic processes and their molecular functions principally include protein-binding and nucleic acid-binding activities. Although several genes showed pleiotropic effects in relation to body size, few of them were involved in the expression of all traits in one or both sexes. These genes seem to be important for different aspects related to the general functioning of the organism. In general, our results indicate that the genetic architecture of body size traits involves a large fraction of the genome and is largely sex and trait specific.
Collapse
|
196
|
Hewes RS. The buzz on fly neuronal remodeling. Trends Endocrinol Metab 2008; 19:317-23. [PMID: 18805704 DOI: 10.1016/j.tem.2008.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Hormone-dependent rewiring of axons and dendrites is a conserved feature of nervous system development and plasticity. During metamorphosis in insects, steroid hormones (the ecdysteroids) and terpenoid hormones (the juvenile hormones) regulate extensive remodeling of the nervous system. These changes retool the nervous system for new behavioral and physiological functions that are required for the adult stage of the life cycle. In honey bees and other highly social insects, hormones also regulate behavioral changes and neuronal plasticity associated with transitions between social caste roles. This review focuses on recent work in fruit flies and honey bees that reveals hormonal and molecular mechanisms underlying metamorphic and caste-dependent neuronal remodeling, with specific emphasis on the role of Krüppel homolog 1.
Collapse
Affiliation(s)
- Randall S Hewes
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
197
|
Chen Y, Jakoncic J, Wang J, Zheng X, Carpino N, Nassar N. Structural and functional characterization of the c-terminal domain of the ecdysteroid phosphate phosphatase from bombyx mori reveals a new enzymatic activity. Biochemistry 2008; 47:12135-45. [PMID: 18937503 DOI: 10.1021/bi801318w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the crystal structure of the ecdysone phosphate phosphatase (EPPase) phosphoglycerate mutase (PGM) homology domain, the first structure of a steroid phosphate phosphatase. The structure reveals an alpha/beta-fold common to members of the two histidine (2H)-phosphatase superfamily with strong homology to the Suppressor of T-cell receptor signaling-1 (Sts-1 PGM) protein. The putative EPPase PGM active site contains signature residues shared by 2H-phosphatase enzymes, including a conserved histidine (His80) that acts as a nucleophile during catalysis. The physiological substrate ecdysone 22-phosphate was modeled in a hydrophobic cavity close to the phosphate-binding site. EPPase PGM shows limited substrate specificity with an ability to hydrolyze steroid phosphates, the phospho-tyrosine (pTyr) substrate analogue para-nitrophenylphosphate ( pNPP) and pTyr-containing peptides and proteins. Altogether, our data demonstrate a new protein tyrosine phosphatase (PTP) activity for EPPase. They suggest that EPPase and its closest homologues can be grouped into a distinct subfamily in the large 2H-phosphatase superfamily of proteins.
Collapse
Affiliation(s)
- Yunting Chen
- Department of Physiology and Biophysics, Stony Brook University, Basic Sciences Tower, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | |
Collapse
|
198
|
Gilbert LI. Drosophila is an inclusive model for human diseases, growth and development. Mol Cell Endocrinol 2008; 293:25-31. [PMID: 18374475 DOI: 10.1016/j.mce.2008.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/11/2008] [Indexed: 01/01/2023]
Abstract
Cytogenetic studies over the last century have led to the complete mapping of the Drosophila polytene chromosomes. The resulting data and the analysis of puffing at specific gene sites, manifestations of enhanced transcriptional activity, have led to the use of the fruit fly as the most well-understood animal model for a plethora of cellular mechanisms and genetic defects. In recent years the fly data base has contributed greatly to the use of Drosophila as a remarkable model for the functional genomics of many human genes. Here I review briefly the diversity of "model genes" studied in this dipteran, ranging from mental acuity, sleep and development, to recent studies from our laboratory, and those of our collaborators, on steroid hormone biosynthesis and neurodegeneration.
Collapse
|
199
|
Layalle S, Arquier N, Léopold P. The TOR Pathway Couples Nutrition and Developmental Timing in Drosophila. Dev Cell 2008; 15:568-77. [DOI: 10.1016/j.devcel.2008.08.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/22/2008] [Accepted: 08/15/2008] [Indexed: 01/22/2023]
|
200
|
Shingleton AW, Mirth CK, Bates PW. Developmental model of static allometry in holometabolous insects. Proc Biol Sci 2008; 275:1875-85. [PMID: 18460425 DOI: 10.1098/rspb.2008.0227] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.
Collapse
|