151
|
Xu P, Wu T, Ali A, Wang J, Fang Y, Qiang R, Liu Y, Tian Y, Liu S, Zhang H, Liao Y, Chen X, Shoaib F, Sun C, Xu Z, Xia D, Zhou H, Wu X. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid. Int J Mol Sci 2022; 23:10646. [PMID: 36142555 PMCID: PMC9504040 DOI: 10.3390/ijms231810646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-β-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic β-glucosidase (β-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1βGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1βGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1βGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1βGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.
Collapse
Affiliation(s)
- Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingkai Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinhao Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiong Fang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runrun Qiang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Yutong Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Tian
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Su Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Farwa Shoaib
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Xia
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhou
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
152
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Therapeutic potential of chrysin nanoparticle-mediation inhibition of succinate dehydrogenase and ubiquinone oxidoreductase in pancreatic and lung adenocarcinoma. Eur J Med Res 2022; 27:172. [PMID: 36076266 PMCID: PMC9461199 DOI: 10.1186/s40001-022-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) and lung cancer are expected to represent the most common cancer types worldwide until 2030. Under typical conditions, mitochondria provide the bulk of the energy needed to sustain cell life. For that inhibition of mitochondrial complex ΙΙ (CΙΙ) and ubiquinone oxidoreductase with natural treatments may represent a promising cancer treatment option. A naturally occurring flavonoid with biological anti-cancer effects is chyrsin. Due to their improved bioavailability, penetrative power, and efficacy, chitosan–chrysin nano-formulations (CCNPs) are being used in medicine with increasing frequency. Chitosan (cs) is also regarded as a highly versatile and adaptable polymer. The cationic properties of Cs, together with its biodegradability, high adsorption capacity, biocompatibility, effect on permeability, ability to form films, and adhesive properties, are advantages. In addition, Cs is thought to be both safe and economical. CCNPs may indeed be therapeutic candidates in the treatment of pancreatic adenocarcinoma (PDAC) and lung cancer by blocking succinate ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
153
|
Liao X, Ye Y, Zhang X, Peng D, Hou M, Fu G, Tan J, Zhao J, Jiang R, Xu Y, Liu J, Yang J, Liu W, Tembrock LR, Zhu G, Wu Z. The genomic and bulked segregant analysis of Curcuma alismatifolia revealed its diverse bract pigmentation. ABIOTECH 2022; 3:178-196. [PMID: 36304840 PMCID: PMC9590460 DOI: 10.1007/s42994-022-00081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Compared with most flowers where the showy part comprises specialized leaves (petals) directly subtending the reproductive structures, most Zingiberaceae species produce showy "flowers" through modifications of leaves (bracts) subtending the true flowers throughout an inflorescence. Curcuma alismatifolia, belonging to the Zingiberaceae family, a plant species originating from Southeast Asia, has become increasingly popular in the flower market worldwide because of its varied and esthetically pleasing bracts produced in different cultivars. Here, we present the chromosome-scale genome assembly of C. alismatifolia "Chiang Mai Pink" and explore the underlying mechanisms of bract pigmentation. Comparative genomic analysis revealed C. alismatifolia contains a residual signal of whole-genome duplication. Duplicated genes, including pigment-related genes, exhibit functional and structural differentiation resulting in diverse bract colors among C. alismatifolia cultivars. In addition, we identified the key genes that produce different colored bracts in C. alismatifolia, such as F3'5'H, DFR, ANS and several transcription factors for anthocyanin synthesis, as well as chlH and CAO in the chlorophyll synthesis pathway by conducting transcriptomic analysis, bulked segregant analysis using both DNA and RNA data, and population genomic analysis. This work provides data for understanding the mechanism of bract pigmentation and will accelerate breeding in developing novel cultivars with richly colored bracts in C. alismatifolia and related species. It is also important to understand the variation in the evolution of the Zingiberaceae family. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00081-6.
Collapse
Affiliation(s)
- Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yuanjun Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Gaofei Fu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jianjun Tan
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jianli Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650504 China
| | - Rihong Jiang
- Guangxi Engineering and Technology Research Center for Woody Spices, Guangxi Key Laboratory for Cultivation and Utilization of Special Non-Timber Forest Crops, Guangxi Forestry Research Institute, Nanning, 530002 China
| | - Yechun Xu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jinmei Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607 USA
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Genfa Zhu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200 China
| |
Collapse
|
154
|
Preparation, Optimization, and Investigation of Naringenin-Loaded Microemulsion for Topical Application. IRANIAN BIOMEDICAL JOURNAL 2022; 26:366-73. [PMID: 36403103 PMCID: PMC9763875 DOI: 10.52547/ibj.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Flavonoids are a large group of phenolic compounds possessing anti-inflammatory and antioxidant effects. NAR is a flavonoid with various pharmacological properties. Using pharmaceutical compounds on skin is one of the routes of administration to achieve local and systemic effects. The aim of this study was to develop a topical formulation of NAR by the preparation of a NAR ME, which was further tested its skin permeability in rats. Methods Eight 0.5% NAR MEs were prepared by mixing appropriate amounts of surfactant (Tween 80 and Labrasol), cosurfactant (Capryol 90) and the oil phase (oleic acid-Transcutol P in a ratio of 1:10). The drug was dissolved in the oil phase. The physicochemical properties of MEs such as droplet size, viscosity, release, and skin permeability were assessed using Franz Cells diffusion. Results Based on the results, the droplet size of MEs ranged between 5.07 and 35.15 nm, and their viscosity was 164-291 cps. Independent factors exhibited a strong relationship with both permeability and drop size. The permeability findings revealed that the diffusion coefficient of NAR by the ME carrier increased compared to the drug saturation solution. Conclusion The most validated results were obtained for Jss and particle size. Optimal formulations containing MEs with Jss and particle sizes varying between minimum and maximum amounts are suitable for topical formulations of NAR.
Collapse
|
155
|
Lee S, Kim HW, Lee SJ, Kwon RH, Na H, Kim JH, Choi YM, Yoon H, Kim YS, Wee CD, Yoo SM, Lee SH. Comprehensive characterization of flavonoid derivatives in young leaves of core-collected soybean (Glycine max L.) cultivars based on high-resolution mass spectrometry. Sci Rep 2022; 12:14678. [PMID: 36038700 PMCID: PMC9424525 DOI: 10.1038/s41598-022-18226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Most previous studies have been focused on isoflavone profile with biological activities from soybean seed and its related products. However, in the present study, eighty-three flavonoid derivatives (55 flavonols, 9 flavones and 19 isoflavones) were comprehensively identified and quantified from young leaves of 21 core-collected soybean cultivars based on ultra-performance liquid chromatography-diode array detector with quadrupole time of flight/mass spectrometry (UPLC-DAD-QToF/MS). Among total flavonoids from soybean leaves (SLs), the abundant flavonols (83.6%) were primarily composed of di- and tri- glycosides combined to the aglycones (K, kaempferol; Q, quercetin; I, isorhamnetin). Particularly, K-rich SLs (yellow coated seed), Nongrim 51 (breeding line) and YJ208-1 (landrace) contained mainly kaempferol 3-O-(2″-O-glucosyl-6″-O-rhamnosyl)galactoside and 3-O-(2″,6″-di-O-rhamnosyl)galactoside, and were expected to be superior cultivars by their higher flavonoids. Besides, the new tri-I-glycosides (soyanins I–V) were presented as predominant components in Junyeorikong (landrace, black). Thus, this study suggest that the SLs can be considered as valuable edible resources due to their rich flavonoids. Also, these detailed profiles will support breeding of superior varieties with excellent biological activities as well as relationship with seed anthocyanins production, and contribute to perform metabolomics approach to investigate the changes of SLs flavonols during the leaf growth and fermentation in further research.
Collapse
Affiliation(s)
- Suji Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.,Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Heon-Woong Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - So-Jeong Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ryeong Ha Kwon
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hyemin Na
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ju Hyung Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Yong-Suk Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Chi-Do Wee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seon Mi Yoo
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sang Hoon Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
156
|
Unveiling Natural and Semisynthetic Acylated Flavonoids: Chemistry and Biological Actions in the Context of Molecular Docking. Molecules 2022; 27:molecules27175501. [PMID: 36080269 PMCID: PMC9458193 DOI: 10.3390/molecules27175501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Acylated flavonoids are widely distributed natural metabolites in medicinal plants and foods with several health attributes. A large diversity of chemical structures of acylated flavonoids with interesting biological effects was reported from several plant species. Of these, 123 compounds with potential antimicrobial, antiparasitic, anti-inflammatory, anti-nociceptive, analgesic, and anti-complementary effects were selected from several databases including SCI-Finder, Scopus, Google Scholar, Science Direct, PubMed, and others. Some selected reported biologically active flavonoids were docked in the active binding sites of some natural enzymes, namely acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, aldose reductase, and HIV integrase, in an attempt to underline the key interactions that might be responsible for their biological activities.
Collapse
|
157
|
Verma R, Singh N, Tomar M, Bhardwaj R, Deb D, Rana A. Deciphering the growth stage specific bioactive diversity patterns in Murraya koenigii (L.) Spreng. using multivariate data analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:963150. [PMID: 36092393 PMCID: PMC9452700 DOI: 10.3389/fpls.2022.963150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The study was undertaken to characterize the total phenolics, flavonoids, essential oils, quinones, tannins and antioxidant activity of 15 samples of wild Murraya koenigii (L.) Spreng. (MK) leaves obtained from different locations of Himachal Pradesh at various growth stages. The results indicated a significant variation in total phenolic content which ranged from [(170.09 ± 4.59 to 303.57 ± 7.94) in pre-flowering, (266.48 ± 7.49 to 450.01 ± 11.78) in the flowering stage, and (212.72 ± 5.37 to 363.85 ± 9.79) in fruiting stage], expressed as mg tannic acid equivalents (TAE)/g. The total flavonoid content ranged from [(15.17 ± 0.36 to 33.40 ± 0.81) in pre-flowering, (25.16 ± 0.67 to 58.17 ± 1.52) in flowering stage, and (17.54 ± 0.42 to 37.34 ± 0.97) in fruiting stage], expressed as mg catechin equivalent (CE)/g. Total tannin content ranged from [(75.75 ± 1.69 to 143 ± 3.74) in pre-flowering, (116 ± 3.26 to 207 ± 5.42) in the flowering stage, and (47 ± 1.18 to 156 ± 4.05) in fruiting stage], expressed as mg TAE/g. The essential oil content ranged from (0.64 ± 0.01 to 0.89 ± 0.02%) in pre-flowering, (0.85 ± 0.02 to 1 ± 0.02%) in flowering stage, and (0.54 ± 0.01 to 0.7 ± 0.01%) in fruiting stage. Quinones ranged from [(2.05 ± 0.05 to 2.97 ± 0.07) in pre-flowering, (3.07 ± 0.07 to 4.95 ± 0.13) in flowering stage, and (1.02 ± 0.02 to 1.96 ± 0.04) in fruiting stage], expressed as mM/min/g tissue. Antioxidant activity ranged from [(4.01 ± 0.09 to 7.42 ± 0.17) in pre-flowering, (8.08 ± 0.19 to 13.60 ± 0.35) in flowering stage, and (3.11 ± 0.06 to 6.37 ± 0.15) in fruiting stage], expressed as μg/ml. Data was subjected to multivariate analysis using principal component analysis (PCA), hierarchical clustering analysis (HCA). This was used for elucidating the intricate relationships between the phytochemical properties. All evaluated phytochemical parameters significantly increased during the growth transition from pre-flowering to the flowering stage, followed by their gradual decrease during the fruiting stage. The present study can serve as rationale for commercializing MK for aromatic and phytopharmaceutical industries.
Collapse
Affiliation(s)
- Reetu Verma
- Division of Crop Improvement, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Nageswer Singh
- Department of Chemistry and Biochemistry, Chaudhary Sarwan Kumar Himachal Pradesh Agriculture University, Palampur, HP, India
| | - Maharishi Tomar
- Division of Seed Technology, Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dibyendu Deb
- Division of Social Science, Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Anita Rana
- Department of Chemistry and Biochemistry, Chaudhary Sarwan Kumar Himachal Pradesh Agriculture University, Palampur, HP, India
| |
Collapse
|
158
|
Schilbert HM, Glover BJ. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genomics 2022; 23:604. [PMID: 35986242 PMCID: PMC9392221 DOI: 10.1186/s12864-022-08819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonols are the largest subgroup of flavonoids, possessing multiple functions in plants including protection against ultraviolet radiation, antimicrobial activities, and flower pigmentation together with anthocyanins. They are of agronomical and economical importance because the major off-taste component in rapeseed protein isolates is a flavonol derivative, which limits rapeseed protein use for human consumption. Flavonol production in Arabidopsis thaliana is mainly regulated by the subgroup 7 (SG7) R2R3-MYB transcription factors MYB11, MYB12, and MYB111. Recently, the SG19 MYBs MYB21, MYB24, and MYB57 were shown to regulate flavonol accumulation in pollen and stamens. The members of each subgroup are closely related, showing gene redundancy and tissue-specific expression in A. thaliana. However, the evolution of these flavonol regulators inside the Brassicaceae, especially inside the Brassiceae, which include the rapeseed crop species, is not fully understood. RESULTS We studied the SG7 and SG19 MYBs in 44 species, including 31 species of the Brassicaceae, by phylogenetic analyses followed by synteny and gene expression analyses. Thereby we identified a deep MYB12 and MYB111 duplication inside the Brassicaceae, which likely occurred before the divergence of Brassiceae and Thelypodieae. These duplications of SG7 members were followed by the loss of MYB11 after the divergence of Eruca vesicaria from the remaining Brassiceae species. Similarly, MYB21 experienced duplication before the emergence of the Brassiceae tribe, where the gene loss of MYB24 is also proposed to have happened. The members of each subgroup revealed frequent overlapping spatio-temporal expression patterns in the Brassiceae member B. napus, which are assumed to compensate for the loss of MYB11 and MYB24 in the analysed tissues. CONCLUSIONS We identified a duplication of MYB12, MYB111, and MYB21 inside the Brassicaceae and MYB11 and MYB24 gene loss inside the tribe Brassiceae. We propose that polyploidization events have shaped the evolution of the flavonol regulators in the Brassicaceae, especially in the Brassiceae.
Collapse
Affiliation(s)
- Hanna M Schilbert
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
159
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
160
|
Tirdiľová I, Vollmannová A, Čéryová S, Obtulovič P, Árvay J, Zetochová E. Impact of 3-Year Period as a Factor on the Content of Biologically Valuable Substances in Seeds of White Lupin. PLANTS 2022; 11:plants11162087. [PMID: 36015391 PMCID: PMC9415484 DOI: 10.3390/plants11162087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022]
Abstract
White lupin seed is a unique legume rich in protein and fiber contents, as well as phytochemicals with health potential that contributes to a reduced risk of dyslipidemia, obesity and intestinal dysfunction. This study was focused on the effect of the year on the contents of caffeic acid, 4-hydroxybenzoic acid, trans-ferulic, trans-p-coumaric, quercetin, myricetin, kaempferol, apigenin and genistein, as well as the antioxidant activity and total polyphenols, of seeds of eleven varieties (Lupine albus). The contents of individual phenolic substances were determined by high-performance liquid chromatography–HPLC. The total content of polyphenols and the antioxidant activity were determined spectrophotometrically. The results show that the lowest contents of phenolic acids were found in the seeds from 2018. The caffeic acid and trans-ferulic acid were the most represented among all phenolic acids, during all 3 monitored years (2017, 2018, and 2019). Our results confirm the significant influence of the year of cultivation on the bioactive substances’ content in the seeds, and this can be potentially useful for the appropriate selection of locations for lupine growers in Slovakia, taking into account the climatic conditions of the given location. This study provides information about a legume that is underutilized in human nutrition, which may be a valuable source of bioactive substances.
Collapse
Affiliation(s)
- Ivana Tirdiľová
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Silvia Čéryová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Obtulovič
- Faculty of Economics and Management, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Erika Zetochová
- Gene Bank of the Slovak Republic, Research Institute of Plant Production, Bratislavská 2795/122, 921 01 Piešťany, Slovakia
| |
Collapse
|
161
|
Supplementing Citrus aurantium Flavonoid Extract in High-Fat Finishing Diets Improves Animal Behavior and Rumen Health and Modifies Rumen and Duodenum Epithelium Gene Expression in Holstein Bulls. Animals (Basel) 2022; 12:ani12151972. [PMID: 35953962 PMCID: PMC9367586 DOI: 10.3390/ani12151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
One hundred and forty-six bulls (178.2 ± 6.64 kg BW and 146.0 ± 0.60 d of age) were randomly allocated to one of eight pens and assigned to control (C) or citrus flavonoid (BF) treatments (Citrus aurantium, Bioflavex CA, HTBA, S.L.U., Barcelona, Spain, 0.4 kg per ton of Bioflavex CA). At the finishing phase, the dietary fat content of the concentrate was increased (58 to 84 g/kg DM). Concentrate intake was recorded daily, and BW and animal behavior by visual scan, fortnightly. After 168 d, bulls were slaughtered, carcass data were recorded, and rumen and duodenum epithelium samples were collected. Performance data were not affected by treatment, except for the growing phase where concentrate intake (p < 0.05) was lesser in the BF compared with the C bulls. Agonistic and sexual behaviors were more frequent (p < 0.01) in the C than in the BF bulls. In the rumen epithelium, in contrast to duodenum, gene expression of some bitter taste receptors (7, 16, 39) and other genes related to behavior and inflammation was higher (p < 0.05) in the BF compared with the C bulls. Supplementing citrus flavonoids in high-fat finishing diets to Holstein bulls reduces growing concentrate consumption and improves animal welfare.
Collapse
|
162
|
Li Y, Li P, Zhang L, Shu J, Court MH, Sun Z, Jiang L, Zheng C, Shu H, Ji L, Zhang S. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111314. [PMID: 35696914 DOI: 10.1016/j.plantsci.2022.111314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are increasingly being investigated because of their contribution to plant secondary metabolism and other diverse biological roles. The apple (Malus domestica) is one of the most widely cultivated fruit trees with great economic importance. However, little is known regarding the apple UGTs. In this study, we identified 229 members of family 1 through a genome-wide analysis of the apple UGTs, which were clustered into 18 groups, from A to R. We also performed detailed analysis of 34 apple UGTs by quantitative RT-PCR, and discovered a number of stress-regulated UGTs. Among them, we characterized the role of MD09G1064900, also named MdUGT83L3, which was significantly induced by salt and cold. In vivo analysis showed that it has high activity towards cyanidin, and moderate activity towards quercetin and keampferol. Transgenic callus and regenerated apple plants overexpressing MdUGT83L3 showed enhanced tolerance to salt and cold treatments. Overexpression of MdUGT83L3 also increased anthocyanin accumulation in the callus tissues and enhanced ROS clearing upon exposure to salt and cold stresses. Furthermore, via yeast-one-hybrid assay, EMSA and CHIP analyses, we also found that MdUGT83L3 could be directly regulated by MdMYB88. Our study indicated that MdUGT83L3, under the regulation of MdMYB88, plays important roles in salt and cold stress adaptation via modulating flavonoid metabolism in apple.
Collapse
Affiliation(s)
- Yanjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, PR China
| | - Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jing Shu
- Shandong Agriculture and Engineering University, Jinan, Shandong 250100, PR China
| | - Michael H Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Zhuojing Sun
- Science and Technology Development Center of Ministry of Agriculture and Rural Affairs, PR China
| | - Lepu Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huairui Shu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusha Ji
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China.
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
163
|
Tikoria R, Kaur A, Ohri P. Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56023-56036. [PMID: 35332451 DOI: 10.1007/s11356-022-19757-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Increasing inorganic fertilizer and pesticide use has been linked to increased health risks for humans and cattle, as well as substantial water and soil contamination. In recent years, vermicomposting has shown to be a viable alternative to chemical pesticides. Vermicompost and vermicompost products such as extract and leachate assist plants in a number of ways. According to recent studies, vermicompost extract (VCE), when used as a supplement, is thought to work as a growth and stress tolerance booster for plants. These liquid supplements also help to suppress a range of pests, such as root knot nematodes. In the present study, neem- and cattle dung-based vermicompost extracts of different concentrations (0, 20, 40, 60, 80 and 100%) were prepared and used for their application against nematode infection in tomato seedlings under laboratory conditions. Apart from its antagonistic action against Meloidogyne incognita, the influence of VCE on plant growth was investigated by analyzing its morphological characteristics in tomato seedlings infected and uninfected with M. incognita. Seeds were pre-soaked in VCE for the seed priming process before being allowed for germination. After 10 days of nematode inoculation, biochemical parameters like protein content, activity of antioxidative enzymes, non-enzymatic antioxidants, stress indices, photosynthetic pigments, proline content and secondary metabolites were also analyzed. The results revealed that neem-based VCE was fatal to second-stage juveniles, with an 82% mortality rate following exposure to the highest dose. When eggs were exposed to 100% VCE, 33.8% of hatching was suppressed, indicating that VCE had an antagonistic effect on nematode egg hatching. Further, all the morphological and biochemical parameters were significantly enhanced in VCE-treated tomato seedlings as compared to untreated seedlings. Stress indices were also found to be significantly lowered by the VCE treatments in the infected plants. The effect of VCE on seedling growth and physiology was shown to be concentration dependent. As a result, the current findings show that VCE has the potential to be used as a plant growth accelerator as well as an environmentally friendly biocontrol agent against nematode pathogenesis in tomato plants.
Collapse
Affiliation(s)
- Raman Tikoria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab-143005, India.
| |
Collapse
|
164
|
Abd El-Hack ME, Salem HM, Khafaga AF, Soliman SM, El-Saadony MT. Impacts of polyphenols on laying hens' productivity and egg quality: A review. J Anim Physiol Anim Nutr (Berl) 2022; 107:928-947. [PMID: 35913074 DOI: 10.1111/jpn.13758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022]
Abstract
There has been a rapid increase in the world's output of main poultry products (meat and eggs). This reflects customer desire for these high-quality and safe products and the comparatively low price. Recently, natural feed additives, plants and products have been increasingly popular in the poultry and livestock industries to maintain and improve their health and production. Polyphenols are a type of micronutrient that is plentiful in our diet. They are phytochemicals that have health benefits, notably cardiovascular, cognitive function, antioxidant, anti-mutagenic, anti-inflammatory, antistress, anti-tumour, anti-pathogen, detoxification, growth-promoting and immunomodulating activities. On the other hand, excessive polyphenol levels have an unclear and sometimes negative impact on gastrointestinal tract health, nutrient digestion, digestive enzyme activity, vitamin, mineral absorption, laying hens performance and egg quality. As a result, this review illuminated polyphenols' various sources, classifications, biological activities, potential usage restrictions and effects on poultry, layer productivity and egg external and internal quality.
Collapse
Affiliation(s)
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
165
|
Su M, Zuo W, Wang Y, Liu W, Zhang Z, Wang N, Chen X. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples ( Malus domestica). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:799-809. [PMID: 35577345 DOI: 10.1071/fp21146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins play important roles in plant secondary metabolism. Although previous studies have identified many transcription factors (TFs) that participate in the synthetic pathway of anthocyanins, the regulation mechanism of the pathway remain poorly understood. In this study, we identified a WRKY Group IIc TF, MdWRKY75, which contained a typical WRKYGQK heptapeptide sequence and a C2 H2 -zinc finger structure. Subcellular localisation assays found that MdWRKY75 was located in the nucleus. Overexpression of MdWRKY75 promoted the accumulation of anthocyanins in apple (Malus domestica L.) 'Orin' calli. MdWRKY75 mainly stimulated the accumulation of anthocyanins by binding to the promoter of MYB transcription factor, MdMYB1 . Our research could provide new insights into how WRKY TFs regulate the accumulation of anthocyanins in apples.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Weifang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| |
Collapse
|
166
|
Use of red onion (Allium cepa L.) residue extract in the co-microencapsulation of probiotics added to a vegan product. Food Res Int 2022; 161:111854. [DOI: 10.1016/j.foodres.2022.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 01/01/2023]
|
167
|
Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study. J Mol Model 2022; 28:240. [PMID: 35913682 DOI: 10.1007/s00894-022-05223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
The structural and antioxidant activity of two flavonols, namely, Fisetin and Robinetin, have been investigated employing the density functional theory (DFT) using B3LYP functional and 6-311++G (d, p) basis set. The calculations were performed in the gas phase and under the solvent effect of water, dimethylsulfoxide (DMSO), methanol, and benzene. The Hydrogen-Atom Transfer (HAT), single Electron Transfer Followed by Proton Transfer (SET-PT), and sequential Proton Loss Electron Transfer (SPLET) mechanisms were investigated to rationalize the radical scavenging capacities and to identify the favored antioxidant mechanism. Hence, the bond dissociation enthalpies (BDE) ionization potential (IP), IE, proton dissociation enthalpy (PDE), proton affinity (PA), and electron Transfer enthalpy (ETE) related to each mechanism were reported and discussed in function of the solvent effect. For both flavonols, the results showed that 4'-OH hydroxyl is the preferred active site following the trend 4'-OH > 3'-OH > 3-OH > (5'-OH) > 7-OH. Besides, the HAT mechanism is energetically the most favored pathway. The energetically favored solvents follow the trends water > DMSO > benzene > methanol and benzene > DMSO > methanol > water, for Fisetin and Robinetin, respectively.
Collapse
|
168
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
169
|
Camuenho A, Seco A, Parola AJ, Basílio N, Pina F. Intermolecular Copigmentation of Malvidin-3- O-glucoside with Caffeine in Water: The Effect of the Copigment on the pH-Dependent Reversible and Irreversible Processes. ACS OMEGA 2022; 7:25502-25509. [PMID: 35910157 PMCID: PMC9330165 DOI: 10.1021/acsomega.2c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intermolecular copigmentation of malvidin-3-O-glucoside with caffeine was studied using a holistic procedure that includes the extension to basic pH values. In moderately basic solutions (7.5 < pH < 9.5) and independently of the copigment presence, there is a pH region where degradation of the quinoidal base and anionic quinoidal bases is faster than hydration and OH- nucleophilic addition, preventing the system from reaching the equilibrium. Intermolecular copigmentation with caffeine reduces significantly the degradation rate of quinoidal bases. In a more basic medium, the equilibrium is reached and degradation occurs from the anionic chalcones. In this case, the addition of caffeine also reduces the degradation rate in the interval 10 < pH < 11.5.
Collapse
|
170
|
Thiogenistein-Antioxidant Chemistry, Antitumor Activity, and Structure Elucidation of New Oxidation Products. Int J Mol Sci 2022; 23:ijms23147816. [PMID: 35887163 PMCID: PMC9315507 DOI: 10.3390/ijms23147816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Isoflavonoids such as genistein (GE) are well known antioxidants. The predictive biological activity of structurally new compounds such as thiogenistein (TGE)–a new analogue of GE–becomes an interesting way to design new drug candidates with promising properties. Two oxidation strategies were used to characterize TGE oxidation products: the first in solution and the second on the 2D surface of the Au electrode as a self-assembling TGE monolayer. The structure elucidation of products generated by different oxidation strategies was performed. The electrospray ionization mass spectrometry (ESI-MS) was used for identifying the product of electrochemical and hydrogen peroxide oxidation in the solution. Fourier transform infrared spectroscopy (FT-IR) with the ATR mode was used to identify a product after hydrogen peroxide treatment of TGE on the 2D surface. The density functional theory was used to support the experimental results for the estimation of antioxidant activity of TGE as well as for the molecular modeling of oxidation products. The biological studies were performed simultaneously to assess the suitability of TGE for antioxidant and antitumor properties. It was found that TGE was characterized by a high cytotoxic activity toward human breast cancer cells. The research was also carried out on mice macrophages, disclosing that TGE neutralized the production of the LPS-induced reactive oxygen species (ROS) and exhibits ABTS (2,2′-azino-bis-3-(ethylbenzothiazoline-6-sulphonic acid) radical scavenging ability. In the presented study, we identified the main oxidation products of TGE generated under different environmental conditions. The electroactive centers of TGE were identified and its oxidation mechanisms were proposed. TGE redox properties can be related to its various pharmacological activities. Our new thiolated analogue of genistein neutralizes the LPS-induced ROS production better than GE. Additionally, TGE shows a high cytotoxic activity against human breast cancer cells. The viability of MCF-7 (estrogen-positive cells) drops two times after a 72-h incubation with 12.5 μM TGE (viability 53.86%) compared to genistein (viability 94.46%).
Collapse
|
171
|
Zhang G, Yang X, Xu F, Wei D. Combined Analysis of the Transcriptome and Metabolome Revealed the Mechanism of Petal Coloration in Bauhinia variegata. FRONTIERS IN PLANT SCIENCE 2022; 13:939299. [PMID: 35903221 PMCID: PMC9315375 DOI: 10.3389/fpls.2022.939299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Bauhinia variegata petals are colorful, rich in anthocyanins, and have ornamental, nutritional, and medicinal value. However, the regulatory mechanism of anthocyanin accumulation in B. variegata remains unclear. In this study, a combined analysis of the metabolome and transcriptome was performed in red and white B. variegata cultivars in the early, middle, and blooming stages. A total of 46 different anthocyanins were identified, of which 27 showed marked differences in accumulation between the two cultivars, and contribute to their different petal colors. Malvidin 3-O-galactoside, peonidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, and malvidin 3-O-glucoside were much more abundant in the second stage of flowering. In the blooming stage, except for the anthocyanins mentioned, delphinidin 3-O-galactoside and petunidin 3-O-galactoside were the most abundant anthocyanins in the red flowers, indicating that malvidin, peonidin, cyanidin, delphinidin, and petunidin were all responsible for the red color of petals in B. variegata. RNA sequencing identified 2,431 differentially expressed genes (DEGs), of which 26 were involved in the anthocyanin synthesis pathway. Correlations between the anthocyanin biosynthesis-related DEGs and anthocyanin contents were explored, and the DEGs involved in anthocyanin accumulation in B. variegata petals were identified. Eighteen of these DEGs encoded key catalytic enzymes, such as anthocyanidin reductase (ANR) and flavonoid-3'5'-hydroxylase (F3'5'H), and 17 of them encoded transcription factors (TFs) belonging to 14 families (including MYB, NAC, SPL, ERF, and CHR28). These results improve our understanding of the roles of anthocyanins, catalytic enzymes, and TFs in B. variegata petal-color expression.
Collapse
|
172
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
173
|
Niu M, Bao C, Chen J, Zhou W, Zhang Y, Zhang X, Su N, Cui J. RsGSTF12 Contributes to Anthocyanin Sequestration in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:870202. [PMID: 35860534 PMCID: PMC9289562 DOI: 10.3389/fpls.2022.870202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/08/2022] [Indexed: 05/31/2023]
Abstract
Anthocyanins are water-soluble plant pigments mainly stored in the plant vacuoles. Glutathione S-transferases (GSTs) are a multifunctional enzyme family, which can regulate substance metabolism and biological and abiotic stresses in plants. However, few reports were focused on the involvement of GSTs in anthocyanin sequestration in red skin radish. Here, we identified a glutathione S-transferase gene RsGSTF12 that played roles in anthocyanin sequestration in radish. The bioinformatics analysis revealed that RsGSTF12 belonged to the phi (F) class of glutathione S-transferases and showed a high homology with AtGSTF12, followed by AtGSTF11. The subcellular localization assay showed that RsGSTF12 was located in the endoplasmic reticulum and tonoplast. Temporal and spatial gene expression-specific analyses uncovered a strong correlation of RsGSTF12 with anthocyanin accumulation in radish sprouts. The anthocyanin solubility assay found RsGSTF12 was capable of improving cyanidin water solubility in vitro. Transiently expressing RsGSTF12 in radish cotyledons was able to increase their anthocyanin sequestrations. Furthermore, the functional complementation and overexpression of the Arabidopsis thaliana tt19 mutant and wild type demonstrated that RsGSTF12 might play an indispensable role in anthocyanin accumulation in radish. Taken together, we provide compelling evidence that RsGSTF12 functions critically in how anthocyanins are sequestrated in radish, which may enrich our understanding of the mechanism of anthocyanin sequestration.
Collapse
|
174
|
Yan L, Yang H, Ye Q, Huang Z, Zhou H, Cui D. Metabolome and transcriptome profiling reveal regulatory network and mechanism of flavonoid biosynthesis during color formation of Dioscorea cirrhosa L. PeerJ 2022; 10:e13659. [PMID: 35811818 PMCID: PMC9261937 DOI: 10.7717/peerj.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Dioscorea cirrhosa is a plant that is used as a dye as well as in medicine. Many metabolites with pharmacological activity exist in the tubers of D. cirrhosa. However, little is known about the mechanism regulating biosynthesis in these metabolites. In this study, transcriptome and metabolome profiling were performed in four color tubers. A total of 531 metabolites, including 62 flavonoids, were identified. Epicatechin and proanthocyanin B2 were the key metabolites that exhibited high content levels in the four tubers. These metabolites were divided into nine classes with distinct change patterns. A total of 22,865 differentially expressed genes (DEGs) were identified by transcriptome analysis. Among these DEGs, we identified 67 candidate genes related to the flavonoid biosynthesis pathway and three genes that played pivotal roles in proanthocyanin (PA) synthesis. A weighted gene co-expression network analysis (WGCNA) revealed that the two modules, "MEblue" and "MEblack," were two key gene sets strongly associated with phenylpropanoid and flavonoid biosynthesis. We also found that the plant hormone signal transduction biological process exhibited activity in the late stage of tuber color formation. Additionally, we identified 37 hub transcript factors related to flavonoid biosynthesis, of which 24 were found to be highly associated with flavonoid pathway genes. In addition to the MYB-bHLH-WD40 (MBW) genes, we found that the plant hormone gene families exhibited high expression levels. This study provides a reference for understanding the synthesis of D. cirrhosa tuber metabolites at the molecular level and provides a foundation for the further development of D. cirrhosa related plant pigments as well as its further use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lin Yan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haijun Yang
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiang Ye
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihua Huang
- Shenzhen Liangzi Fashion Industeial Co. Ltd., Shenzhen, Guangdong, China
| | - Hongying Zhou
- Shenzhen Tianyi Xunyuan Ecological Culture Investment Co.Ltd., Shenzhen, Guangdong, China
| | - Dafang Cui
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
175
|
Dorjjugder N, Taguchi G. Production of Flavonoid 7-O-glucosides by Bioconversion Using Escherichia coli Expressing a 7-O-glucosyltransferase from Tobacco (Nicotiana tabacum). Appl Biochem Biotechnol 2022; 194:3320-3329. [PMID: 35347669 DOI: 10.1007/s12010-022-03880-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Flavonoid 7-O-glucosides exhibit various biological activities; however, some are not abundant in nature. Therefore, a method to produce flavonoid 7-O-glucosides was investigated. Escherichia coli expressing tobacco-derived glucosyltransferase (Ec-NtGT2) converted several flavonoids (apigenin, luteolin, quercetin, kaempferol, and naringenin) to their 7-O-glucosides with conversion rates of 67-98%. In scaled-up production, Ec-NtGT2 yielded 24 mg/L of apigenin 7-O-glucoside, 41 mg/L of luteolin 7-O-glucoside, 118 mg/L of quercetin 7-O-glucoside, 40 mg/L of kaempferol 7-O-glucoside, and 75 mg/L of naringenin 7-O-glucoside through sequential administration of substrates in 4-9 h. The conversion rates of apigenin, luteolin, quercetin, kaempferol, and naringenin were 97%, 72%, 77%, 98%, and 96%, respectively. These results indicated that Ec-NtGT2 is a simple and efficient bioconversion system for the production of flavonoid 7-O-glucosides.
Collapse
Affiliation(s)
- Nasanjargal Dorjjugder
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan.
| |
Collapse
|
176
|
Synthesis, characterization, thermal and kinetic properties of chalcone methacrylamide polymers containing halogen group in side chain. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
177
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
178
|
Lokhande K, Nawani N, K. Venkateswara S, Pawar S. Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 2022; 40:4376-4388. [PMID: 33300454 PMCID: PMC7738212 DOI: 10.1080/07391102.2020.1858165] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has quickly become a worldwide pandemic and generated panic threats for both the human population and the global economy. The unavailability of effective vaccines or drugs has enforced researchers to hunt for a potential drug to combat this virus. Plant-derived phytocompounds are of applicable interest in the search for novel drugs. Bioflavonoids from Rhus succedanea are already reported to exert antiviral activity against RNA viruses. SARS-CoV-2 Mpro protease plays a vital role in viral replication and therefore can be considered as a promising target for drug development. A computational approach has been employed to search for promising potent bioflavonoids from Rhus succedanea against SARS-CoV-2 Mpro protease. Binding affinities and binding modes between the biflavonoids and Mpro enzyme suggest that all six biflavonoids exhibit possible interaction with the Mpro catalytic site (-19.47 to -27.04 kcal/mol). However, Amentoflavone (-27.04 kcal/mol) and Agathisflavone (-25.87 kcal/mol) interact strongly with the catalytic residues. Molecular dynamic simulations (100 ns) further revealed that these two biflavonoids complexes with the Mpro enzyme are highly stable and are of less conformational fluctuations. Also, the hydrophobic and hydrophilic surface mapping on the Mpro structure as well as biflavonoids were utilized for the further lead optimization process. Altogether, our findings showed that these natural biflavonoids can be utilized as promising SARS-CoV-2 Mpro inhibitors and thus, the computational approach provides an initial footstep towards experimental studies in in vitro and in vivo, which is necessary for the therapeutic development of novel and safe drugs to control SARS-CoV-2. Communicated by Ramaswamy H. SarmaResearch highlightsRhus succedanea biflavonoids have antiviral activity.The molecular interactions and molecular dynamics displayed that all six biflavonoids bound with a good affinity to the same catalytic site of Mpro.The compound Amentoflavone has a strong binding affinity (-27.0441 kcal/mol) towards Mpro.The binding site properties of SARS-CoV-2-Mpro can be utilized in a novel discovery and lead optimization of the SARS-CoV-2-Mpro inhibitor.
Collapse
Affiliation(s)
- Kiran Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K. Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Sarika Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| |
Collapse
|
179
|
Zhang H, Du X, Yu J, Jin H, Liu N. Comparative Metabolomics study of flavonoids in the pericarp of different coloured bitter gourds ( Momordica charantia L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1347-1357. [PMID: 36051232 PMCID: PMC9424440 DOI: 10.1007/s12298-022-01210-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Bitter gourd (Momordica charantia L.) is a member of Cucurbitaceae family and has long been used as a source of food and medicine for its rich bioactive components or secondary metabolites. However, there are relatively few large-scale detection, identification, and quantitative studies on flavonoids in the pericarp of bitter gourds of different colours. To determine the differences in the diversity and specificity of flavonoids in the pericarp of bitter gourd of different colours, the metabolic profiles in the pericarp of three coloured bitter gourd accessions, dark green (mo), pale green (lv), and white (bai), were analysed by ultra-performance liquid chromatography-tandem mass spectrometry. Priorly, it was confirmed that the different shades of green were caused by the content of chlorophyll. A total of 93 metabolites, including 90 flavonoids and three tannins, were detected in the current study. These 90 flavonoids included three isoflavones, nine dihydroflavones, seven flavanols, 34 flavonols, 26 flavonoids, four chalcones, five flavonoid carbonosides, and two dihydroflavonols. Compared to mo, both lv and bai had 21 and 25 different metabolites, respectively, while there were only nine different metabolites between lv and bai. The relative contents of vitexin and isovitexin increased with the deeper colour of the bitter gourd. Thus, the different metabolites in coloured bitter gourds are mainly involved in the biosynthesis of flavonols, flavonoid carbonosides, and flavonoids. This study enables identification of metabolic differences in the pericarp of bitter gourds of different colours. The results will be helpful for quality breeding of new bitter gourd varieties and shall provide a reference for their medical application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01210-7.
Collapse
Affiliation(s)
- Hongmei Zhang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Xuan Du
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Jizhu Yu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Haijun Jin
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Na Liu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| |
Collapse
|
180
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
181
|
Beneficial health effects of polyphenols metabolized by fermentation. Food Sci Biotechnol 2022; 31:1027-1040. [DOI: 10.1007/s10068-022-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/04/2022] Open
|
182
|
Han Y, Hong W, Xiong C, Lambers H, Sun Y, Xu Z, Schulze WX, Cheng L. Combining analyses of metabolite profiles and phosphorus fractions to explore high phosphorus utilization efficiency in maize. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4184-4203. [PMID: 35303743 DOI: 10.1093/jxb/erac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) limitation is a significant factor restricting crop production in agricultural systems, and enhancing the internal P utilization efficiency (PUE) of crops plays an important role in ensuring sustainable P use in agriculture. To better understand how P is remobilized to affect crop growth, we first screened P-efficient (B73 and GEMS50) and P-inefficient (Liao5114) maize genotypes at the same shoot P content, and then analyzed P pools and performed non-targeted metabolomic analyses to explore changes in cellular P fractions and metabolites in maize genotypes with contrasting PUE. We show that lipid P and nucleic acid P concentrations were significantly lower in lower leaves of P-efficient genotypes, and these P pools were remobilized to a major extent in P-efficient genotypes. Broad metabolic alterations were evident in leaves of P-efficient maize genotypes, particularly affecting products of phospholipid turnover and phosphorylated compounds, and the shikimate biosynthesis pathway. Taken together, our results suggest that P-efficient genotypes have a high capacity to remobilize lipid P and nucleic acid P and promote the shikimate pathway towards efficient P utilization in maize.
Collapse
Affiliation(s)
- Yang Han
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Wanting Hong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Chuanyong Xiong
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Hans Lambers
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Yan Sun
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Zikai Xu
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Lingyun Cheng
- Department of Plant Nutrient, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
183
|
Johnson TO, Adegboyega AE, Ojo OA, Yusuf AJ, Iwaloye O, Ugwah-Oguejiofor CJ, Asomadu RO, Chukwuma IF, Ejembi SA, Ugwuja EI, Alotaibi SS, Albogami SM, Batiha GES, Rajab BS, Conte-Junior CA. A Computational Approach to Elucidate the Interactions of Chemicals From Artemisia annua Targeted Toward SARS-CoV-2 Main Protease Inhibition for COVID-19 Treatment. Front Med (Lausanne) 2022; 9:907583. [PMID: 35783612 PMCID: PMC9240657 DOI: 10.3389/fmed.2022.907583] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022] Open
Abstract
The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from −7.84 to −7.15 kcal/mol compared with the −6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.
Collapse
Affiliation(s)
- Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
- *Correspondence: Titilayo Omolara Johnson
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Amina Jega Yusuf
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Chinenye Jane Ugwah-Oguejiofor
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | - Ifeoma Felicia Chukwuma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Stephen Adakole Ejembi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Emmanuel Ike Ugwuja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Bodour S. Rajab
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
184
|
Xue L, Huang X, Zhang Z, Lin Q, Zhong Q, Zhao Y, Gao Z, Xu C. An Anthocyanin-Related Glutathione S-Transferase, MrGST1, Plays an Essential Role in Fruit Coloration in Chinese Bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 13:903333. [PMID: 35755659 PMCID: PMC9213753 DOI: 10.3389/fpls.2022.903333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 05/31/2023]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree economically important in China and accumulates abundant amounts of anthocyanins in fruit as it ripens. Owing to the fact that all anthocyanin containing fruit tissues in Chinese bayberry are edible and anthocyanins can provide various health benefits in human body, the mechanisms underpinning anthocyanin accumulation in this fruit are worthy of investigation. It has been known that in plants anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum and subsequently transported into the vacuole for storage, and glutathione S-transferases (GSTs) have been verified to be involved in this process. But the characterization and functionalization of the GST counterpart in Chinese bayberry is not available. The GST anthocyanin transporter MrGST1 was discovered to be related with anthocyanin accumulation in fruit from distinct developmental stages of "Biqi," a staple cultivar that accumulates over 1 mg/g anthocyanins in ripe fruit. The expression of MrGST1 was well associated with anthocyanin accumulation either in fruit collected at six developmental stages or in ripe fruit from 12 cultivars. MrGST1 was found to be responsible for the transport of anthocyanins but not proanthocyanidins when the Arabidopsis tt19 mutant was functionally complemented. Transient ectopic expression of MrGST1 in combination with MrMYB1.1 and MrbHLH1 dramatically boosted pigmentation in Nicotiana tabacum leaves in contrast to MrMYB1.1 and MrbHLH1. The promoter of MrGST1 comprised eight MYB binding sites (MBSs) according to cis-element analysis. Data from yeast one-hybrid assay and dual-luciferase tests demonstrated that MrMYB1.1 exerted considerable transactivation effect on the MrGST1 promoter by recognizing the MBS4, the fourth MBS from the ATG start site. Our results together provided molecular evidence for the contribution of MrGST1 in regulating anthocyanin accumulation in Chinese bayberry fruit.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qihua Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiuzhen Zhong
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yun Zhao
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhongshan Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
185
|
Zhou T, Zheng A, Zhang W, Lu X, Chen H, Tan H. Concise total syntheses of two flavans and structure revision assisted by quantum NMR calculations. Org Biomol Chem 2022; 20:4096-4100. [PMID: 35522925 DOI: 10.1039/d2ob00634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step protecting-group-free protocol for the synthesis of 3'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (1) and concise total synthesis of 4'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (8) enabled by a PTSA triggered bioinspired olefin isomerization/hemiacetalization/dehydration/[3 + 3]-type cycloaddition cascade reaction are reported. The successful synthesis of cycloflavan 8 along with GIAO 13C NMR calculations of flavan-4-ol 9 and cycloflavan 8 indicated the misassignment of the flavonoid isolated previously and realized the revision of its actual structure.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Anquan Zheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Wenge Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| |
Collapse
|
186
|
Yang J, Liang B, Zhang Y, Liu Y, Wang S, Yang Q, Geng X, Liu S, Wu Y, Zhu Y, Lin T. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biol 2022; 20:120. [PMID: 35606872 PMCID: PMC9128223 DOI: 10.1186/s12915-022-01327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023] Open
Abstract
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01327-x.
Collapse
|
187
|
Jiao P, Chaoyang L, Wenhan Z, Jingyi D, Yunlin Z, Zhenggang X. Integrative Metabolome and Transcriptome Analysis of Flavonoid Biosynthesis Genes in Broussonetia papyrifera Leaves From the Perspective of Sex Differentiation. FRONTIERS IN PLANT SCIENCE 2022; 13:900030. [PMID: 35668799 PMCID: PMC9163962 DOI: 10.3389/fpls.2022.900030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are important secondary metabolites involved in plant development and environmental responses. Sex differences in flavonoids are common in plants. Broussonetia papyrifera is a dioecious plant that is rich in flavonoids. However, few studies have been done on its molecular mechanism, especially sex differences. In the present study, we performed an integrated transcriptomics and metabolomics analysis of the sex differences in the accumulation of flavonoids in B. papyrifera leaves at different developmental stages. In general, flavonoids accumulated gradually with developmental time, and the content in female plants was higher than that in male plants. The composition of flavonoids in female and male plants was similar, and 16 kinds of flavonoids accumulated after flowering. Correspondingly, a significant enrichment of differentially expressed genes and metabolites was observed in the flavonoid biosynthesis pathway. WGCNA and qRT-PCR analyses identified several key genes regulating the accumulation of flavonoids, such as those encoding CHS, CHI and DFR. In addition, 8 TFs were found to regulate flavonoid biosynthesis by promoting the expression of multiple structural genes. These findings provide insight into flavonoid biosynthesis in B. papyrifera associated molecular regulation.
Collapse
Affiliation(s)
- Peng Jiao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Li Chaoyang
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, China
| | - Zhai Wenhan
- College of Forestry, Northwest A&F University, Yangling, China
| | - Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
188
|
Hameed MK, Umar W, Razzaq A, Aziz T, Maqsood MA, Wei S, Niu Q, Huang D, Chang L. Differential Metabolic Responses of Lettuce Grown in Soil, Substrate and Hydroponic Cultivation Systems under NH 4+/NO 3- Application. Metabolites 2022; 12:444. [PMID: 35629948 PMCID: PMC9143640 DOI: 10.3390/metabo12050444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Nitrogen (N) is an essential element for plant growth and development. The application of a balanced and optimal amount of N is required for sustainable plant yield. For this, different N sources and forms are used, that including ammonium (NH4+) and nitrate (NO3-). These are the main sources for N uptake by plants where NH4+/NO3- ratios have a significant effect on the biomass, quality and metabolites composition of lettuce grown in soil, substrate and hydroponic cultivation systems. A limited supply of N resulted in the reduction in the biomass, quality and overall yield of lettuce. Additionally, different types of metabolites were produced with varying concentrations of N sources and can be used as metabolic markers to improve the N use efficiency. To investigate the differential metabolic activity, we planted lettuce with different NH4+/NO3- ratios (100:0, 75:25, 50:50, 25:75 and 0:100%) and a control (no additional N applied) in soil, substrate and hydroponic cultivation systems. The results revealed that the 25% NH4+/75% NO3- ratio increased the relative chlorophyll contents as well as the biomass of lettuce in all cultivation systems. However, lettuce grown in the hydroponic cultivation system showed the best results. The concentration of essential amino acids including alanine, valine, leucine, lysine, proline and serine increased in soil and hydroponically grown lettuce treated with the 25% NH4+/75% NO3- ratio. The taste and quality-related compounds in lettuce showed maximum relative abundance with the 25% NH4+/75% NO3- ratio, except ascorbate (grown in soil) and lactupicrin (grown in substrate), which showed maximum relative abundance in the 50% NH4+/50% NO3- ratio and control treatments, respectively. Moreover, 1-O-caffeoylglucose, 1,3-dicaffeoylquinic acid, aesculetin and quercetin-3-galactoside were increased by the application of the 100% NH4+/0% NO3- ratio in soil-grown lettuce. The 25% NH4+/75% NO3- ratio was more suitable in the hydroponic cultivation system to obtain increased lettuce biomass. The metabolic profiling of lettuce showed different behaviors when applying different NH4+/NO3- ratios. Therefore, the majority of the parameters were largely influenced by the 25% NH4+/75% NO3- ratio, which resulted in the hyper-accumulation of health-promoting compounds in lettuce. In conclusion, the optimal N applications improve the quality of lettuce grown in soil, substrate and hydroponic cultivation systems which ultimately boost the nutritional value of lettuce.
Collapse
Affiliation(s)
- Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan;
| | - Tariq Aziz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (T.A.); (M.A.M.)
| | - Muhammad Aamer Maqsood
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (T.A.); (M.A.M.)
| | - Shiwei Wei
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.K.H.); (Q.N.); (D.H.)
| |
Collapse
|
189
|
Bešlo D, Došlić G, Agić D, Rastija V, Šperanda M, Gantner V, Lučić B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants (Basel) 2022; 11:970. [PMID: 35624834 PMCID: PMC9137580 DOI: 10.3390/antiox11050970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The feeding of domestic animals with diets in which polyphenols are present is increasingly attracting the attention of nutritionists and scientists. This review summarizes the knowledge regarding polyphenols' possible positive and negative effects and their bioavailability. The bioavailability of substances is a prerequisite for any postabsorption effect in vivo. Positive and negative properties have been confirmed in previous studies on the diets of domestic animals rich in polyphenols, such as secondary metabolites of plants. Free radicals are formed in every organism, leading to oxidative stress. Free radicals are highly reactive molecules and can react in cells with macromolecules and can cause damage, including in reproductive cells. Some polyphenols at specific concentrations have antioxidant properties that positively affect animal reproduction by improving the quality of male and female gametes. The intake of phytoestrogens that mimic estrogen function can induce various pathological conditions in the female reproductive tract, including ovarian, fallopian, and uterine dysfunction. The metabolism of genistein and daidzein yields the metabolites equol and p-phenyl-phenol, leading to a decline in cow fertilization. The findings so far confirm that numerous questions still need to be answered. This review points out the importance of using polyphenols that have both benificial and some unfavorable properties in specific diets.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Gloria Došlić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Marcela Šperanda
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Vesna Gantner
- Faculty of Agrobiotechnical Sciences Osijek, University J. J. Strossmayer Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (G.D.); (D.A.); (V.R.); (M.Š.); (V.G.)
| | - Bono Lučić
- Ruđer Bošković Institute, NMR Centre, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
190
|
Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
191
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. MdJa2 Participates in the Brassinosteroid Signaling Pathway to Regulate the Synthesis of Anthocyanin and Proanthocyanidin in Red-Fleshed Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:830349. [PMID: 35615132 PMCID: PMC9125324 DOI: 10.3389/fpls.2022.830349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin and proanthocyanidin play important roles in plant secondary metabolism. Although previous studies identified many transcription factors involved in anthocyanin and proanthocyanidin synthesis, the effects of MADS-box transcription factors are unclear in apple. Brassinosteroids (BRs) are steroid hormones that affect plant flavonoid biosynthesis, but the underlying regulatory mechanism is not yet well established. In this study, we identified a MADS-box transcription factor, MdJa2, which contained a highly conserved MADS-box domain and belonged to the STMADS11 subfamily. Additionally, MdJa2 was responsive to BR signal, and the overexpression of MdJa2 inhibited the synthesis of anthocyanin and proanthocyanidin. The silencing of MdJa2 in "Orin" calli promoted anthocyanin and proanthocyanidin accumulations. Moreover, MdJa2 interacted with MdBZR1. MdJa2 was revealed to independently regulate anthocyanin and proanthocyanidin synthesis pathways. The MdJa2-MdBZR1 complex enhanced the binding of MdJa2 to the promoters of downstream target genes. Our research provides new insights into how MADS-box transcription factors in the BR signaling pathway control the accumulations of anthocyanin and proanthocyanidin in red-fleshed apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Ming Yang
- College of Continuing Education, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| |
Collapse
|
192
|
Qiu L, Zheng T, Liu W, Zhuo X, Li P, Wang J, Cheng T, Zhang Q. Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:884883. [PMID: 35599903 PMCID: PMC9120947 DOI: 10.3389/fpls.2022.884883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Prunus mume var. purpurea, commonly known as "Red Bone", is a special variety with pink or purple-red xylem. It is famous due to gorgeous petals and delightful aromas, playing important roles in urban landscaping. The regulation mechanism of color formation in P. mume var. purpurea stem development is unclear. Here, we conducted a comprehensive analysis of transcriptome and metabolome in WYY ('Wuyuyu' accession, red stem) and FLE ('Fei Lve' accession, green stem), and found a total of 256 differential metabolites. At least 14 anthocyanins were detected in WYY, wherein cyanidin 3,5-O-diglucoside and peonidin3-O-glucoside were significantly accumulated through LC-MS/MS analysis. Transcriptome data showed that the genes related to flavonoid-anthocyanin biosynthesis pathways were significantly enriched in WYY. The ratio of dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) expression levels may affect metabolic balance in WYY, suggesting a vital role in xylem color formation. In addition, several transcription factors were up-regulated, which may be the key factors contributing to transcriptional changes in anthocyanin synthesis. Overall, the results provide a reference for further research on the molecular mechanism of xylem color regulation in P. mume and lay a theoretical foundation for cultivating new varieties.
Collapse
Affiliation(s)
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
193
|
Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022; 14:nu14091925. [PMID: 35565892 PMCID: PMC9101290 DOI: 10.3390/nu14091925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds.
Collapse
|
194
|
Berk Ş, Kaya S, Akkol EK, Bardakçı H. A comprehensive and current review on the role of flavonoids in lung cancer-Experimental and theoretical approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153938. [PMID: 35123170 DOI: 10.1016/j.phymed.2022.153938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It is well-known that flavonoids, which can be easily obtained from many fruits and vegetables are widely preferred in the treatment of some important diseases. Some researchers noted that these chemical compounds exhibit high inhibition effect against various cancer types. Many experimental studies proving this ability of the flavonoids with high antioxidant activity are available in the literature. PUROPOSE The main aim of this review is to summarize comprehensively anticancer properties of flavonoids against the lung cancer in the light of experimental studies and well-known theory and electronic structure principles. In this review article, more detailed and current information about the using of flavonoids in the treatment of lung cancer is presented considering theoretical and experimental approaches. STUDY DESIGN In addition to experimental studies including the anticancer effects of flavonoids, we emphasized the requirement of the well-known electronic structure principle in the development of anticancer drugs. For this aim, Conceptual Density Functional Theory should be considered as a powerful tool. Searching the databases including ScienceDirect, PubMed and Web of Science, the suitable reference papers for this project were selected. METHODS Theoretical tools like DFT and Molecular Docking provides important clues about anticancer behavior and drug properties of molecular systems. Conceptual Density Functional Theory and CDFT based electronic structure principles and rules like Hard and Soft Acid-Base Principle (HSAB), Maximum Hardness Principle, Minimum Polarizability, Minimum Electrophilicity Principles and Maximum Composite Hardness Rule introduced by one of the authors of this review are so useful to predict the mechanisms and powers of chemical systems. Especially, it cannot be ignored the success of HSAB Principle in the explanations and highlighting of biochemical interactions. RESULTS Both theoretical analysis and experimental studies confirmed that flavonoids have higher inhibition effect against lung cancer. In addition to many superior properties like anticancer activity, antimicrobial activity, antioxidant activity, antidiabetic effect of flavonoids, their toxicities are also explained with the help of published popular papers. Action modes of the mentioned compounds are given in detail. CONCLUSION The review includes detailed information about the mentioned electronic structure principles and rules and their applications in the cancer research. In addition, the epidemiology and types of lung cancer anticancer activity of flavonoids in lung cancer are explained in details.
Collapse
Affiliation(s)
- Şeyda Berk
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Turkey.
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Hilal Bardakçı
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Turkey
| |
Collapse
|
195
|
Galmán A, Vázquez‐González C, Röder G, Castagneyrol B. Interactive effects of tree species composition and water availability on growth and direct and indirect defences in
Quercus ilex. OIKOS 2022. [DOI: 10.1111/oik.09125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia, National Spanish Research Council (CSIC) Pontevedra Spain
- Inst. of Biology/Geobotany and Botanical Garden, Martin Luther Univ. Halle‐Wittenberg Germany
| | - Carla Vázquez‐González
- Misión Biológica de Galicia, National Spanish Research Council (CSIC) Pontevedra Spain
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Gregory Röder
- Inst. of Biology, Univ. of Neuchâtel Neuchâtel Switzerland
| | | |
Collapse
|
196
|
Xia H, Zhang X, Shen Y, Guo Y, Wang T, Wang J, Lin L, Deng H, Deng Q, Xu K, Lv X, Liang D. Comparative analysis of flavonoids in white and red table grape cultivars during ripening by widely targeted metabolome and transcript levels. J Food Sci 2022; 87:1650-1661. [PMID: 35315060 DOI: 10.1111/1750-3841.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The flavonoid metabolites were compared between red 'Summer Black' (SB) and white 'Shine Muscat' (SM) table grapes during fruit development based on widely targeted metabolome. A total of 134 flavonoids were identified in two cultivars, including 37 flavones, 33 flavonols, and 11 anthocyanidins, and so on. From young to veraison, the composition and the content of most flavonoids were decreasing in both cultivars but increased at maturation in SB. In general, SB has higher flavonoid compositions and content than SM during the whole fruit development, especially the content of anthocyanin after veraison. While the SM had higher content of flavonols such as quercetin, kaempferol and their derivatives. The expression of anthocyanin-related genes such as UFGT, OMT, GST, MATE, MYBA1, and MYBA2 was remarkably higher in SB than those in SM, which may attribute to higher anthocyanin content, while the higher expression of F3H and FLS resulted higher level of flavonols in SM. These results improve our understanding of flavonoid profiles and molecular mechanism in table grape cultivars.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xuefeng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yanqiu Shen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Tong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kunfu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
197
|
Kim J, Kim DH, Lee JY, Lim SH. The R3-Type MYB Transcription Factor BrMYBL2.1 Negatively Regulates Anthocyanin Biosynthesis in Chinese Cabbage ( Brassica rapa L.) by Repressing MYB-bHLH-WD40 Complex Activity. Int J Mol Sci 2022; 23:ijms23063382. [PMID: 35328800 PMCID: PMC8949199 DOI: 10.3390/ijms23063382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Chinese cabbage (Brassica rapa L.) leaves are purple in color due to anthocyanin accumulation and have nutritional and aesthetic value, as well as antioxidant properties. Here, we identified the R3 MYB transcription factor BrMYBL2.1 as a key negative regulator of anthocyanin biosynthesis. A Chinese cabbage cultivar with green leaves harbored a functional BrMYBL2.1 protein, designated BrMYBL2.1-G, with transcriptional repressor activity of anthocyanin biosynthetic genes. By contrast, BrMYBL2.1 from a Chinese cabbage cultivar with purple leaves carried a poly(A) insertion in the third exon of the gene, resulting in the insertion of multiple lysine residues in the predicted protein, designated BrMYBL2.1-P. Although both BrMYBL2.1 variants localized to the nucleus, only BrMYBL2.1-G interacted with its cognate partner BrTT8. Transient infiltration assays in tobacco leaves revealed that BrMYBL2.1-G, but not BrMYBL2.1-P, actively represses pigment accumulation by inhibiting the transcription of anthocyanin biosynthetic genes. Transient promoter activation assay in Arabidopsis protoplasts verified that BrMYBL2.1-G, but not BrMYBL2.1-P, can repress transcriptional activation of BrCHS and BrDFR, which was activated by co-expression with BrPAP1 and BrTT8. We determined that BrMYBL2.1-P may be more prone to degradation than BrMYBL2.1-G via ubiquitination. Taken together, these results demonstrate that BrMYBL2.1-G blocks the activity of the MBW complex and thus represses anthocyanin biosynthesis, whereas the variant BrMYBL2.1-P from purple Chinese cabbage cannot, thus leading to higher anthocyanin accumulation.
Collapse
Affiliation(s)
- JiYeon Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea; (J.K.); (D.-H.K.)
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: (J.-Y.L.); (S.-H.L.); Tel.: +82-31-670-5105 (S.-H.L.)
| |
Collapse
|
198
|
Song J, Zhang H, Wang ZX, Wang J. The antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activity, and chemical composition of Paeonia delavayi petal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study aimed to evaluate the functional activity and phytochemical compositions in the flower petals of Paeonia delavayi with different colors.
Materials and Methods
P. delavayi petal extracts were prepared by maceration in methanol, including purple petal extract (PPE), red petal extract (RPE) and yellow petal extract (YPE), and their antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activities were evaluated. To correlate these measured activities to phytochemicals in the petals, UPLC-MS/MS-based metabolomics method was applied to profile the compositions in the petals of different colors. Finally, the KEGG metabolic pathways database was used to identify the related metabolic pathways that are responsible for the production of these polyphenolic phytochemicals in the petals.
Results
The results showed that PPE had the highest total phenolic content (TPC), total flavonoid content (TFC), and the strongest ABTS· + scavenging ability, ferric reducing antioxidant power, and acetylcholinesterase inhibition ability in all three samples, while YPE showed the strongest DPPH· scavenging activity and α-glucosidase inhibition ability. A total of 232 metabolites were detected in the metabolomic analysis, 198 of which were flavonoids, chalcones, flavonols, and anthocyanins. Correlation analysis indicated that Peonidin-3-O-arabinoside and cyanidin-3-O-arabinoside were the major contributors to their antioxidant activity. Principal component analysis showed a clear separation between these three petals. In addition, a total of 38, 98, and 96 differential metabolites were identified in PPE, RPE, and YPE, respectively. Pathway enrichment revealed 6 KEGG pathways displayed significant enrichment differences, of which the anthocyanin biosynthesis, flavone and flavonol biosynthesis were the most enriched signaling pathways. It revealed the potential reason for the differences in metabolic and functional levels between different colors of P. delavayi petals.
Conclusions
P. delavayi petals of different colors have different metabolite contents and functional activities, of which the anthocyanin, flavone, and flavonol metabolites are critical in its functional activities, suggesting the anthocyanin biosynthesis, flavone and flavonol biosynthesis pathways be the key pathways responsible for both the petal color and bioactive phytochemicals in P. delavayi flowers.
Collapse
|
199
|
Toubali S, Ait-El-Mokhtar M, Boutasknit A, Anli M, Ait-Rahou Y, Benaffari W, Ben-Ahmed H, Mitsui T, Baslam M, Meddich A. Root Reinforcement Improved Performance, Productivity, and Grain Bioactive Quality of Field-Droughted Quinoa ( Chenopodium quinoa). FRONTIERS IN PLANT SCIENCE 2022; 13:860484. [PMID: 35371170 PMCID: PMC8971987 DOI: 10.3389/fpls.2022.860484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Modern agriculture is facing multiple and complex challenges and has to produce more food and fiber to feed a growing population. Increasingly volatile weather and more extreme events such as droughts can reduce crop productivity. This implies the need for significant increases in production and the adoption of more efficient and sustainable production methods and adaptation to climate change. A new technological and environment-friendly management technique to improve the tolerance of quinoa grown to maturity is proposed using native microbial biostimulants (arbuscular mycorrhizal fungi; AMF) alone, in the consortium, or in combination with compost (Comp) as an organic matter source under two water treatments (normal irrigation and drought stress (DS)). Compared with controls, growth, grain yield, and all physiological traits under DS were significantly decreased while hydrogen peroxide, malondialdehyde, and antioxidative enzymatic functions were significantly increased. Under DS, biofertilizer application reverted physiological activities to normal levels and potentially strengthened quinoa's adaptability to water shortage as compared to untreated plants. The dual combination yielded a 97% improvement in grain dry weight. Moreover, the effectiveness of microbial and compost biostimulants as a biological tool improves grain quality and limits soil degradation under DS. Elemental concentrations, particularly macronutrients, antioxidant potential (1,1-diphenyl-2-picrylhydrazyl radical scavenging activity), and bioactive compounds (phenol and flavonoid content), were accumulated at higher levels in biofertilizer-treated quinoa grain than in untreated controls. The effects of AMF + Comp on post-harvest soil fertility traits were the most positive, with significant increases in total phosphorus (47%) and organic matter (200%) content under drought conditions. Taken together, our data demonstrate that drought stress strongly influences the physiological traits, yield, and quality of quinoa. Microbial and compost biostimulation could be an effective alternative to ensure greater recovery capability, thereby maintaining relatively high levels of grain production. Our study shows that aboveground stress responses in quinoa can be modulated by signals from the microbial/compost-treated root. Further, quinoa grains are generally of higher nutritive quality when amended and inoculated with AMF as compared to non-inoculated and compost-free plants.
Collapse
Affiliation(s)
- Salma Toubali
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| | - Mohamed Ait-El-Mokhtar
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abderrahim Boutasknit
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| | - Mohamed Anli
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| | - Youssef Ait-Rahou
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Wissal Benaffari
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| | - Hela Ben-Ahmed
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis, Tunisia
| |
Collapse
|
200
|
Patel P. Water-Mediated ortho-Carboxymethylation of Aryl Ketones under Ir(III)-Catalytic Conditions: Step Economy Total Synthesis of Cytosporones A-C. J Org Chem 2022; 87:4852-4862. [PMID: 35297630 DOI: 10.1021/acs.joc.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious Ir(III)-catalyzed carboxymethylation of aryl ketone with diazotized Meldrum's acid has been developed in aqueous medium. Flavanone and chromanone were also found to be facile substrates with the developed catalytic system. Mechanistic studies revealed the active catalytic species and the role of water in the reaction process as hydroxy and proton sources. Employing the developed method, total synthesis of cytosporone A was achieved in two steps and that of cytosporones B-C was achieved in three steps starting from resorcinol.
Collapse
Affiliation(s)
- Pitambar Patel
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| |
Collapse
|