151
|
Thompson WA, Vijayan MM. Environmental levels of venlafaxine impact larval behavioural performance in fathead minnows. CHEMOSPHERE 2020; 259:127437. [PMID: 32593824 DOI: 10.1016/j.chemosphere.2020.127437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is one of the most abundant antidepressants in municipal wastewater effluents (MWWE). The early life stages are particularly sensitive to contaminant exposure, but few studies have examined whether persistent exposure to venlafaxine impart adverse developmental outcomes. The fathead minnow (Pimephales promelas) is a widely used model for ecotoxicological studies, and this fish is native to Alberta, Canada. We tested the hypothesis that environmental levels of venlafaxine compromises early developmental behavioural performances in fathead minnows. Embryos were exposed to waterborne venlafaxine at either 0, 0.06, 0.33, 0.66, 1.37 or 3 μg L-1 concentration for 7 days. Environmental levels of venlafaxine did not impact the survival, hatch rate or heart rate of fathead minnow embryos and larvae but reduced the growth of larvae even at concentrations as low as 0.06 μg L-1. We validated thigmotaxis as a screen for anxiolytic and anxiogenic behaviour in fathead minnow larvae by exposing them to concentrations of ethanol and caffeine, respectively. Behavioural analyses revealed that early developmental exposure to venlafaxine does not alter thigmotaxis but reduced the activity of fathead minnows. The larval behavioural assays reported here for fathead minnow have the potential to be used as screening tools for the risk assessment of neurotoxic contaminants in MWWE. Overall, we demonstrate for the first time that exposure to environmental levels of venlafaxine during the critical early developmental window does not elicit an anxiogenic response but may adversely affect the larval growth performance of fathead minnows.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
152
|
Wang W, Ru S, Wang L, Wei S, Zhang J, Qin J, Liu R, Zhang X. Bisphenol S exposure alters behavioral parameters in adult zebrafish and offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140448. [PMID: 32610242 DOI: 10.1016/j.scitotenv.2020.140448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The environmental emission of bisphenol S (BPS), which is globally utilized in the manufacturing of polycarbonates, epoxy resin and thermal paper, has affected the aquatic ecosystem. Thus, effects of BPS exposure on the fitness of aquatic animals have been noted. Here, adult male and female zebrafish were used as aquatic model organisms and separately exposed to environmentally relevant doses of BPS (0, 1, 10 and 100 μg/L) for 14 days. The results showed that BPS changed the body pigment of zebrafish and slowed the maturation of oocytes in the ovary, resulting in a significant decrease in the shoaling behavior of adult zebrafish and the attraction of BPS-treated females during the mating process. Furthermore, in the subgeneration of adult zebrafish exposed to BPS for 7 days, survival behaviors, such as locomotor, phototaxis and feeding behaviors, deviated from normal behaviors. After exposing the adult zebrafish to BPS for an additional 7 days, the above described survival behaviors and light adaptation were disrupted in offspring. Our data, based on intergenerational behavioral studies, demonstrate that BPS affects the behaviors of aquatic animals and the ability of offspring to feed and avoid predators, possibly jeopardizing the survival of aquatic animals.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liangliang Wang
- Institute of Biomedical Research (YC), Yunnan University, Kunming 650091, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
153
|
Araujo-Silva H, Leite-Ferreira ME, Luchiari AC. Behavioral Screening of Alcohol Effects and Individual Differences in Zebrafish (Danio rerio). Alcohol Alcohol 2020; 55:591-597. [PMID: 32533153 DOI: 10.1093/alcalc/agaa046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
AIM To better understand the individual differences that make up a population, this study aimed to evaluate the effects of different alcoholic concentrations on the behavioral profiles of zebrafish (Danio rerio). METHODS For this purpose, adult animals were separated into two behavioral profiles: bold and shy, according to the emergence order. Bold and shy fish were individually tested for exploration after exposure to the drug. Acute exposure treatments were alcohol 0.00, 0.10, 0.25 and 0.50%. The behavioral parameters evaluated were speed while moving, maximum speed, total distance traveled and distance from the bottom of the tank. RESULTS For the groups that did not receive alcohol, bold animals showed higher speed while moving. Shy 0.00% and shy 0.10% had the highest maximum speed compared with other concentrations and profiles. For the distance from the bottom tank, our results showed that the increase induced by the low acute dose (0.10%) was observed for both profiles. CONCLUSIONS Our results corroborate with previous findings that alcohol affects the behavioral profiles of zebrafish differently, with bold animals apparently more resistant to these changes.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Elisa Leite-Ferreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
154
|
Lutte AH, Majolo JH, Da Silva RS. Inhibition of ecto-5'-nucleotidase and adenosine deaminase is able to reverse long-term behavioural effects of early ethanol exposure in zebrafish (Danio rerio). Sci Rep 2020; 10:17809. [PMID: 33082435 PMCID: PMC7576130 DOI: 10.1038/s41598-020-74832-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The behavioural impacts of prenatal exposure to ethanol include a lower IQ, learning problems, anxiety and conduct disorders. Several components of the neurochemical network could contribute to the long-lasting effects of ethanol embryonic exposure. Adenosine is an important neuromodulator, that has been indicated to be affected by acute and chronic exposure to ethanol. Here, embryos of zebrafish exposed to 1% ethanol during the developmental stages of gastrula/segmentation or pharyngula exhibited anxiolytic effect, increased aggressiveness, and decreased social interaction. The exposure during pharyngula stage was able to affect all behavioural parameters analysed at 3 months-post fertilization (mpf), while the treatment during gastrula stage affected the anxiety and social interaction parameters. The aggressiveness was the only behavioural effect of early ethanol exposure that lasted to 12 mpf. The use of a specific inhibitor of adenosine production, the inhibitor of ecto-5′-nucleotidase (AMPCP/150 mg/kg), and the specific inhibitor of adenosine degradation, the inhibitor of adenosine deaminase, EHNA (100 mg/kg) did not affect the effects over anxiety. However, AMPCP at 3 mpf, but not EHNA, reversed aggressive parameters. AMPCP also recovered the social interaction parameter at 3 mpf in animals treated in both stages, while EHNA recovered this parameter just in those animals treated with ethanol during the gastrula stage. These results suggest that long-lasting behavioural effects of ethanol can be modulated by intervention on ecto-5′-nucleotidase and adenosine deaminase activities.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Julia Huppes Majolo
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
155
|
Qiu N, Xu C, Wang X, Hou M, Xia Z, Wang J. Chemicals Weaken Shoal Preference in the Rare Minnow Gobiocypris rarus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2018-2027. [PMID: 32681662 DOI: 10.1002/etc.4825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Fish behavioral responses are sensitive to chemicals in the water. We tested rare minnow tested for their shoal preference, and the shoal (school) factors including nutritional status, body size, and shoal (school) size that can make their preference most stable were measured. Then shoal preference was measured again while fish and shoal were subjected to a concentration gradient of chemicals (cadmium ion [Cd2+ ], tricaine methanesulfonate [MS222], and p-chloroaniline). The results showed that single rare minnow preferred shoals over blank control tanks. In addition, this preference was most stable when the shoal was well fed and contained 20 individuals 2 cm long. Although there was no significant response after exposure to p-chloroaniline, the time spent from entering the tank to start moving decreased greatly at concentrations of Cd2+ >3 mg/L and MS222 >11 mg/L. The time the test fish spent close to the shoal significantly decreased at Cd2+ >3 mg/L, MS222 >11 mg/L, and p-chloroaniline >10 mg/L, and the frequency of boundary line crossing increased at the same concentrations. The behavioral parameters changed by 20, 5, and 8 min once the lowest-observed-effect concentrations of Cd2+ , MS222, and p-chloroaniline, respectively, were added. Our study provides useful information on rare minnow shoal preference that may be used for a biological early warning system. Environ Toxicol Chem 2020;39:2018-2027. © 2020 SETAC.
Collapse
Affiliation(s)
- Ning Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunsen Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuzhen Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miaomiao Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Dalian Ocean University, Dalian, Liaoning, China
| | - Zhijun Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
156
|
Facciol A, Gerlai R. Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front Behav Neurosci 2020; 14:572175. [PMID: 33100980 PMCID: PMC7546311 DOI: 10.3389/fnbeh.2020.572175] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Social cognition and social behaviors are complex phenomena that involve numerous brain areas and underlying neurobiological mechanisms. Embryonic alcohol exposure may lead to the development of Fetal Alcohol Spectrum Disorder (FASD), a disorder that manifests with varying symptoms including abnormal social behavior and other cognitive deficits. Animal models have been utilized to mimic aspects of the disease and to study potential underlying mechanisms. The zebrafish is a relative newcomer in this field but has been suggested as an optimal compromise between system complexity and practical simplicity for modeling FASD. Importantly, due to external fertilization and development of the embryo outside the mother and subsequent lack of parental care, this species allows precise control of the timing and dose of alcohol delivery during embryonic development. Furthermore, the zebrafish is a highly social species and thus may be particularly appropriate for the analysis of embryonic alcohol-induced alterations in this context. Here, we provide a succinct review focusing on shoaling, a prominent form of social behavior, in zebrafish. We summarize what is known about its behavioral mechanisms and underlying neurobiological processes, and how it is altered by exposure to ethanol during embryonic development. Lastly, we briefly consider possible future directions of research that would help us better understand the relationship between the behavioral expression and molecular basis of embryonic ethanol-induced social deficits in fish and humans.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
157
|
Rosa LV, Costa FV, Canzian J, Borba JV, Quadros VA, Rosemberg DB. Three- and bi-dimensional analyses of the shoaling behavior in zebrafish: Influence of modulators of anxiety-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109957. [PMID: 32360787 DOI: 10.1016/j.pnpbp.2020.109957] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Social behaviors are key components that play adaptive roles in various species, including humans. The zebrafish (Danio rerio) is a social species and the shoaling behavior can be pharmacologically manipulated either by anxiogenic or anxiolytic substances, providing translatable data in neuropsychiatric research. Here, we aimed to characterize the shoaling behavior in zebrafish under different pharmacological manipulations in a three-dimensional (3D) perspective using the spatial coordinates of the fish positions. Temporal and spatial reconstructions of shoal occupancy were performed after exposure to conspecific alarm substance (CAS) and caffeine (CAF) (anxiogenic substances) or diazepam (DZP) (a classical anxiolytic drug). Behavioral 3D analyses and spatiotemporal reconstructions of the shoaling behavior revealed that both CAS and CAF decreased the shoal volume, the average fish distance to the centoid point, and increased shoal geotaxis, but only CAS reduced the inter-fish distance when compared to control (CTRL). Conversely, DZP group showed increased shoal volume and inter-fish distance. Because substantial differences were verified when the shoaling response was analyzed in 3D and 2D perspectives, we reinforce the use of 3D reconstructions of fish positions to assess how different manipulations affect the social behavior of zebrafish. The novel procedure described here represents an easy-to-use, inexpensive, and alternative tool to perform a spatiotemporal reconstruction of the shoal occupancy under different pharmacological manipulations, complementing the existing quantification of locomotion activity of multiple fish.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
158
|
Karakaya M, Macrì S, Porfiri M. Behavioral Teleporting of Individual Ethograms onto Inanimate Robots: Experiments on Social Interactions in Live Zebrafish. iScience 2020; 23:101418. [PMID: 32818837 PMCID: PMC7452384 DOI: 10.1016/j.isci.2020.101418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023] Open
Abstract
Social behavior is widespread in the animal kingdom, and it remarkably influences human personal and professional lives. However, a thorough understanding of the mechanisms underlying social behavior is elusive. Integrating the seemingly different fields of robotics and preclinical research could bring new insight on social behavior. Toward this aim, we established "behavioral teleporting" as an experimental solution to independently manipulate multiple factors underpinning social interactions. Behavioral teleporting consists of real-time transfer of the complete ethogram of a live zebrafish onto a remotely-located robotic replica. Through parallel and simultaneous behavioral teleporting, we studied the interaction between two live fish swimming in remotely-located tanks: each live fish interacted with an inanimate robot that mirrored the behavior of the other fish, and the morphology of each robot was independently tailored. Our results indicate that behavioral teleporting can preserve natural interaction between two live animals, while allowing fine control over morphological features that modulate social behavior.
Collapse
Affiliation(s)
- Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn NY 11201, USA.
| |
Collapse
|
159
|
Macrì S, Karakaya M, Spinello C, Porfiri M. Zebrafish exhibit associative learning for an aversive robotic stimulus. Lab Anim (NY) 2020; 49:259-264. [PMID: 32778807 DOI: 10.1038/s41684-020-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA. .,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
160
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
161
|
Fenske L, Concato AC, Vanin AP, Tamagno WA, de Oliveira Sofiatti JR, Treichel H, da Rosa JGS, Barcellos LJG, Kaizer RR. 17-α-Ethinylestradiol modulates endocrine and behavioral responses to stress in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29341-29351. [PMID: 32440876 DOI: 10.1007/s11356-020-09318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.
Collapse
Affiliation(s)
- Lurian Fenske
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Ani Carla Concato
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Ana Paula Vanin
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Wagner Antonio Tamagno
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Jéssica Reis de Oliveira Sofiatti
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Helen Treichel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rosilene R Kaizer
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil.
| |
Collapse
|
162
|
Lanzarin GAB, Venâncio CAS, Monteiro SM, Félix LM. Behavioural toxicity of environmental relevant concentrations of a glyphosate commercial formulation - RoundUp® UltraMax - During zebrafish embryogenesis. CHEMOSPHERE 2020; 253:126636. [PMID: 32276117 DOI: 10.1016/j.chemosphere.2020.126636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The use of herbicides with glyphosate as an active ingredient (a.i.) has increased dramatically in recent years, with its residues often being found in either soil or water. Nevertheless, concerns have arisen about its harmful side effects for both ecosystems and wildlife health. Therefore, the objective of this work was to assess the effects of a commercial formulation of glyphosate (RoundUp® UltraMax), at environmentally relevant concentrations on zebrafish embryos through a set of behavioural patterns. Zebrafish embryos were exposed to 0, 1, 2 and 5 μg a.i. mL-1 concentrations of the glyphosate formulation for 72 h (from 2.5 to 75 h post-fertilization (hpf)). After exposure, larvae were washed and allowed to develop until 144 hpf. At this point, the larvae behaviour was evaluated using a battery of tests to assess the general exploratory motility, escape-like responses, anxiety-related behaviours and social interactions. In addition, cortisol levels were assessed. No significant changes were observed relative to the exploratory behaviour in the standard open field. The anxiety-related behaviours were similar among groups, and no social interference was observed following exposure to these glyphosate concentrations. Likewise, cortisol levels remained similar among treatments. Still, the larvae exposed to 5 μg a.i. mL-1 did not react to the presence of an aversive stimulus, supporting glyphosate-induced changes in the sensory-motor coordination during development. In general, these results indicate a possible neurotoxic effect of this glyphosate-based formulation that should be further evaluated. In addition, the results obtained could impose a risk for wildlife sensitive species that should not be neglected.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), Porto, Portugal.
| |
Collapse
|
163
|
de Abreu MS, Giacomini ACVV, Genario R, Dos Santos BE, Marcon L, Demin KA, Kalueff AV. The impact of housing environment color on zebrafish anxiety-like behavioral and physiological (cortisol) responses. Gen Comp Endocrinol 2020; 294:113499. [PMID: 32360541 DOI: 10.1016/j.ygcen.2020.113499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Color of the environment is an important factor modulating human and animal behavior and physiology. Animal models are a valuable tool to understand how colors affect social, cognitive and affective responses. The zebrafish (Danio rerio) is rapidly emerging as an important organism in neuroscience and physiology. Here, we examine whether the color of housing environment influences zebrafish anxiety-like behavior and whole-body cortisol levels. Overall, housing for 15 days in transparent and white holding tanks increases, and in black or blue tanks decreases, baseline anxiety-like behavior in adult zebrafish. Housing in blue tanks (vs. white) also reduced their whole-body cortisol levels. Taken together, our data suggest that color of the housing environment affects neurobehavioral and endocrine responses in zebrafish, with multiple implications for behavioral phenomics and animal welfare. Our study also reinforces zebrafish as a promising model organism to study neurobiology of compex brain-environment interactions.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
164
|
Freezing activity brief data from a new FUS mutant zebrafish line. Data Brief 2020; 31:105921. [PMID: 32676526 PMCID: PMC7352050 DOI: 10.1016/j.dib.2020.105921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022] Open
Abstract
The data presented in this paper are related to the research article "Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS". In this model the lack of fus causes reduced lifespan as well as impaired motor abilities associated with a decrease of motor neurons axons lenght and an increase of neuromuscular junctions fragmentation. Data in this article describes the global locomotor activity data at 3, 4 and 5 days post fertilization in WT, fus heterozygous (fus+/-) and fus homozygous (fus-/-) zebrafish embryos as a response to visual light stimulation, with particular attention on the freezing respose.
Collapse
|
165
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
166
|
Viscarra F, González-Gutierrez J, Esparza E, Figueroa C, Paillali P, Hödar-Salazar M, Cespedes C, Quiroz G, Sotomayor-Zárate R, Reyes-Parada M, Bermúdez I, Iturriaga-Vásquez P. Nicotinic Antagonist UFR2709 Inhibits Nicotine Reward and Decreases Anxiety in Zebrafish. Molecules 2020; 25:E2998. [PMID: 32630020 PMCID: PMC7412259 DOI: 10.3390/molecules25132998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022] Open
Abstract
Zebrafish is becoming a popular animal model in neuropharmacology and drug discovery, mainly due to its ease of handling and low costs involved in maintenance and experimental work. This animal displays a series of complex behaviours that makes it useful for assessing the effects of psychoactive drugs. Here, adult zebrafish were used for assessment of the anxiolytic and anti-addictive properties of UFR2709, a nicotinic receptor (nAChR) antagonist, using two behavioural paradigms to test for addiction, the novel tank diving test to assess anxiety and the conditioned place preference (CPP). Furthermore, the expression of nAChR subunits α4 and α7 was measured in the zebrafish brain. The results show that UFR2709 exhibits an anxiolytic effect on zebrafish and blocks the effect evoked by nicotine on CPP. Moreover, UFR2709 significantly decreased the expression of α4 nicotinic receptor subunit. This indicates that UFR2709 might be a useful drug for the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Franco Viscarra
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Juan González-Gutierrez
- Programa de Doctorado en Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Erica Esparza
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Carla Figueroa
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Pablo Paillali
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Martin Hödar-Salazar
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Camilo Cespedes
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
| | - Gabriel Quiroz
- Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile;
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987 Chile
| | - Isabel Bermúdez
- Department of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patricio Iturriaga-Vásquez
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile; (F.V.); (E.E.); (C.F.); (P.P.); (M.H.-S.); (C.C.)
- Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
167
|
Gusso D, Reolon GK, Gonzalez JB, Altenhofen S, Kist LW, Bogo MR, Bonan CD. Pyriproxyfen Exposure Impairs Cognitive Parameters and Alters Cortisol Levels in Zebrafish. Front Behav Neurosci 2020; 14:103. [PMID: 32625070 PMCID: PMC7313640 DOI: 10.3389/fnbeh.2020.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Pyriproxyfen is one of the most used larvicides and insecticides; it acts as an analog of juvenile insect hormone (a growth regulator). It is highly toxic during all stages of mosquito development, suppresses metamorphosis, and interferes in insect reproduction and proliferation. Pyriproxyfen and its main metabolite have been shown to affect brain development in rodents. This compound is employed mainly to eliminate outbreaks of the genus Aedes, even in potable water. Despite the increasing number of toxicological studies about larvicides and insecticides-with an indication of continuous use-there have been few studies about the effects of pyriproxyfen in non-target species such as fish. This study evaluated the effects of pyriproxyfen on behavioral, cognitive, and endocrine parameters in zebrafish. We exposed adult zebrafish to different pyriproxyfen (Pestanal®) concentrations (0.125, 0.675, and 1.75 mg/l) for 96 h. We analyzed behavioral parameters, memory, cortisol levels, and gene expression of glucocorticoid receptor (gr) and corticotrophin-releasing factor (crf) after pyriproxyfen exposure. This exposure did not alter locomotion (distance or mean speed), anxiety-like behavior (latency to enter to the top zone of the tank or time in the top zone of the tank), and social or aggressive behavior. However, there was impaired inhibitory avoidance memory at all tested pyriproxyfen concentrations. Cortisol levels were reduced in exposed groups when compared to control or vehicle. However, gr and crf gene expression in pyriproxyfen-treated animals were unaltered when compared to control or vehicle groups. Taken together, these findings indicate that pyriproxyfen may induce cognitive impairment and altered cortisol levels in zebrafish, a non-target species.
Collapse
Affiliation(s)
- Darlan Gusso
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Kellermann Reolon
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Brum Gonzalez
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefani Altenhofen
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mauricio Reis Bogo
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pos-Graduacao em Biologia Celular e Molecular, Escola de Ciencias da Saude e da Vida, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pos-Graduacao em Medicina e Ciencias da Saude, Escola de Medicina, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
168
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Withdrawal Effects Following Methionine Exposure in Adult Zebrafish. Mol Neurobiol 2020; 57:3485-3497. [PMID: 32533465 DOI: 10.1007/s12035-020-01970-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Methionine (Met) has important functions for homeostasis of various species, including zebrafish. However, the increased levels of this amino acid in plasma, a condition known as hypermethioninemia, can lead to cell alterations. Met is crucial for the methylation process and its excesses interfere with the cell cycle, an effect that persists even after the removal of this amino acid. Some conditions may lead to a transient increase of this amino acid with unexplored persistent effects of Met exposure. In the present study, we investigated the behavioral and neurochemical effects after the withdrawal of Met exposure. Zebrafish were divided into two groups: control and Met-treated group (3 mM) for 7 days and after maintained for 8 days in tanks containing only water. In the eighth day post-exposure, we evaluated locomotion, anxiety, aggression, social interaction, and memory, as well as oxidative stress parameters, amino acid, and neurotransmitter levels in the zebrafish brain. Our results showed that 8 days after Met exposure, the treated group showed decreased locomotion and aggressive responses, as well as impaired aversive memory. The Met withdrawal did not change thiobarbituric acid reactive substances, reactive oxygen species, and nitrite levels; however, we observed a decrease in antioxidant enzymes superoxide dismutase, catalase, and total thiols. Epinephrine and cysteine levels were decreased after the Met withdrawal whereas carnitine and creatine levels were elevated. Our findings indicate that a transient increase in Met causes persistent neurotoxicity, observed by behavioral and cognitive changes after Met withdrawal and that the mechanisms underlying these effects are related to changes in antioxidant system, amino acid, and neurotransmitter levels.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
169
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
170
|
Paiva IM, de Carvalho LM, Di Chiaccio IM, Lima Assis ID, Naranjo ES, Bernabé MG, Ferreira FNA, Cayuela ML, Murgas LDS, Brunialti Godard AL. Inhibition of Lrrk2 reduces ethanol preference in a model of acute exposure in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109885. [PMID: 32032698 DOI: 10.1016/j.pnpbp.2020.109885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/28/2019] [Accepted: 02/03/2020] [Indexed: 11/28/2022]
Abstract
Due to its multifactorial and yet to be fully understood origin, ethanol addiction is a field that still requires studies for the elucidation of novel genes and pathways that potentially influence the establishment and maintenance of addiction-like phenotypes. In this context, the present study aimed to evaluate the role of the LRRK2 pathway in the modulation of ethanol preference behavior in Zebrafish (Danio rerio). Using the behavioral Conditioned Place Preference (CPP) paradigm, we accessed the preference of animals for ethanol. Next, we evaluated the transcriptional regulation of the gene lrrk2 and the receptors drd1, drd2, grin1a, gria2a, and gabbr1b in the zebrafish brain. Additionally, we used a selective inhibitor of Lrrk2 (GNE-0877) to assess the role of this gene in the preference behavior. Our results revealed four distinct ethanol preference phenotypes (Light, Heavy, Negative Reinforcement, and Inflexible), each showing different transcriptional regulation patterns of the drd1, drd2, grin1a, gria2a, and gabbr1b receptors. We showed that the lrrk2 gene was hyperregulated only in the brains of the animals with the Inflexible phenotype. Most importantly, we showed, for the first time in the context of preference for ethanol, that treatment with the GNE-0877 inhibitor modulates the transcription of the target receptor genes and reduces the preference for ethanol in the animals of the Inflexible group. This result corroborates the hypothesis that the LRRK2 pathway is involved in the inflexible preference for ethanol behavior. Lastly, we identified a possible pharmacological target for the treatment of abusive preference behavior for ethanol.
Collapse
Affiliation(s)
- Isadora Marques Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isabela Martins Di Chiaccio
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Isadora de Lima Assis
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Elena Sánchez Naranjo
- Aging Cancer and Telomerase Laboratory, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Garcia Bernabé
- Aging Cancer and Telomerase Laboratory, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| | - Felipe Norberto Alves Ferreira
- Laboratório de Nutrição Animal, Departamento de Medicina Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Luisa Cayuela
- Aging Cancer and Telomerase Laboratory, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, Murcia, Spain
| | - Luis David Solis Murgas
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Ana Lúcia Brunialti Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
171
|
Bourefis AR, Campanari ML, Buee-Scherrer V, Kabashi E. Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis 2020; 142:104935. [PMID: 32380281 DOI: 10.1016/j.nbd.2020.104935] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS), an RNA-binding protein, are known to cause Amyotrophic Lateral Sclerosis (ALS). However, molecular mechanisms due to loss of FUS function remain unclear and controversial. Here, we report the characterization and phenotypic analysis of a deletion mutant of the unique FUS orthologue in zebrafish where Fus protein levels are depleted. The homozygous mutants displayed a reduced lifespan as well as impaired motor abilities associated with specific cellular deficits, including decreased motor neurons length and neuromuscular junctions (NMJ) fragmentation. Furthermore, we demonstrate that these cellular impairments are linked to the misregulation of mRNA expression of acetylcholine receptor (AChR) subunits and histone deacetylase 4, markers of denervation and reinnervation processes observed in ALS patients. In addition, fus loss of function alters tau transcripts favoring the expression of small tau isoforms. Overall, this new animal model extends our knowledge on FUS and supports the relevance of FUS loss of function in ALS physiopathology.
Collapse
Affiliation(s)
- Annis-Rayan Bourefis
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | - Maria-Letizia Campanari
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | | | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France.
| |
Collapse
|
172
|
Behavioral plasticity and gene regulation in the brain during an intermittent ethanol exposure in adult zebrafish population. Pharmacol Biochem Behav 2020; 192:172909. [DOI: 10.1016/j.pbb.2020.172909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
|
173
|
Fang Y, Sun Y, Luo C, Gu J, Shi Z, Lu G, Silvestre JS, Chen Z. Evaluation of cardiac dysfunction in adult zebrafish using high frequency echocardiography. Life Sci 2020; 253:117732. [PMID: 32360570 DOI: 10.1016/j.lfs.2020.117732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
AIMS Recently, the zebrafish has gained attention as an innovative experimental model to decipher molecular and cellular mechanisms involved in cardiovascular development and diseases. Nevertheless, the use of zebrafish models has been challenged because the transparency of these fish, which allows for accurate cardiac evaluation, disappears in adulthood. In this study, the epicardial outline method was performed to investigate the feasibility of echocardiography in assessing cardiac function in pathological adult zebrafish. MATERIALS AND METHODS We attempted to estimate heart failure in adult zebrafish treated with three distinct regulators of cardiac function: phenylhydrazine hydrochloride (PHZ), doxorubicin (DOX), and ethanol. B-mode and Doppler images were evaluated at frequencies of up to 50 MHz and 40 MHz, respectively. The correlation between alterations in cardiac function, haemoglobin concentration, and myocardial histopathology were assessed. KEY FINDINGS Cardiac output (CO) in PHZ-treated zebrafish was significantly higher than that in control zebrafish (151 ± 67 vs. 84 ± 37 μl/min, P = 0.004), whereas ejection fraction (EF) was lower (36.3 ± 10.9 vs. 50.9 ± 8.7%, P < 0.001), indicating typical high output heart failure derived from anaemia. Additionally, ventricular dysfunction in DOX-treated zebrafish was characterised by low CO (57 ± 38 μl/min) and EF (28.8 ± 10.4%), accompanied by an enlarged ventricle in diastole and systole, representing low output heart failure. For ethanol-treated zebrafish, EF was markedly reduced (39.6 ± 7.2%) indicating a dilated heart, while CO remained unchanged (90 ± 40 μl/min). SIGNIFICANCE The epicardial outline method is an effective way of using echocardiography to assess cardiac dysfunction in pathological adult zebrafish, unlocking a major bottleneck in this research field with limited cardiac functional assays.
Collapse
Affiliation(s)
- Yuehua Fang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyi Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Luo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianing Gu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongwei Shi
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Zhenyue Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
174
|
Otsuka A, Shimomura K, Niwa H, Kagawa N. The presence of a conspecific induces risk-taking behaviour and enlargement of somata size of dopaminergic neurons in the brain of male medaka fish. JOURNAL OF FISH BIOLOGY 2020; 96:1014-1023. [PMID: 32060927 DOI: 10.1111/jfb.14293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Boldness and risk-taking behaviours in animals are important traits to obtain advantages such as habitation, food resources, reproductive success and social dominance. Risk-taking behaviour is influenced by physiological and environmental conditions; however, whether individual fish become bolder by the presence of conspecifics remains unknown. In this study, a light-dark preference test was conducted using medaka fish (Oryzias latipes) with or without a neighbouring conspecific. It was found that individual medaka male fish preferred a light environment and avoided a dark environment, whereas the display of a neighbouring conspecific enhanced the time the male spent in the dark environment (i.e., this condition encouraged risk-taking). The blood glucose level increased in fish confined to the dark condition but did not increase in light-preferring fish and risk-taking fish. Large somata expressing tyrosine hydroxylase, which is the rate-limiting enzyme in dopamine synthesis, were detected in the telencephalic and diencephalic brain regions in risk-taking medaka, whereas large somata were detected in the diencephalic region in medaka confined to the dark condition. These findings indicated that medaka is a good fish model to explore the central roles of dopaminergic neurons in the telencephalon and the diencephalon, which regulate risk-taking behaviour.
Collapse
Affiliation(s)
- Airi Otsuka
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Kenta Shimomura
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Haruka Niwa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Japan
| |
Collapse
|
175
|
Angiulli E, Pagliara V, Cioni C, Frabetti F, Pizzetti F, Alleva E, Toni M. Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Sci Rep 2020; 10:5385. [PMID: 32214187 PMCID: PMC7096496 DOI: 10.1038/s41598-020-62331-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of this work is to investigate the effect of a temperature increase on the behaviour of adult zebrafish (Danio rerio) maintained for 21 days at 34 °C (treatment) and 26 °C (control). The temperatures chosen are within the vital range of zebrafish and correspond to temperatures that this species encounters in the natural environment. Previous results showed that the same treatment affects the brain proteome and the behaviour of adult zebrafish by producing alterations in the proteins involved in neurotransmitter release and synaptic function and impairing fish exploratory behaviour. In this study, we have investigated the performance of treated and control zebrafish during environmental exploration by using four behavioural tests (novel tank diving, light and dark preference, social preference and mirror biting) that are paradigms for assessing the state of anxiety, boldness, social preference and aggressive behaviour, respectively. The results showed that heat treatment reduces anxiety and increases the boldness of zebrafish, which spent more time in potentially dangerous areas of the tank such as the top and the uncovered bright area and at a distance from the social group, thus decreasing protection for the zebrafish. These data suggest that the increase in ambient temperature may compromise zebrafish survival rate in the natural environment.
Collapse
Affiliation(s)
- E Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - V Pagliara
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - C Cioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - F Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
176
|
Abozaid A, Trzuskot L, Najmi Z, Paul I, Tsang B, Gerlai R. Developmental stage and genotype dependent behavioral effects of embryonic alcohol exposure in zebrafish larvae. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109774. [PMID: 31655157 DOI: 10.1016/j.pnpbp.2019.109774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a worldwide problem. The severity and types of symptoms of FASD vary, which may be due to the genotype of the fetus and the developmental stage at which the fetus is exposed to alcohol. The most prevalent forms of FASD present less severe symptoms, including behavioral and cognitive abnormalities, and arise from exposure to low amounts of alcohol consumed infrequently. Treating or diagnosing FASD patients has been difficult because we do not understand the mechanisms underlying FASD. Animal models, including the zebrafish, have been suggested to answer this question. Here, we present a proof of concept analysis studying the behavioral effects of embryonic alcohol exposure in one-week old juvenile zebrafish. We exposed zebrafish embryos at one of five developmental stages (8, 16, 24, 32, or 40 hour post-fertilization) to 0% (control) or 1% (vol/vol) ethanol for 2 h, and tested the behavior of these fish at their age of 7-9 days post-fertilization. We employed two genetically distinct zebrafish populations, a quasi-inbred AB derivative strain, and a genetically variable WT population. We report significant developmental time and genotype dependent effects of alcohol on certain measures of motor function and/or anxiety-like responses. For example, we found embryonic alcohol exposed AB fish to swim faster, vary their speed more, stop moving more often and turn less compared to control fish, alcohol induced changes that were absent or less robust in WT fish. We conclude that our results open new avenues to the identification of genetic mechanisms that mediate or influence alcohol induced developmental alteration of brain function and behavior, which, on the long run, may allow us to identify diagnostic biomarkers and treatment options for human FASD.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Lidia Trzuskot
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Zelaikha Najmi
- Department of Biology, University of Toronto Mississauga, Canada
| | - Ishti Paul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
177
|
Müller TE, Ziani PR, Fontana BD, Duarte T, Stefanello FV, Canzian J, Santos ARS, Rosemberg DB. Role of the serotonergic system in ethanol-induced aggression and anxiety: A pharmacological approach using the zebrafish model. Eur Neuropsychopharmacol 2020; 32:66-76. [PMID: 31948829 DOI: 10.1016/j.euroneuro.2019.12.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Acute ethanol (EtOH) consumption exerts a biphasic effect on behavior and increases serotonin levels in the brain. However, the molecular mechanisms underlying alcohol-mediated behavioral responses still remain to be fully elucidated. Here, we investigate pharmacologically the involvement of the serotonergic pathway on acute EtOH-induced behavioral changes in zebrafish. We exposed zebrafish to 0.25, 0.5, 1.0% (v/v) EtOH for 1 h and analyzed the effects on aggression, anxiety-like behaviors, and locomotion. EtOH concentrations that changed behavioral responses were selected to the subsequent experiments. As a pharmacological approach, we used pCPA (inhibitor of tryptophan hydroxylase), WAY100135 (5-HT1A antagonist), buspirone (5-HT1A agonist), CGS12066A and CGS12066B (5-HT1B antagonist and agonist, respectively), ketanserin (5-HT2A antagonist) and (±)-DOI hydrochloride (5-HT2A agonist). All serotonergic receptors tested modulated aggression, with a key role of 5-HT2A in aggressive behavior following 0.25% EtOH exposure. Because CGS12066B mimicked 0.5% EtOH anxiolysis, which was antagonized by CGS12066A, we hypothesized that anxiolytic-like responses are possibly mediated by 5-HT1B receptors. Conversely, the depressant effects of EtOH are probably not related with direct changes on serotonergic pathway. Overall, our novel findings demonstrate a role of the serotonergic system in modulating the behavioral effects of EtOH in zebrafish. These data also reinforce the growing utility of zebrafish models in alcohol research and help elucidate the neurobiological mechanisms underlying alcohol abuse and associated complex behavioral phenotypes.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Paola R Ziani
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Tâmie Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
178
|
Aripiprazole prevents stress-induced anxiety and social impairment, but impairs antipredatory behavior in zebrafish. Pharmacol Biochem Behav 2020; 189:172841. [DOI: 10.1016/j.pbb.2019.172841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
|
179
|
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109728. [PMID: 31394141 PMCID: PMC6815720 DOI: 10.1016/j.pnpbp.2019.109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in AB strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC+ neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Soe S Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Samantha D Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mia Y Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
180
|
Zhao Z, Li G, Xiao Q, Jiang HR, Tchivelekete GM, Shu X, Liu H. Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics. PeerJ 2020; 8:e8374. [PMID: 31938582 PMCID: PMC6954687 DOI: 10.7717/peerj.8374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs.
Collapse
Affiliation(s)
- Zhenkai Zhao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama-City, Japan
| | - Qing Xiao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
181
|
Carreño Gutiérrez H, O'Leary A, Freudenberg F, Fedele G, Wilkinson R, Markham E, van Eeden F, Reif A, Norton WHJ. Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. Eur Neuropsychopharmacol 2020; 30:30-43. [PMID: 28951000 DOI: 10.1016/j.euroneuro.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter that has important behavioural functions in the vertebrate brain. In this study we compare the impact of decreased nitric NO signalling upon behaviour and neurobiology using both zebrafish and mouse. nitric oxide synthase mutant (nos1-/-) zebrafish show significantly reduced aggression and an increase in anxiety-like behaviour without altered production of the stress hormone cortisol. Nos1-/- mice also exhibit decreased aggression and are hyperactive in an open field test. Upon reduction of NO signalling, monoamine neurotransmitter metabolism is reduced as a consequence of decreased Monoamine oxidase activity. Treatment of nos1-/- zebrafish with the 5-HT receptor 1A agonist 8-OH-DPAT rescues aggression and some aspects of anxiety-like behaviour. Taken together, the interplay between NO and 5-HT appears to be critical to control behaviour. Our cross-species approach challenges the previous notion that reduced neuronal NOS leads to increased aggression. Rather, Nos1 knock-out can also lead to decreased aggression in some situations, a finding that may have implications for future translational research.
Collapse
Affiliation(s)
- Héctor Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Rd, Leicester, LE1 7RH, UK
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester LE1 7RH, UK
| | - Rob Wilkinson
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Eleanor Markham
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Freek van Eeden
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Rd, Leicester, LE1 7RH, UK.
| |
Collapse
|
182
|
Gutiérrez HC, Vacca I, Schoenmacker G, Cleal M, Tochwin A, O'Connor B, Young AMJ, Vasquez AA, Winter MJ, Parker MO, Norton WHJ. Screening for drugs to reduce zebrafish aggression identifies caffeine and sildenafil. Eur Neuropsychopharmacol 2020; 30:17-29. [PMID: 31679888 DOI: 10.1016/j.euroneuro.2019.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022]
Abstract
Although aggression is a common symptom of psychiatric disorders the drugs available to treat it are non-specific and can have unwanted side effects. In this study we have used a behavioural platform in a phenotypic screen to identify drugs that can reduce zebrafish aggression without affecting locomotion. In a three tier screen of ninety-four drugs we discovered that caffeine and sildenafil can selectively reduce aggression. Caffeine also decreased attention and increased impulsivity in the 5-choice serial reaction time task whereas sildenafil showed the opposite effect. Imaging studies revealed that both caffeine and sildenafil are active in the zebrafish brain, with prominent activation of the thalamus and cerebellum evident. They also interact with 5-HT neurotransmitter signalling. In summary, we have demonstrated that juvenile zebrafish are a suitable model to screen for novel drugs to reduce aggression, with the potential to uncover the neural circuits and signalling pathways that mediate such behavioural effects.
Collapse
Affiliation(s)
- Héctor Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Irene Vacca
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Gido Schoenmacker
- Radboudumc Human Genetics/Radboud University Institute for Computing and Information Sciences (iCIS)/Donders Centre for Neuroscience, Nijmegen, the Netherlands
| | - Madeleine Cleal
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth PO1 2FR, UK
| | - Anna Tochwin
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Bethan O'Connor
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Alejandro Arias Vasquez
- Radboudumc Human Genetics/Radboud University Institute for Computing and Information Sciences (iCIS)/Donders Centre for Neuroscience, Nijmegen, the Netherlands
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth PO1 2FR, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
183
|
Fontana BD, Duarte T, Müller TE, Canzian J, Ziani PR, Mezzomo NJ, Parker MO, Rosemberg DB. Concomitant taurine exposure counteracts ethanol-induced changes in locomotor and anxiety-like responses in zebrafish. Psychopharmacology (Berl) 2020; 237:735-743. [PMID: 31786647 PMCID: PMC7036063 DOI: 10.1007/s00213-019-05410-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Taurine (TAU) is a β-amino sulfonic acid with pleiotropic roles in the brain, including the neuromodulatory activity via GABAergic and glycinergic agonism. This molecule is found at high concentrations in energy drinks and is often mixed with alcohol in beverages. Although TAU has a neuroprotective role in the brain, the putative risks of mixing TAU and EtOH are not fully understood. Here, we investigated whether TAU modulates locomotor and anxiety-like behavior in adult zebrafish by using the novel tank and light-dark tests following acute EtOH exposure at anxiogenic and anxiolytic concentrations. Zebrafish were individually exposed to water (control), TAU (42, 150, and 400 mg/L), and EtOH (0.25% (v/v) and 1% (v/v)) both independently and cotreated for 1 h. EtOH 0.25% and TAU produced U-shape anxiolytic-like behavior in the light-dark test, TAU 42 and 400 positively modulated EtOH effects, and TAU 150 exerted a protective effect. All TAU concentrations counteracted EtOH 1%-induced locomotion impairment, as well as the anxiogenic-like behavior. Finally, all TAU concentrations when given independently or cotreated with EtOH 0.25% and 1% decreased the risk assessment of the lit compartment. Principal component analyses revealed that exploration and anxiety-like responses were the main behaviors that contribute to the effects of TAU and EtOH. Overall, we demonstrate that TAU differently modulates EtOH-induced anxiolytic- and anxiogenic-like behaviors depending on the concentration, suggesting a complex mechanism underlying TAU and EtOH interactions.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, England, UK.
| | - Tamie Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Paola R Ziani
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, England, UK
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
184
|
Hosseini S, Simianer H, Tetens J, Brenig B, Herzog S, Sharifi AR. Efficient phenotypic sex classification of zebrafish using machine learning methods. Ecol Evol 2019; 9:13332-13343. [PMID: 31871648 PMCID: PMC6912926 DOI: 10.1002/ece3.5788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sex determination in zebrafish by manual approaches according to current guidelines relies on human observation. These guidelines for sex recognition have proven to be subjective and highly labor-intensive. To address this problem, we present a methodology to automatically classify the phenotypic sex using two machine learning methods: Deep Convolutional Neural Networks (DCNNs) based on the whole fish appearance and Support Vector Machine (SVM) based on caudal fin coloration. Machine learning techniques in sex classification provide potential efficiency with the advantage of automatization and robustness in the prediction process. Furthermore, since developmental plasticity can be influenced by environmental conditions, we have investigated the impact of elevated water temperature during embryogenesis on sex and sex-related differences in color intensity of adult zebrafish. The estimated color intensity based on SVM was then applied to detect the association between coloration and body weight and length. Phenotypic sex classifications using machine learning methods resulted in a high degree of association with the real sex in nontreated animals. In temperature-induced animals, DCNNs reached a performance of 100%, whereas 20% of males were misclassified using SVM due to a lower color intensity. Furthermore, a positive association between color intensity and body weight and length was observed in males. Our study demonstrates that high ambient temperature leads to a lower color intensity in male animals and a positive association of male caudal fin coloration with body weight and length, which appears to play a significant role in sexual attraction. The software developed for sex classification in this study is readily applicable to other species with sex-linked visible phenotypic differences.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Henner Simianer
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Jens Tetens
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| | - Bertram Brenig
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
- Institute of Veterinary MedicineUniversity of GoettingenGoettingenGermany
| | - Sebastian Herzog
- Max Planck Institute for Dynamics and Self‐OrganizationGoettingenGermany
- Department for Computational Neuroscience3rd Physics Institute‐BiophysicsUniversity of GoettingenGoettingenGermany
| | - Ahmad Reza Sharifi
- Department of Animal SciencesUniversity of GoettingenGoettingenGermany
- Center for Integrated Breeding ResearchUniversity of GoettingenGoettingenGermany
| |
Collapse
|
185
|
Mustafa A, Roman E, Winberg S. Boldness in Male and Female Zebrafish ( Danio rerio) Is Dependent on Strain and Test. Front Behav Neurosci 2019; 13:248. [PMID: 31803030 PMCID: PMC6877474 DOI: 10.3389/fnbeh.2019.00248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Differences in selection pressure in nature and labs have profound effects on zebrafish strains. The widely used AB strain of zebrafish has been domesticated over several decades. Recently, there has been an upsurge in the availability of genetically modified lines, e.g., the spiegeldanio (spd), which has a mutation in the fibroblast growth factor receptor 1a (fgfr1a) gene. This mutant strain (fgfr1a) has previously been reported to be bolder than fish of the Tübingen strain, from which it was generated. Our knowledge on behavioral differences between different zebrafish strains, relative to wild-caught zebrafish, is limited. In the present study we compare behaviors related to interpretation of boldness in male and female offspring (F1) of wild-caught fish, AB and fgfr1a -/- zebrafish. A second aim of the study was to compare the behavior of fish from these strains when tested in different behavioral assays, i.e., shelter seeking, novel tank diving and scototaxis tests. The results demonstrate that behavioral variation exists both within and between the strains, but interpretation of boldness reveals a complex pattern in which behavior differs between strains but is also related to sex and test. Therefore, a careful assessment of various strains of fish using both males and females is warranted in order to strengthen interpretation of results. This is especially important in studies where zebrafish are used as model organisms for human conditions as well as studies evaluating the effects of pharmacological or toxicological substances on behavior.
Collapse
Affiliation(s)
- Arshi Mustafa
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Uppsala University, Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Neuropharmacology, Addiction and Behavior Unit, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Division of Anatomy and Physiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Uppsala University, Uppsala, Sweden
| |
Collapse
|
186
|
Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019; 98:764-779. [DOI: 10.1002/jnr.24550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Murilo S. Abreu
- Bioscience Institute University of Passo Fundo (UPF) Passo Fundo Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
- Institute of Health and Biological Studies Federal University of Southern and Southeastern Pará, Unidade III Marabá Brazil
| | - Filipe Banha
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Pedro M. Anastácio
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Konstantin A. Demin
- Institute of Experimental Medicine Almazov National Medical Research Center Ministry of Healthcare of Russian Federation St. Petersburg Russia
- Institute of Translational Biomedicine St. Petersburg State University St. Petersburg Russia
| | - Allan V. Kalueff
- School of Pharmacy Southwest University Chongqing China
- Ural Federal University Ekaterinburg Russia
| | - Marta C. Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources University of Porto Porto Portugal
| |
Collapse
|
187
|
Müller TE, Nunes MEM, Rodrigues NR, Fontana BD, Hartmann DD, Franco JL, Rosemberg DB. Neurochemical mechanisms underlying acute and chronic ethanol-mediated responses in zebrafish: The role of mitochondrial bioenergetics. Neurochem Int 2019; 131:104584. [PMID: 31654679 DOI: 10.1016/j.neuint.2019.104584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 11/18/2022]
Abstract
Ethanol (EtOH) is a socially-accepted drug, whose consumption is a risk factor for non-intentional injuries, development of pathologies, and addiction. In the brain, EtOH affects redox signaling and increases reactive oxygen species (ROS) production after acute and chronic exposures. Here, using a high-resolution respirometry assay, we investigated whether changes in mitochondrial bioenergetics play a role in both acute and chronic EtOH-mediated neurochemical responses in zebrafish. For the first time, we showed that acute and chronic EtOH exposures differently affect brain mitochondrial function. Acutely, EtOH stimulated mitochondrial respiration through increased baseline state, CI-mediated OXPHOS, OXPHOS capacity, OXPHOS coupling efficiency, bioenergetic efficiency, and ROX/ETS ratio. Conversely, EtOH chronically decreased baseline respiration, complex I- and II-mediated ETS, as well as increased ROX state and ROX/ETS ratio, which are associated with ROS formation. Overall, we observed that changes in mitochondrial bioenergetics play a role, at least partially, in both acute and chronic effects of EtOH in the zebrafish brain. Moreover, our findings reinforce the face, predictive, and construct validities of zebrafish models to explore the neurochemical bases involved in alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Mauro E M Nunes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, RS, 97300-000, Brazil
| | - Nathane R Rodrigues
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, RS, 97300-000, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Diane D Hartmann
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Jeferson L Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel, RS, 97300-000, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
188
|
Macrì S, Clément RJG, Spinello C, Porfiri M. Comparison between two- and three-dimensional scoring of zebrafish response to psychoactive drugs: identifying when three-dimensional analysis is needed. PeerJ 2019; 7:e7893. [PMID: 31637136 PMCID: PMC6800527 DOI: 10.7717/peerj.7893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Zebrafish (Danio rerio) have recently emerged as a valuable laboratory species in the field of behavioral pharmacology, where they afford rapid and precise high-throughput drug screening. Although the behavioral repertoire of this species manifests along three-dimensional (3D), most of the efforts in behavioral pharmacology rely on two-dimensional (2D) projections acquired from a single overhead or front camera. We recently showed that, compared to a 3D scoring approach, 2D analyses could lead to inaccurate claims regarding individual and social behavior of drug-free experimental subjects. Here, we examined whether this conclusion extended to the field of behavioral pharmacology by phenotyping adult zebrafish, acutely exposed to citalopram (30, 50, and 100 mg/L) or ethanol (0.25%, 0.50%, and 1.00%), in the novel tank diving test over a 6-min experimental session. We observed that both compounds modulated the time course of general locomotion and anxiety-related profiles, the latter being represented by specific behaviors (erratic movements and freezing) and avoidance of anxiety-eliciting areas of the test tank (top half and distance from the side walls). We observed that 2D projections of 3D trajectories (ground truth data) may introduce a source of unwanted variation in zebrafish behavioral phenotyping. Predictably, both 2D views underestimate absolute levels of general locomotion. Additionally, while data obtained from a camera positioned on top of the experimental tank are similar to those obtained from a 3D reconstruction, 2D front view data yield false negative findings.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romain J G Clément
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
189
|
Rodriguez‐Barreto D, Rey O, Uren‐Webster TM, Castaldo G, Consuegra S, Garcia de Leaniz C. Transcriptomic response to aquaculture intensification in Nile tilapia. Evol Appl 2019; 12:1757-1771. [PMID: 31548855 PMCID: PMC6752142 DOI: 10.1111/eva.12830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
To meet future global demand for fish protein, more fish will need to be farmed using fewer resources, and this will require the selection of nonaggressive individuals that perform well at high densities. Yet, the genetic changes underlying loss of aggression and adaptation to crowding during aquaculture intensification are largely unknown. We examined the transcriptomic response to aggression and crowding in Nile tilapia, one of the oldest and most widespread farmed fish, whose social structure shifts from social hierarchies to shoaling with increasing density. A mirror test was used to quantify aggression and skin darkening (a proxy for stress) of fish reared at low and high densities, and gene expression in the hypothalamus was analysed among the most and least aggressive fish at each density. Fish reared at high density were darker, had larger brains, were less active and less aggressive than those reared at low density and had differentially expressed genes consistent with a reactive stress-coping style and activation of the hypothalamus-pituitary-interrenal (HPI) axis. Differences in gene expression among aggressive fish were accounted for by density and the interaction between density and aggression levels, whereas for nonaggressive fish differences in gene expression were associated with individual variation in skin brightness and social stress. Thus, the response to crowding in Nile tilapia is context dependent and involves different neuroendocrine pathways, depending on social status. Knowledge of genes associated with the response to crowding may pave the way for more efficient fish domestication, based on the selection of nonaggressive individuals with increasing tolerance to chronic stress necessary for aquaculture intensification.
Collapse
Affiliation(s)
| | - Olivier Rey
- Centre for Sustainable Aquatic Research (CSAR), College of ScienceSwansea UniversitySwanseaUK
- Université de Perpignan Via DomitiaPerpignanFrance
| | - Tamsyn M. Uren‐Webster
- Centre for Sustainable Aquatic Research (CSAR), College of ScienceSwansea UniversitySwanseaUK
| | - Giovanni Castaldo
- Centre for Sustainable Aquatic Research (CSAR), College of ScienceSwansea UniversitySwanseaUK
- Systemic Physiological and Ecotoxicological Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Sonia Consuegra
- Centre for Sustainable Aquatic Research (CSAR), College of ScienceSwansea UniversitySwanseaUK
| | - Carlos Garcia de Leaniz
- Centre for Sustainable Aquatic Research (CSAR), College of ScienceSwansea UniversitySwanseaUK
| |
Collapse
|
190
|
Cholinergic system and exploratory behavior are changed after weekly-binge ethanol exposure in zebrafish. Pharmacol Biochem Behav 2019; 186:172790. [PMID: 31499145 DOI: 10.1016/j.pbb.2019.172790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022]
Abstract
Binge drinking is characterized by excessive alcohol consumption in a short period of time and is associated with a poor quality of life. Zebrafish are commonly used to investigate neurochemical, behavioral, and genetic parameters associated with ethanol (EtOH) exposure. However, few studies have used zebrafish as a model to investigate binge EtOH exposure. In order to elucidate the potential neurobehavioral impairments evoked by binge EtOH exposure in zebrafish, animals were immersed in 1.4% EtOH for 30 min three consecutive times with intervals of one week. Neurobehavioral parameters were analyzed immediately following the third exposure, as well as 2 and 9 days later. Brain choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were reduced 9 days after the treatment. Thiobarbituric acid-reactive species and dichlorodihydrofluorescein levels were increased immediately after the treatment, but both returned to normal levels 2 days after the treatment. Catalase and glutathione reductase were impaired 2 and 9 days after the treatment. No alteration was observed in superoxide dismutase and glutathione peroxidase activities. EtOH treatment did not alter brain expression of inflammatory genes such as il-1β, il-10, and tnf-α. Zebrafish displayed anxiolytic-like behavior immediately after the last exposure, though there was no behavioral alteration observed 9 days after the treatment. Therefore, binge EtOH exposure in zebrafish leads to long lasting brain cholinergic alteration, probably related to oxidative stress immediately after the exposure, which is independent of classical inflammatory markers.
Collapse
|
191
|
Alexandre MCM, Mendes NV, Torres CA, Baldin SL, Bernardo HT, Scussel R, Baggio S, Mussulini BHM, Zenki KC, da Rosa MI, Rico EP. Weekly ethanol exposure alters dopaminergic parameters in zebrafish brain. Neurotoxicol Teratol 2019; 75:106822. [DOI: 10.1016/j.ntt.2019.106822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
|
192
|
Haghani S, Karia M, Cheng RK, Mathuru AS. An Automated Assay System to Study Novel Tank Induced Anxiety. Front Behav Neurosci 2019; 13:180. [PMID: 31481885 PMCID: PMC6709859 DOI: 10.3389/fnbeh.2019.00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Abstract
New environments are known to be anxiogenic initially for many animals including the zebrafish. In the zebrafish, a novel tank diving (NTD) assay for solitary fish has been used extensively to model anxiety and the effect of anxiolytics. However, studies can differ in the conditions used to perform this assay. Here, we report the development of an efficient, automated toolset and optimal conditions for effective use of this assay. Applying these tools, we found that two important variables in previous studies, the direction of illumination of the novel tank and the age of the subject fish, both influence endpoints commonly measured to assess anxiety. When tanks are illuminated from underneath, several parameters such as the time spent at the bottom of the tank, or the transitions to the top half of the tank become poor measures of acclimation to the novel environment. Older fish acclimate faster to the same settings. The size of the novel tank and the intensity of the illuminating light can also influence acclimation. Among the parameters measured, reduction in the frequency of erratic swimming (darting) is the most reliable indicator of anxiolysis. Open source pipeline for automated data acquisition and systematic analysis generated here and available to other researchers will improve accessibility and uniformity in measurements. They can also be directly applied to study other fish. As this assay is commonly used to model anxiety phenotype of neuropsychiatric ailments in zebrafish, we expect our tools will further aid comparative and meta-analyses.
Collapse
Affiliation(s)
- Sara Haghani
- Yale-NUS College, Science Division, Singapore, Singapore
| | | | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, Science Division, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
193
|
Leite-Ferreira ME, Araujo-Silva H, Luchiari AC. Individual Differences in Hatching Time Predict Alcohol Response in Zebrafish. Front Behav Neurosci 2019; 13:166. [PMID: 31396063 PMCID: PMC6664016 DOI: 10.3389/fnbeh.2019.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
There are significant individual differences in response to alcohol: some people seem to exhibit higher alcohol sensitivity, while others are more resistant. These differences are related to alcohol metabolism, inherited traits, environmental/social pressure, personal habits and other indeterminate causes. In order to test how individual differences in hatching time are related to behavioral response to different alcohol concentrations, we separated zebrafish larvae into two categories according to egg emergence time: eggs hatched between 48 and 72 hours post-fertilization (hpf) were considered early emerging (EE), while those hatched from 72 to 96 hpf were considered late emerging (LE). On the 30th day post fertilization, EE and LE fish were exposed to four alcohol concentrations: 0.00% (control), 0.10%, 0.25% and 0.50%, and behavior was recorded for 60 min. We observed average and maximum swimming speed, distance traveled, and freezing time (immobility that indicates state of anxiety). For EE fish, 0.10% alcohol did not change behavior, while 0.25% and 0.50% increased freezing and decreased locomotion. By contrast, LE fish increased locomotion when exposed to both 0.10 and 0.25% alcohol, and increased freezing time at 0.50% alcohol. These results show that zebrafish behavioral profiles exhibit different sensitivities to alcohol, likely due to traits that can be tracked from early life stages and may indicate individuals’ predisposition to alcohol tolerance and dependence.
Collapse
Affiliation(s)
- Maria Elisa Leite-Ferreira
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Heloysa Araujo-Silva
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
194
|
Facciol A, Tran S, Gerlai R. A Standardized Tank Design for the Light Dark Task in Zebrafish. Bio Protoc 2019; 9:e3306. [PMID: 33654816 DOI: 10.21769/bioprotoc.3306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 11/02/2022] Open
Abstract
The light dark paradigm is a common behavioral test used to screen a variety of pharmacological agents, including anxiogenics and anxiolytics. Although most often used in rodents, the light dark task has recently been adapted for use in zebrafish. However, a number of inconsistent findings have been reported for this species. Some have found zebrafish to prefer black, while others report a preference for light. Careful analysis of light dark preference experiments using zebrafish reveals significant variation in testing tank design and test conditions, including lighting and substrate color. Additionally, in some experiments the designated dark side of the testing tank is completely covered, producing a "cave-like" environment which further confounds results. Lastly, authors commonly use the terms "light vs. dark" interchangeably with "white vs. black", when these are two separate factors that may influence preference: illumination level vs. background shade. To address these limitations, we designed testing tanks that differentiate illumination vs. background shade preference in zebrafish. This design allows for simple standardization of light dark testing apparatus in zebrafish, and facilitates more reliable comparison across studies.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada
| | - Steven Tran
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Canada.,Department of Psychology, University of Toronto, Mississauga, Canada
| |
Collapse
|
195
|
Bertoncello KT, Müller TE, Fontana BD, Franscescon F, Filho GLB, Rosemberg DB. Taurine prevents memory consolidation deficits in a novel alcohol-induced blackout model in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:39-45. [PMID: 30880191 DOI: 10.1016/j.pnpbp.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most consumed substance worldwide that impairs learning and memory processes, resulting in amnesia or blackout. Due to the genetic conservation, rich behavioral repertoire, and high pharmacological tractability, the zebrafish (Danio rerio) has emerged as a powerful model organism for assessing preventive strategies against the noxious effects of ethanol in vertebrates. Here, we used an inhibitory avoidance apparatus to investigate the potential preventive effects of taurine in a novel ethanol-induced amnesia model in zebrafish. The experimental tank consisted of two compartments of the same size, one dark and another white, which were separated by a guillotine-type door. Three parallel metal bars coupled to an electrical stimulator were connected on each lateral wall of the dark compartment as electrical stimulus source. Differences on the latency to enter the dark compartment were used as retention indexes. A mild electric shock (125 mA, 3 ± 0.2 V) at 10 and 1000 Hz did not promote significant learning, while 100 Hz facilitated memory retention. Posttraining administration of MK-801 blocked this response, reinforcing the predictive validity of the test. Treatments were performed immediately after the training session using the 100 Hz frequency. Animals were exposed to water (control), taurine (42, 150, 400 mg/L), ethanol (0.25%, 1.0% v/v) or taurine plus ethanol to assess the effects on memory consolidation. Test session was performed 24 h following training. Ethanol at 0.25% did not affect memory consolidation, but 1.0% impaired memory without changing locomotion. Although taurine alone did not modulate learning, all concentrations tested exerted prevented ethanol-induced memory impairment. Overall, we describe a novel ethanol-induced blackout model, where a high ethanol concentration acutely impairs memory consolidation in zebrafish. Moreover, since taurine showed a protective role, we reinforce the growing utility of zebrafish models for assessing the deleterious effects of ethanol and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Gilvan L B Filho
- Department of Biomedical Equipment. Federal Institute of Education, Science and Technology. s/n BR 406, Km 145. Ceará-Mirim, RN 59570-000, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
196
|
Audira G, Sampurna BP, Juniardi S, Liang ST, Lai YH, Han L, Hsiao CD. Establishing simple image-based methods and a cost-effective instrument for toxicity assessment on circadian rhythm dysregulation in fish. Biol Open 2019; 8:bio.041871. [PMID: 31182629 PMCID: PMC6602318 DOI: 10.1242/bio.041871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Analysis of circadian rhythm behavior alteration in fish for toxicity assessment usually requires expensive commercial equipment and laborious and complicated tweaking. Here, we report a simple setup that consists of a custom-made light box equipped with white and 940 nm light-emitting diode (LED) light strips as light sources, where the locomotion activities of zebrafish or catfish are captured using an infrared-sensitive coupled charged device (CCD). The whole setup was housed in a temperature-controlled incubator to isolate external noise and to maintain consistent experimental conditions. The video recording and light triggering were synchronized using Total Recorder, a recording scheduling software. By using the setup mentioned above and open source software such as ImageJ or idTracker, the locomotion activities of diurnal (e.g. zebrafish) and nocturnal (e.g. catfish) fish during day and night cycles can be quantitatively analyzed. We used simple image-based methods and a cost-effective instrument to assess the circadian rhythm of multiple fish species, as well as other parameters such as age, ambient temperature and chemical toxicology with high precision and reproducibility. In conclusion, the instrument setting and analysis methods established in this study provide a reliable and easy entry point for toxicity assessment on circadian rhythm dysregulation in fish. Summary: A cost-effective device and two methods to measure the circadian rhythm in diurnal and nocturnal fish, providing a reliable entry point for toxicity assessment on circadian rhythm dysregulation in fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | | | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan City, Shandong, China
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan .,Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.,Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
197
|
Blondel DV, Sansone A, Rosenberg J, Godin EA, Yang BW, Jaglom-Kurtz LT, Linnenbrink-Garcia L, Schwartz-Bloom RD. Development of an Online Experiment Platform for High School Biology. JOURNAL OF FORMATIVE DESIGN IN LEARNING 2019; 3:62-81. [PMID: 31475244 PMCID: PMC6716597 DOI: 10.1007/s41686-019-00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a novel online platform, Rex (Real experiments) that immerses students in a scientific investigative process. Rex is a virtual web-based biological science experiment platform, hosted by real scientists, and uses actual lab experiments that generate real data for students to collect, analyze, and interpret. Seven neuroscience experiments use zebrafish and rats as model systems to study the effects of drugs such as tetrahydrocannabinol (THC), caffeine, alcohol, and cigarette smoke, which are of interest to high school students. We carried out a small field-test of Rex in a variety of high school biology classrooms (e.g., standard, honors, AP, anatomy/physiology) to obtain student and teacher feedback about the implementation and usability of the program. We also assessed student situational interest (SI) to determine whether the Rex experiment captured students' attention, and whether it was an enjoyable and meaningful experience. Overall, students reported a moderate level of SI after participating in the Rex experiments. Situational interest did not differ across teachers, class section, class level, or the type of experiment. In addition, we present details of the technical issues encountered in the classroom, and we provide guidance to readers who may want to use the resource in their classrooms.
Collapse
Affiliation(s)
- Dimitri V. Blondel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- Current address: Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Anna Sansone
- Department of Counseling, Educational Psychology, and Special Education, Michigan State University, East Lansing, MI 48824
| | - Joshua Rosenberg
- Department of Counseling, Educational Psychology, and Special Education, Michigan State University, East Lansing, MI 48824
- Current address: Department of Theory and Practice in Education, The University of Tennessee, Knoxville, Knoxville, TN 37996
| | - Elizabeth A Godin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Brenda W. Yang
- Brenda W. Yang, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
| | - Lawson T. Jaglom-Kurtz
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Lisa Linnenbrink-Garcia
- Department of Counseling, Educational Psychology, and Special Education, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
198
|
Spinello C, Yang Y, Macrì S, Porfiri M. Zebrafish Adjust Their Behavior in Response to an Interactive Robotic Predator. Front Robot AI 2019; 6:38. [PMID: 33501054 PMCID: PMC7806020 DOI: 10.3389/frobt.2019.00038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) constitutes a valuable experimental species for the study of the biological determinants of emotional responses, such as fear and anxiety. Fear-related test paradigms traditionally entail the interaction between focal subjects and live predators, which may show inconsistent behavior throughout the experiment. To address this technical challenge, robotic stimuli are now frequently integrated in behavioral studies, yielding repeatable, customizable, and controllable experimental conditions. While most of the research has focused on open-loop control where robotic stimuli are preprogrammed to execute a priori known actions, recent work has explored the possibility of two-way interactions between robotic stimuli and live subjects. Here, we demonstrate a "closed-loop control" system to investigate fear response of zebrafish in which the response of the robotic stimulus is determined in real-time through a finite-state Markov chain constructed from independent observations on the interactions between zebrafish and their predator. Specifically, we designed a 3D-printed robotic replica of the zebrafish allopatric predator red tiger Oscar fish (Astronotus ocellatus), instrumented to interact in real-time with live subjects. We investigated the role of closed-loop control in modulating fear response in zebrafish through the analysis of the focal fish ethogram and the information-theoretic quantification of the interaction between the subject and the replica. Our results indicate that closed-loop control elicits consistent fear response in zebrafish and that zebrafish quickly adjust their behavior to avoid the predator's attacks. The augmented degree of interactivity afforded by the Markov-chain-dependent actuation of the replica constitutes a fundamental advancement in the study of animal-robot interactions and offers a new means for the development of experimental paradigms to study fear.
Collapse
Affiliation(s)
- Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, United States
| | - Yanpeng Yang
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, United States
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, United States
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, United States
- Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
199
|
Almeida AR, Tacão M, Machado AL, Golovko O, Zlabek V, Domingues I, Henriques I. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective. CHEMOSPHERE 2019; 222:333-344. [PMID: 30708167 DOI: 10.1016/j.chemosphere.2019.01.147] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/07/2023]
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic widely used in livestock production. Like many other pharmaceuticals, OTC is not completely metabolized by the organism and thus, increasing amounts of the compound are being detected in the aquatic environment. The assessment of the environmental risk of pharmaceuticals is hindered by their very low concentrations and specific modes of action and thus relevant exposure scenarios and sensitive endpoints are needed. Thus, this work aimed to study the long-term effect of OTC exposure in zebrafish (at behavior and biochemical levels) and associated bacterial communities (fish gut and water bacterial communities). Results revealed that at behavioral level, boldness increase (manifested by increased exploratory behavior of a new environment) was observed in fish exposed to low OTC concentrations. Moreover, changes in fish swimming pattern were observed in light periods (increased stress response: hyperactivity and freezing) probably due to photo-sensibility conferred by OTC exposure. Effects at biochemical level suggest that long-term exposure to OTC interfere with cellular energy allocation mainly by reducing lipids levels and increasing energy consumption. Moreover, evidences of oxidative damage were also observed (reduced levels of TG, GST and CAT). The analysis of water and gut microbiome revealed changes in the structure and diversity of bacterial communities potentially leading to changes in communities' biological function. Some of the effects were observed at the lowest concentration tested, 0.1 μg/L which is a concentration already detected in the environment and thus clearly demonstrating the need of a serious ecotoxicological assessment of OTC effects on non-target organisms.
Collapse
Affiliation(s)
- Ana Rita Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Tacão
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Luísa Machado
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Henriques
- CESAM & Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
200
|
Ferreira LM, da Rosa LVC, Müller TE, de Menezes CC, Marcondes Sari MH, Loro VL, Nogueira CW, Rosemberg DB, Cruz L. Zebrafish exposure to diphenyl diselenide-loaded polymeric nanocapsules caused no behavioral impairments and brain oxidative stress. J Trace Elem Med Biol 2019; 53:62-68. [PMID: 30910208 DOI: 10.1016/j.jtemb.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
Previous findings showed that the nanoencapsulation of diphenyl diselenide [(PhSe)2], an organoselenium compound, provided superior biological effects and lower toxicological potential than its free form in vitro. However, few studies reported the behavioral and biochemical effects of this nanocapsules formulation in vivo. Zebrafish (Danio rerio) has emerged as a useful animal model to determine the pharmacological and toxicological effects of nanoparticles. Here, we evaluated the behavioral and brain oxidative effects after zebrafish exposure to (PhSe)2-loaded nanocapsules. Formulations were prepared by interfacial deposition of preformed polymer method and later tested at concentrations ranging from 0.1 to 2.0 μM. Both locomotor and exploratory activities were assessed in the novel tank diving test. Moreover, brain oxidative status was determined by measuring thiobarbituric acid-reactive substance levels, glutathione peroxidase, glutathione redutase and glutathione S-transferase activities. (PhSe)2-loaded nanocapsules showed no alteration on travelled distance, immobility, and erratic swimming, suggesting the absence of behavioral impairments. Interestingly, the higher concentration tested had anxiolytic-like effects, since animals spent more time in the top area and showed a decreased thigmotaxis behavior. Biochemical analysis demonstrated that the concentrations used in this study did not affect oxidative stress-related parameters in brain samples, reinforcing the low toxicological potential of the formulation. In conclusion, the exposure to (PhSe)2-loaded nanocapsules caused no locomotor impairments as well as did not modify the oxidative status of zebrafish brain, indicating that this formulation is probably non-toxic and promising for future pharmacological studies.
Collapse
Affiliation(s)
- Luana Mota Ferreira
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Vinícius Costa da Rosa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talise Ellwanger Müller
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Charlene Cavalheiro de Menezes
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|