151
|
Boyle M, Nighorn A, Thomas JB. Drosophila Eph receptor guides specific axon branches of mushroom body neurons. Development 2006; 133:1845-54. [PMID: 16613832 PMCID: PMC1794001 DOI: 10.1242/dev.02353] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conserved Eph receptors and their Ephrin ligands regulate a number of developmental processes, including axon guidance. In contrast to the large vertebrate Eph/Ephrin family, Drosophila has a single Eph receptor and a single Ephrin ligand, both of which are expressed within the developing nervous system. Here, we show that Eph and Ephrin can act as a functional receptor-ligand pair in vivo. Surprisingly, and in contrast to previous results using RNA-interference techniques, embryos completely lacking Eph function show no obvious axon guidance defects. However, Eph/Ephrin signaling is required for proper development of the mushroom body. In wild type, mushroom body neurons bifurcate and extend distinct branches to different target areas. In Eph mutants, these neurons bifurcate normally, but in many cases the dorsal branch fails to project to its appropriate target area. Thus, Eph/Ephrin signaling acts to guide a subset of mushroom body branches to their correct synaptic targets.
Collapse
Affiliation(s)
- Monica Boyle
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | - Alan Nighorn
- Program in Neuroscience and Arizona Research Laboratories Division of Neurobiology, The University of Arizona, Tucson, AZ 85721, USA
| | - John B. Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
152
|
Miller K, Kolk SM, Donoghue MJ. EphA7-ephrin-A5 signaling in mouse somatosensory cortex: developmental restriction of molecular domains and postnatal maintenance of functional compartments. J Comp Neurol 2006; 496:627-42. [PMID: 16615124 DOI: 10.1002/cne.20926] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the Eph family of receptor tyrosine kinases and their ligands, the ephrins, are expressed in distinct patterns in the forming cortex. EphA7 is expressed early in cortical development, becoming concentrated in anterior and posterior domains, whereas ephrin-A5 is expressed later in corticogenesis, highest in the middle region that has low levels of EphA7. The EphA7 gene produces full-length and truncated isoforms, which are repulsive and adhesive, respectively. Analysis of cortical RNA expression demonstrates that proportions of these isoforms change with time, from a more repulsive mix during embryogenesis to a more permissive mix postnatally. To examine how EphA7 and ephrin-A5 influence the formation of cortical regions, EphA7-/- mice were analyzed. Within the cortex of EphA7-/- mice, the distribution of ephrin-A5 was more extensive, encompassing its usual medial domain but also extending more posteriorly toward the occipital pole. Moreover, relative levels of ephrin-A5 along the cortex's anatomical axes changed in EphA7-/- animals, creating less striking shifts in ligand abundance. Furthermore, in vivo functional studies revealed that EphA7 exerts a repulsive influence on ephrin-A5-expressing cells during corticogenesis. In contrast, EphA7 appears to mediate permissive interactions in the postnatal cortex: the area of somatosensory cortex was significantly reduced in EphA7-/- mice. A similar reduction was present in ephrin-A5-/- animals and a more pronounced decrease was observed in EphA7/ephrin-A5-/- cortex. Taken together, this study supports a role for EphA7 and ephrin-A5 in the establishment and maintenance of certain cortical domains and suggests that the nature of their interactions changes with cortical maturity.
Collapse
Affiliation(s)
- Katherine Miller
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
153
|
Chien CB. Guidance of Axons and Dendrites. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
154
|
Petros TJ, Williams SE, Mason CA. Temporal regulation of EphA4 in astroglia during murine retinal and optic nerve development. Mol Cell Neurosci 2006; 32:49-66. [PMID: 16574431 DOI: 10.1016/j.mcn.2006.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/06/2006] [Accepted: 02/16/2006] [Indexed: 01/03/2023] Open
Abstract
Eph receptors and their ephrin ligands play important roles in many aspects of visual system development. In this study, we characterized the spatial and temporal expression pattern of EphA4 in astrocyte precursor cell (APC) and astrocyte populations in the murine retina and optic nerve. EphA4 is expressed by immotile optic disc astrocyte precursor cells (ODAPS), but EphA4 is downregulated as these cells migrate into the retina. Surprisingly, mature astrocytes in the adult retina re-express EphA4. Within the optic nerve, EphA4 is expressed in specialized astrocytes that form a meshwork at the optic nerve head (ONH). Our in vitro and in vivo data indicate that EphA4 is dispensable for retinal ganglion cell (RGC) axon growth and projections through the chiasm. While optic stalk structure, APC proliferation and migration, retinal vascularization, and oligodendrocyte migration appear normal in EphA4 mutants, the expression of EphA4 in APCs and in the astrocyte meshwork at the ONH has implications for optic nerve pathologies.
Collapse
Affiliation(s)
- Timothy J Petros
- Center for Neurobiology and Behavior, Department of Pathology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
155
|
Schulte D, Peters MA, Sen J, Cepko CL. The rod photoreceptor pattern is set at the optic vesicle stage and requires spatially restricted cVax expression. J Neurosci 2006; 25:2823-31. [PMID: 15772342 PMCID: PMC6725138 DOI: 10.1523/jneurosci.2037-04.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
How and when positional identities in the neural retina are established have been addressed primarily with respect to the topographic projections of retinal ganglion cells onto their targets in the brain. Although retinotectal map formation is a prominent manifestation of retinal patterning, it is not the only one. Photoreceptor subtypes are arranged in distinct, species-specific patterns. The mechanisms used to establish photoreceptor patterns have been relatively unexplored at the mechanistic level. We performed ablations of the eye anlage in chickens and found that removal of the anterior or dorsal optic vesicle caused loss of the area centralis, which is a rod-free central area of the retina, and severely disorganized other aspects of the rod pattern. These observations indicate that the anteroposterior and dorsoventral distribution of rods is determined by the optic vesicle stage. To investigate the molecular mechanisms involved, the rod distribution was analyzed after viral misexpression of several patterning genes that were previously shown to be important in positional specification of retinal ganglion cells. Ectopic expression of FoxG1, SOHo1,or GH6 transcription factors expressed in the anterior optic vesicle and/or optic cup, respectively, did not affect the rod pattern. This pattern therefore appears to be specified by an activity acting before, or in parallel with, these factors. In contrast, misexpression of the ventrally restricted transcription factor, cVax, severely disturbed the rod pattern.
Collapse
Affiliation(s)
- Dorothea Schulte
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
156
|
Lambot MA, Depasse F, Noel JC, Vanderhaeghen P. Mapping labels in the human developing visual system and the evolution of binocular vision. J Neurosci 2006; 25:7232-7. [PMID: 16079405 PMCID: PMC6725223 DOI: 10.1523/jneurosci.0802-05.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Topographic representation of visual fields from the retina to the brain is a central feature of vision. The development of retinotopic maps has been studied extensively in model organisms and is thought to be controlled in part by molecular labels, including ephrin/Eph axon guidance molecules, displayed in complementary gradients across the retina and its targeting areas. The visual system in these organisms is primarily monocular, with each retina mapping topographically to its contralateral target. In contrast, mechanisms of retinal mapping in binocular species such as primates, characterized by the congruent, aligned mapping of both retinas onto the same brain target, remain completely unknown. Here, we show that the distribution of ephrin/Eph genes in the human developing visual system is fundamentally different from what is known in model organisms. In the human embryonic retina, EphA receptors are displayed along two gradients, sloping down from the center of the retina to its periphery. The EphB1 receptor, which controls the ipsilateral routing of retinal axons in the mouse, is expressed throughout the human temporal retina in coordination with the changes in EphA gene expression. In the dorsal lateral geniculate nucleus, ephrin-A/EphAs are displayed along complementary retinotopic gradients. Our data point to an evolutionary model in which the coordinated divergence of the distribution of the receptors controlling retinal guidance and retinal mapping enabled the emergence of a fully binocular system. They also indicate that ephrin/Eph signaling plays a potentially major role in the development of neuronal connectivity in humans.
Collapse
Affiliation(s)
- Marie-Alexandra Lambot
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Campus Erasme, B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|
157
|
Torii M, Levitt P. Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. Neuron 2006; 48:563-75. [PMID: 16301174 DOI: 10.1016/j.neuron.2005.09.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/01/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Molecular mechanisms generating the topographic organization of corticothalamic (CT) circuits, which comprise more than three-quarters of the synaptic inputs onto sensory relay neurons, and their interdependence with thalamocortical (TC) axon development are unknown. Using in utero electroporation-mediated gene transfer, we show that EphA7-mediated signaling on neocortical axons controls the within-nucleus topography of CT projections in the thalamus. Notably, CT axons that mis-express EphA7 do not shift the relative positioning of their pathway within the subcortical telencephalon (ST), indicating that they do not depend upon EphA7/ephrin-A signaling in the ST for establishing this topography. Moreover, mis-expression of cortical EphA7 results in disrupted topography of CT projections, but unchanged inter- and intra-areal topography of TC projections. Our results support a model in which EphA/ephrin-A signaling controls independently the precision with which CT and TC projections develop, yet is essential for establishing their topographic reciprocity.
Collapse
Affiliation(s)
- Masaaki Torii
- Vanderbilt Kennedy Center for Research on Human Development and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|
158
|
Flanagan JG. Neural map specification by gradients. Curr Opin Neurobiol 2006; 16:59-66. [PMID: 16417998 DOI: 10.1016/j.conb.2006.01.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Topographic maps, in which the spatial order of neurons maps smoothly onto their axonal target, are a central feature of neural wiring. Ephrins and Eph receptors are well accepted as graded labels for map development, enabling current studies into molecular principles of mapping. Ephrins regulate axon growth either positively or negatively, leading to models in which axons terminate at a neutral or optimum point in the gradient. Axonal competition ensures the target is filled. Ephrins and Ephs are typically expressed in complex overlapping patterns, with implications for signaling mechanisms, scale of internal map features, and coordinated interconnection of multiple mapping modules. Recent studies of Wnt3 and En-2 show that topographic axon guidance cues may be as diverse as molecules previously regarded as morphogens and transcription factors.
Collapse
Affiliation(s)
- John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
159
|
Abstract
The sensory and motor components of nervous systems are connected topographically and contain neural maps of the external world. The paradigm for such maps is the precisely ordered wiring of the output cells of the eye to their synaptic targets in the tectum of the midbrain. The retinotectal map is organized in development through the graded activity of Eph receptor tyrosine kinases and their ephrin ligands. These signaling proteins are arrayed in complementary expression gradients along the orthogonal axes of the retina and tectum, and provide both input and recipient cells with Cartesian coordinates that specify their location. Molecular genetic studies in the mouse indicate that these coordinates are interpreted in the context of neuronal competition for termination sites in the tectum. They further suggest that order in the retinotectal map is determined by ratiometric rather than absolute difference comparisons in Eph signaling along the temporal-nasal and dorsal-ventral axes of the eye.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
160
|
Abstract
Ephrin ligands presented on one cell surface associate with their receptors on the surface of a juxtaposed cell, often resulting in cell-cell repulsion. In this issue of Cell, Janes et al. (2005) show that the ephrin ligand can be proteolytically released from its membrane tether by a complex on the opposing cell composed of the ephrin receptor and an ADAM metalloprotease.
Collapse
Affiliation(s)
- Filippo Mancia
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
161
|
Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA. Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 2005; 48:577-89. [PMID: 16301175 PMCID: PMC2424263 DOI: 10.1016/j.neuron.2005.10.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/15/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
Ephrin-As and their receptors, EphAs, are expressed in the developing cortex where they may act to organize thalamic inputs. Here, we map the visual cortex (V1) in mice deficient for ephrin-A2, -A3, and -A5 functionally, using intrinsic signal optical imaging and microelectrode recording, and structurally, by anatomical tracing of thalamocortical projections. V1 is shifted medially, rotated, and compressed and its internal organization is degraded. Expressing ephrin-A5 ectopically by in utero electroporation in the lateral cortex shifts the map of V1 medially, and expression within V1 disrupts its internal organization. These findings indicate that interactions between gradients of EphA/ephrin-A in the cortex guide map formation, but that factors other than redundant ephrin-As are responsible for the remnant map. Together with earlier work on the retinogeniculate map, the current findings show that the same molecular interactions may operate at successive stages of the visual pathway to organize maps.
Collapse
Affiliation(s)
- Jianhua Cang
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Megumi Kaneko
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Jena Yamada
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Georgia Woods
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Michael P. Stryker
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
162
|
Godinho L, Mumm JS, Williams PR, Schroeter EH, Koerber A, Park SW, Leach SD, Wong ROL. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 2005; 132:5069-79. [PMID: 16258076 DOI: 10.1242/dev.02075] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL). Increases (ON) and decreases (OFF) in light intensity are processed by circuits that are structurally confined to separate ON and OFF synaptic sublaminae within the IPL. Using transgenic zebrafish in which the majority of amacrine cells express fluorescent protein, we determined that the earliest amacrine-derived neuritic plexus formed between two cell populations whose somata, at maturity, resided on opposite sides of this plexus. When we followed the behavior of individual amacrine cells over time, we discovered that they exhibited distinct patterns of structural dynamics at different stages of development. During cellular migration, amacrine cells exhibited an exuberant outgrowth of neurites that was undirected. Upon reaching the forming IPL, neurites extending towards the ganglion cell layer were relatively more stable. Importantly, when an arbor first formed, it preferentially ramified in either the inner or outer IPL corresponding to the future ON and OFF sublaminae, and maintained this stratification pattern. The specificity by which ON and OFF amacrine interneurons innervate their respective sublaminae in the IPL contrasts with that observed for projection neurons in the retina and elsewhere in the central nervous system.
Collapse
Affiliation(s)
- Leanne Godinho
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Inatani M. Molecular mechanisms of optic axon guidance. Naturwissenschaften 2005; 92:549-61. [PMID: 16220285 DOI: 10.1007/s00114-005-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 08/03/2005] [Indexed: 01/17/2023]
Abstract
Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.
Collapse
Affiliation(s)
- Masaru Inatani
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|
164
|
Rodger J, Symonds ACE, Springbett J, Shen WY, Bartlett CA, Rakoczy PE, Beazley LD, Dunlop SA. Eph/ephrin expression in the adult rat visual system following localized retinal lesions: localized and transneuronal up-regulation in the retina and superior colliculus. Eur J Neurosci 2005; 22:1840-52. [PMID: 16262624 DOI: 10.1111/j.1460-9568.2005.04381.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following unilateral optic nerve section in adult PVG hooded rat, the axon guidance cue ephrin-A2 is up-regulated in caudal but not rostral superior colliculus (SC) and the EphA5 receptor is down-regulated in axotomised retinal ganglion cells (RGCs). Changes occur bilaterally despite the retino-collicular projection being mostly crossed. Here we investigate the dynamics of Eph/ephrin expression using in situ hybridization and semi-quantitative immunohistochemistry after localized retinal lesions. Unilateral krypton laser lesions to dorso-nasal retina ablated contralaterally projecting RGCs (DN group); ventro-temporal lesions ablated contralaterally and ipsilaterally projecting RGCs (VT group). Lesions of the entire retina served as controls (Total group). Results are compared to normal animals in which tectal ephrin-A2 and retinal EphA5 are expressed, respectively, as shallow ascending rostro-caudal and naso-temporal gradients. In both SCs of DN and Total groups, tectal ephrin-A2 was up-regulated caudally; in the VT group, expression remained normal bilaterally. Unilateral collicular ablation indicated that bilateral changes in ephrin-A2 expression are mediated via intercollicular pathways. EphA5 expression in the VT group was elevated in the intact nasal region of experimental retinae. For each experimental group, EphA5 expression was also elevated in nasal retina of the opposite eye, resulting in uniform expression across the naso-temporal axis. Up-regulation of ephrin-A2 in caudal, but not rostral, SC suggests the enhancement of developmental positional information as a result of injury. Bilateral increases in retinal EphA5 expression demonstrate that signals for up-regulation operate interocularly. The study demonstrates that signals regulating guidance cue expression are both localized and relayed transneuronally.
Collapse
Affiliation(s)
- J Rodger
- School of Animal Biology (Zoology), The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Gradients of axon guidance molecules have long been postulated to control the development of the organization of neural connections into topographic maps. We review progress in identifying molecules required for mapping and the mechanisms by which they act, focusing on the visual system, the predominant model for map development. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, remain the only molecules that meet all criteria for graded topographic guidance molecules, although others fulfill some criteria. Recent reports further define their modes of action and new roles for them, including EphB/ephrin-B control of dorsal-ventral mapping, bidirectional signaling of EphAs/ephrin-As, bifunctional action of ephrins as attractants or repellents in a context-dependent manner, and complex interactions between multiple guidance molecules. In addition, spontaneous patterned neural activity has recently been shown to be required for map refinement during a brief critical period. We speculate on additional activities required for map development and suggest a synthesis of molecular and cellular mechanisms within the context of the complexities of map development.
Collapse
Affiliation(s)
- Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
166
|
Yagita Y, Barjis I, Hecht M, Bach H, Feldheim DA, Scalia F. Partial nucleotide sequences and expression patterns of frog (Rana pipiens) ephrin-A2 and ephrin-A5 mRNA. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 159:72-7. [PMID: 16083970 DOI: 10.1016/j.devbrainres.2005.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 11/15/2022]
Abstract
We have generated 362 bp and 547 bp partial sequences for Rana pipiens ephrin-A2 and ephrin-A5 mRNA, respectively. Translation homologies for the comparable segments of cDNA of chicken, mouse and human are 90.8, 86.9 and 84.4% for the ephrin-A2 sequence and 85.7, 85.0 and 85.0% for the ephrin-A5 sequence. Digoxigenin-labeled riboprobes were prepared and applied by means of in situ hybridization to whole-mounts of the brains of mature adults and expression patterns in tadpoles were also explored. The RNA probes revealed similar posterior (high) to anterior (low) expression gradients in the adult tectum, demonstrating that both ephrin-As are expressed in the adult Ranid frog tectum. Only the ephrin-A2 probe was tested on tadpole brain, yielding an appropriately graded expression pattern similar to the adult.
Collapse
Affiliation(s)
- Yoshiki Yagita
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
167
|
Rashid T, Upton AL, Blentic A, Ciossek T, Knöll B, Thompson ID, Drescher U. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 2005; 47:57-69. [PMID: 15996548 DOI: 10.1016/j.neuron.2005.05.030] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/27/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
During development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection.
Collapse
Affiliation(s)
- Tahira Rashid
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Blood vessels and nerve fibres course throughout the body in an orderly pattern, often alongside one another. Although superficially distinct, the mechanisms involved in wiring neural and vascular networks seem to share some deep similarities. The discovery of key axon guidance molecules over the past decade has shown that axons are guided to their targets by finely tuned codes of attractive and repulsive cues, and recent studies reveal that these cues also help blood vessels to navigate to their targets. Parallels have also emerged between the actions of growth factors that direct angiogenic sprouting and those that regulate axon terminal arborization.
Collapse
Affiliation(s)
- Peter Carmeliet
- The Center for Transgene Technology and Gene Therapy (CTG), Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
169
|
Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 2005; 8:1013-21. [PMID: 16025110 PMCID: PMC2652399 DOI: 10.1038/nn1505] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/23/2005] [Indexed: 11/09/2022]
Abstract
Axon guidance cues contributing to the development of eye-specific visual projections to the lateral geniculate nucleus (LGN) have not previously been identified. Here we show that gradients of ephrin-As and their receptors (EphAs) direct retinal ganglion cell (RGC) axons from the two eyes into their stereotyped pattern of layers in the LGN. Overexpression of EphAs in ferret RGCs using in vivo electroporation induced axons from both eyes to misproject within the LGN. The effects of EphA overexpression were competition-dependent and restricted to the early postnatal period. These findings represent the first demonstration of eye-specific pathfinding mediated by axon guidance cues and, taken with other reports, indicate that ephrin-As can mediate several mapping functions within individual target structures.
Collapse
Affiliation(s)
- Andrew D Huberman
- Center for Neuroscience, 1544 Newton Ct., University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
170
|
Abstract
Eph receptor tyrosine kinases mould the behaviour of many cell types by binding membrane-anchored ligands, ephrins, at sites of cell-cell contact. Eph signals affect both of the contacting cells and can produce diverse biological responses. New models explain how quantitative variations in the densities and signalling abilities of Eph receptors and ephrins could account for the different effects that are elicited on axon guidance, cell adhesion and cell migration during development, homeostasis and disease.
Collapse
Affiliation(s)
- Elena B Pasquale
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
171
|
Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005; 76:213-35. [PMID: 16280194 DOI: 10.1016/j.pneurobio.2005.09.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/22/2022]
Abstract
A characteristic feature of sensory circuits is the existence of orderly connections that represent maps of sensory space. A major research focus in developmental neurobiology is to elucidate the relative contributions of neural activity and guidance molecules in sensory map formation. Two model systems for addressing map formation are the retinotopic map formed by retinal projections to the superior colliculus (SC) (or its non-mammalian homolog, the optic tectum (OT)), and the eye-specific map formed by retinal projections to the lateral geniculate nucleus of the thalamus. In mammals, a substantial portion of retinotopic and eye-specific refinement of retinal axons occurs before vision is possible, but at a time when there is a robust, patterned spontaneous retinal activity called retinal waves. Though complete blockade of retinal activity disrupts normal map refinement, attempts at more refined perturbations, such as pharmacological and genetic manipulations that alter features of retinal waves critical for map refinement, remain controversial. Here we review: (1) the mechanisms that underlie the generation of retinal waves; (2) recent experiments that have investigated a role for guidance molecules and retinal activity in map refinement; and (3) experiments that have implicated various signaling cascades, both in retinal ganglion cells (RGCs) and their post-synaptic targets, in map refinement. It is likely that an understanding of retinal activity, guidance molecules, downstream signaling cascades, and the interactions between these biological systems will be critical to elucidating the mechanisms of sensory map formation.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
172
|
Gamble JA, Karunadasa DK, Pape JR, Skynner MJ, Todman MG, Bicknell RJ, Allen JP, Herbison AE. Disruption of ephrin signaling associates with disordered axophilic migration of the gonadotropin-releasing hormone neurons. J Neurosci 2005; 25:3142-50. [PMID: 15788771 PMCID: PMC6725091 DOI: 10.1523/jneurosci.4759-04.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 02/10/2005] [Accepted: 02/11/2005] [Indexed: 11/21/2022] Open
Abstract
Ephrin signaling is involved in repulsive and attractive interactions mediating axon guidance and cell-boundary formation in the developing nervous system. As a result of a fortuitous transgene integration event, we have identified here a potential role for EphA5 in the axophilic migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode into the brain along ephrin-expressing vomeronasal axons. Transgene integration in the GNR23 mouse line resulted in a 26 kb deletion in chromosome 5, approximately 67 kb 3' to Epha5. This induced a profound, region-specific upregulation of EphA5 mRNA and protein expression in the developing mouse brain. The GnRH neurons in GNR23 mice overexpressed EphA5 from embryonic day 11, whereas ephrin A3 and A5 mRNA levels in olfactory neurons were unchanged. The GnRH neurons were found to be slow in commencing their migration from the olfactory placode and also to form abnormal clusters of cells on the olfactory axons, prohibiting their migration out of the nose. As a result, adult hemizygous mice had only 40% of the normal complement of GnRH neurons in the brain, whereas homozygous mice had <15%. This resulted in infertility in adult female homozygous GNR23 mice, suggesting that some cases of human hypogonadotropic hypogonadism may result from ephrin-related mutations. These data provide evidence for a role of EphA-ephrin signaling in the axophilic migration of the GnRH neurons during embryogenesis.
Collapse
Affiliation(s)
- John A Gamble
- Neurobiology Programme, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Goodhill GJ, Xu J. The development of retinotectal maps: a review of models based on molecular gradients. NETWORK (BRISTOL, ENGLAND) 2005; 16:5-34. [PMID: 16353341 DOI: 10.1080/09548980500254654] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Information about the world is often represented in the brain in the form of topographic maps. A paradigm example is the topographic representation of the visual world in the optic tectum/superior colliculus. This map initially forms during neural development using activity-independent molecular cues, most notably some type of chemospecific matching between molecular gradients in the retina and corresponding gradients in the tectum/superior colliculus. Exactly how this process might work has been studied both experimentally and theoretically for several decades. This review discusses the experimental data briefly, and then in more detail the theoretical models proposed. The principal conclusions are that (1) theoretical models have helped clarify several important ideas in the field, (2) earlier models were often more sophisticated than more recent models, and (3) substantial revisions to current modelling approaches are probably required to account for more than isolated subsets of the experimental data.
Collapse
Affiliation(s)
- Geoffrey J Goodhill
- Queensland Brain Institute, Department of Mathematics, and Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia.
| | | |
Collapse
|
174
|
Herrera E, Marcus R, Li S, Williams SE, Erskine L, Lai E, Mason C. Foxd1 is required for proper formation of the optic chiasm. Development 2005; 131:5727-39. [PMID: 15509772 DOI: 10.1242/dev.01431] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals with binocular vision, retinal ganglion cell (RGC) axons from each eye sort in the developing ventral diencephalon to project to ipsi- or contralateral targets, thereby forming the optic chiasm. Ipsilaterally projecting axons arise from the ventrotemporal (VT) retina and contralaterally projecting axons primarily from the other retinal quadrants. The winged helix transcription factor Foxd1 (previously known as BF-2, Brain Factor 2) is expressed in VT retina, as well as in the ventral diencephalon during the formation of the optic chiasm. We report here that in embryos lacking Foxd1, both retinal development and chiasm morphogenesis are disrupted. In the Foxd1 deficient retina, proteins designating the ipsilateral projection, such as Zic2 and EphB1, are missing, and the domain of Foxg1 (BF-1) expands from nasal retina into the VT crescent. In retina-chiasm co-cultures, VT RGCs from Foxd1 deficient retina are not repulsed by chiasm cells, and in vivo many VT RGCs aberrantly project contralaterally. However, even though the ipsilateral program is lost in the retina, a larger than normal uncrossed component develops in Foxd1 deficient embryos. Chiasm defects include axon stalling in the chiasm and a reduction in the total number of RGCs projecting to the optic tract. In addition, in the Foxd1 deficient ventral diencephalon, Foxg1 invades the Foxd1 domain, Zic2 and Islet1 expression are minimized, and Slit2 prematurely expands, changes that could contribute to axon projection errors. Thus, Foxd1 plays a dual role in the establishment of the binocular visual pathways: first, in specification of the VT retina, acting upstream of proteins directing the ipsilateral pathway; and second, in the patterning of the developing ventral diencephalon where the optic chiasm forms.
Collapse
Affiliation(s)
- Eloísa Herrera
- Departments of Pathology, Anatomy and Cell Biology and Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
176
|
O'Leary DDM, McLaughlin T. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. PROGRESS IN BRAIN RESEARCH 2005; 147:43-65. [PMID: 15581697 DOI: 10.1016/s0079-6123(04)47005-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes mechanisms that control the development of retinotopic maps in the brain, focusing on work from our laboratory using as models the projection of retinal ganglion cells (RGCs) to the chick optic tectum (OT) or rodent superior colliculus (SC). The formation of a retinotopic map involves the establishment of an initial, very coarse map that subsequently undergoes large-scale remodeling to generate a refined map. All arbors are formed by interstitial branches that form in a topographically biased manner along RGC axons that overshoot their correct termination zone (TZ) along the anterior-posterior (A-P) axis of the OT/SC. The interstitial branches exhibit directed growth along the lateral-medial (L-M) axis of the OT/SC to position the branch at the topographically correct location, where it arborizes to form the TZ. EphA receptors and ephrin-A ligands control in part RGC axon mapping along the A-P axis by inhibiting branching and arborization posterior to the correct TZ. Ephrin-B1 acts bifunctionally through EphB forward signaling to direct branches along the L-M axis of the OT/SC to their topographically correct site. Computational modeling indicates that multiple graded activities are required along each axis to generate a retinotopic map, and makes several predictions, including: the progressive addition of ephrin-As within the OT/SC, due to its expression on RGC axon branches and arbors, is required to increase topographic specificity in branching and arborization as well as eliminate the initial axon overshoot, and that interactions amongst RGC axons that resemble correlated neural activity are required to drive retinotopic refinement. Analyses of mutant mice that lack early spontaneous retinal waves that correlate activity amongst neighboring RGCs, confirm this modeling prediction and show that correlated activity during an early brief critical period is required to drive the large-scale remodeling of the initially topographically coarse projection into a refined one. In summary, multiple graded guidance molecules, retinal waves and correlated spontaneous RGC activity cooperate to generate retinotopic maps.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
177
|
Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004; 7:465-80. [PMID: 15469835 DOI: 10.1016/j.devcel.2004.09.006] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eph receptor tyrosine kinases and ephrins have key roles in regulation of the migration and adhesion of cells required to form and stabilize patterns of cell organization during development. Activation of Eph receptors or ephrins can lead either to cell repulsion or to cell adhesion and invasion, and recent work has found that cells can switch between these distinct responses. This review will discuss biochemical mechanisms and developmental roles of the diverse cell responses controlled by Eph receptors and ephrins.
Collapse
Affiliation(s)
- Alexei Poliakov
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
178
|
Pak W, Hindges R, Lim YS, Pfaff SL, O'Leary DDM. Magnitude of Binocular Vision Controlled by Islet-2 Repression of a Genetic Program that Specifies Laterality of Retinal Axon Pathfinding. Cell 2004; 119:567-78. [PMID: 15537545 DOI: 10.1016/j.cell.2004.10.026] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 07/01/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Pathfinding of retinal ganglion cell (RGC) axons at the midline optic chiasm determines whether RGCs project to ipsilateral or contralateral brain visual centers, critical for binocular vision. Using Isl2tau-lacZ knockin mice, we show that the LIM-homeodomain transcription factor Isl2 marks only contralaterally projecting RGCs. The transcription factor Zic2 and guidance receptor EphB1, required by RGCs to project ipsilaterally, colocalize in RGCs distinct from Isl2 RGCs in the ventral-temporal crescent (VTC), the source of ipsilateral projections. Isl2 knockout mice have an increased ipsilateral projection originating from significantly more RGCs limited to the VTC. Isl2 knockouts also have increased Zic2 and EphB1 expression and significantly more Zic2 RGCs in the VTC. We conclude that Isl2 specifies RGC laterality by repressing an ipsilateral pathfinding program unique to VTC RGCs and involving Zic2 and EphB1. This genetic hierarchy controls binocular vision by regulating the magnitude and source of ipsilateral projections and reveals unique retinal domains.
Collapse
Affiliation(s)
- Winnie Pak
- Molecular Neurobiology Lab, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
179
|
Mu X, Klein WH. A gene regulatory hierarchy for retinal ganglion cell specification and differentiation. Semin Cell Dev Biol 2004; 15:115-23. [PMID: 15036214 DOI: 10.1016/j.semcdb.2003.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retinal ganglion cells (RGCs) are the first cell type to be specified during vertebrate retinogenesis. Specification and differentiation of the RGC lineage are a stepwise process involving a hierarchical gene regulatory network. During the past decade, a framework of the network has emerged and key transcriptional regulators have been identified. Pax6, Notch, Ath5, and the Brn3 (Pou4f) factors act at different levels of the regulatory hierarchy. In this review, we summarize the current understanding of the functions of these and other transcriptional factors in the specification and differentiation of the RGC lineage. We emphasize the regulatory relationships among transcription factors at different steps of RGC development. We discuss critical issues that need to be addressed before a complete understanding of the gene regulatory network for RGC development can be achieved. Future directions in RGC development will inevitably rely on combined genetic and genomics approaches.
Collapse
Affiliation(s)
- Xiuqian Mu
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | |
Collapse
|
180
|
Zhan XL, Clemens JC, Neves G, Hattori D, Flanagan JJ, Hummel T, Vasconcelos ML, Chess A, Zipursky SL. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 2004; 43:673-86. [PMID: 15339649 DOI: 10.1016/j.neuron.2004.07.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/21/2004] [Accepted: 06/18/2004] [Indexed: 10/25/2022]
Abstract
Dscam is an immunoglobulin (Ig) superfamily member that regulates axon guidance and targeting in Drosophila. Alternative splicing potentially generates 38,016 isoforms differing in their extracellular Ig and transmembrane domains. We demonstrate that Dscam mediates the sorting of axons in the developing mushroom body (MB). This correlates with the precise spatiotemporal pattern of Dscam protein expression. We demonstrate that MB neurons express different arrays of Dscam isoforms and that single MB neurons express multiple isoforms. Two different Dscam isoforms differing in their extracellular domains introduced as transgenes into single mutant cells partially rescued the mutant phenotype. Expression of one isoform of Dscam in a cohort of MB neurons induced dominant phenotypes, while expression of a single isoform in a single cell did not. We propose that different extracellular domains of Dscam share a common function and that differences in isoforms expressed on the surface of neighboring axons influence interactions between them.
Collapse
Affiliation(s)
- Xiao-Li Zhan
- Howard Hughes Medical Institute, Department of Biological Chemistry, The David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Honda H. Competitive interactions between retinal ganglion axons for tectal targets explain plasticity of retinotectal projection in the servomechanism model of retinotectal mapping. Dev Growth Differ 2004; 46:425-37. [PMID: 15606488 DOI: 10.1111/j.1440-169x.2004.00759.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism of topographic mapping of retinal ganglion cells to the midbrain was previously elucidated by the servomechanism model, which is based on the fact that cells expressing Eph-receptors respond specifically to surface expressing membrane-bound ephrin-ligands at a critical level. The retina has increased nasal-to-temporal gradient of Eph receptor-density, and the optic tectum/superior colliculus has increased rostral-to-caudal gradient of membrane-bound ephrin-ligand. An axon from the retina has an identification tag of a certain level of Eph-receptor density depending on its retinal position, and adheres to the site on the tectum/superior colliculus expressing ephrin-ligands at a critical ligand-density level. The servomechanism model rigidly defines positions of axon terminals on the midbrain. However, optic nerve regeneration experiments combined with halved retina or tectum show a plastic or flexible mapping (expansion, compression and transposition of tectal projections). To reconcile the discrepancy between the rigid model and the plastic behavior, competition between retinal axon terminals for a target site was introduced to the servomechanism. The servomechanism/competition model succeeded in computer simulations of the plastic mapping of retinal axons on the tectum. Recent experiments of upregulated ligand-density on the tectum during nerve regeneration and the role of axonal competition are discussed.
Collapse
Affiliation(s)
- Hisao Honda
- Hyogo University, Kakogawa, Hyogo 675-0195, Japan.
| |
Collapse
|
182
|
Reber M, Burrola P, Lemke G. A relative signalling model for the formation of a topographic neural map. Nature 2004; 431:847-53. [PMID: 15483613 DOI: 10.1038/nature02957] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 08/09/2004] [Indexed: 11/09/2022]
Abstract
The highly ordered wiring of retinal ganglion cell (RGC) neurons in the eye to their synaptic targets in the superior colliculus of the midbrain has long served as the dominant experimental system for the analysis of topographic neural maps. Here we describe a quantitative model for the development of one arm of this map--the wiring of the nasal-temporal axis of the retina to the caudal-rostral axis of the superior colliculus. The model is based on RGC-RGC competition that is governed by comparisons of EphA receptor signalling intensity, which are made using ratios of, rather than absolute differences in, EphA signalling between RGCs. Molecular genetic experiments, exploiting a combinatorial series of EphA receptor knock-in and knockout mice, confirm the salient predictions of the model, and show that it both describes and predicts topographic mapping.
Collapse
Affiliation(s)
- Michaël Reber
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
183
|
James J, Das AV, Rahnenführer J, Ahmad I. Cellular and molecular characterization of early and late retinal stem cells/progenitors: Differential regulation of proliferation and context dependent role of Notch signaling. ACTA ACUST UNITED AC 2004; 61:359-76. [PMID: 15452852 DOI: 10.1002/neu.20064] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retinal stem cells/progenitors that define the evolutionarily conserved early and late stages of retinal histogenesis are known to have distinct competence to give rise to stage-specific retinal cell types. However, the information regarding their innate proliferative behavior and phenotypic potential in terms of generating neurons and glia is lacking. Here we demonstrate that, like their counterparts in other central nervous system (CNS) regions during early and late stages of embryonic development, the early and late retinal stem cells/progenitors display different proliferative response to fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) and bias towards generating neurons or glia. Although the former predominantly generate neurons, the latter are partial towards giving rise to glia. Transcription profiling identified classes of genes that are differentially expressed in early and late retinal stem cells/progenitors in proliferating conditions and suggested that the distinct proliferative response to FGF2 and EGF is likely due to differential expression of FGF receptor 1 (FGFR1) and EGF receptor (EGFR). However, the proliferative maintenance of retinal stem cells/progenitors is likely to include other signaling pathways such as those mediated by insulin-like growth factors (IGFs) and stem cell factor (SCF). Transcription profiling of early and late retinal stem cells/progenitors in proliferating and differentiating conditions suggested a context dependent role for Notch signaling, which may constitute one of the mechanisms underlying the stage-dependent phenotypic potential of retinal stem cells/progenitors.
Collapse
MESH Headings
- Age Factors
- Animals
- Bromodeoxyuridine/metabolism
- Cell Count/methods
- Cell Differentiation/physiology
- Cell Proliferation
- Cells, Cultured
- Drug Interactions
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/pharmacology
- ErbB Receptors
- Female
- Fibroblast Growth Factor 2/pharmacology
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation, Developmental
- Glial Fibrillary Acidic Protein/metabolism
- Glycoproteins/metabolism
- Intermediate Filament Proteins/metabolism
- Male
- Membrane Proteins/physiology
- Microtubule-Associated Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Nestin
- Neurons/enzymology
- Neurons/physiology
- Oligonucleotide Array Sequence Analysis/methods
- Pregnancy
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, IGF Type 2/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Notch
- Retina/cytology
- Retina/embryology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/physiology
- Stem Cells/physiology
Collapse
Affiliation(s)
- Jackson James
- Department of Ophthalmology, Lied Transplant Center (LTC 11715), University of Nebraska Medical Center, 600 South 42nd Street, Omaha, Nebraska 68198-6395, USA
| | | | | | | |
Collapse
|
184
|
Marotte LR, Vidovic M, Wheeler E, Jhaveri S. Brain-derived neurotrophic factor is expressed in a gradient in the superior colliculus during development of the retinocollicular projection. Eur J Neurosci 2004; 20:843-7. [PMID: 15255995 DOI: 10.1111/j.1460-9568.2004.03521.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract Theoretical models of topographic map formation have postulated a gradient of attractant in addition to a gradient of repulsion in the target. In species where many axons grow past their correct positions initially, it has also been argued that a parallel gradient of attractant or branching signal is required to ensure collateral formation at the correct position (O'Leary et al., 1999). Brain-derived neurotrophic factor (BDNF) is a known attractant and promotes branching of retinal axons. We have examined its distribution in the superior colliculus and that of its receptor, trkB, in the retina, using immunohistochemistry and in situ hybridization, respectively, during the development of the topographic retinocollicular projection in the wallaby, a marsupial mammal. The number of glial endfeet expressing BDNF at the surface of the colliculus was found to be in a high caudal-to-low rostral gradient during the time when the retinocollicular projection was developing. When the projection was mature the rostrocaudal gradient had disappeared and the number of detectable endfeet expressing BDNF was very low. Messenger RNA for TrkB was expressed in the retinal ganglion cell layer throughout the time when the retinocollicular projection was developing, with no difference in expression across the nasotemporal axis of the retina. The low rostral to high caudal distribution of BDNF in glial endfeet supports the idea that it is providing a parallel gradient of attractant or branching signal in the colliculus.
Collapse
Affiliation(s)
- L R Marotte
- Visual Sciences Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
185
|
Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PIH, Lackmann M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. ACTA ACUST UNITED AC 2004; 164:661-6. [PMID: 14993233 PMCID: PMC2172175 DOI: 10.1083/jcb.200312001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.
Collapse
Affiliation(s)
- Sabine H Wimmer-Kleikamp
- Dept. of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
186
|
Koulakov AA, Tsigankov DN. A stochastic model for retinocollicular map development. BMC Neurosci 2004; 5:30. [PMID: 15339341 PMCID: PMC520742 DOI: 10.1186/1471-2202-5-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 08/31/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We examine results of gain-of-function experiments on retinocollicular maps in knock-in mice [Brown et al. (2000) Cell 102:77]. In wild-type mice the temporal-nasal axis of retina is mapped to the rostral-caudal axis of superior colliculus. The established map is single-valued, which implies that each point in retina maps to a unique termination zone in superior colliculus. In homozygous Isl2/EphA3 knock-in mice the map is double-valued, which means that each point on retina maps to two termination zones in superior colliculus. This is because about 50 percent of cells in retina express Isl2, and two types of projections, wild-type and Isl2/EphA3 positive, form two branches of the map. In heterozygous Isl2/EphA3 knock-ins the map is intermediate between the homozygous and wild-type: it is single-valued in temporal and double-valued in the nasal parts of retina. In this study we address possible reasons for such a bifurcation of the map. RESULTS We study the map formation using stochastic model based on Markov chains. In our model the map undergoes a series of reconstructions with probabilities dependent upon a set of chemical cues. Our model suggests that the map in heterozygotes is single-valued in temporal region of retina for two reasons. First, the inhomogeneous gradient of endogenous receptor in retina makes the impact of exogenous receptor less significant in temporal retina. Second, the gradient of ephrin in the corresponding region of superior colliculus is smaller, which reduces the chemical signal-to-noise ratio. We predict that if gradient of ephrin is reduced by a genetic manipulation, the single-valued region of the map should extend to a larger portion of temporal retina, i.e. the point of transition between single-and double-valued maps should move to a more nasal position in Isl2-EphA3 heterozygotes. CONCLUSIONS We present a theoretical model for retinocollicular map development, which can account for intriguing behaviors observed in gain-of-function experiments by Brown et al., including bifurcation in heterozygous Isl2/EphA3 knock-ins. The model is based on known chemical labels, axonal repulsion/competition, and stochasticity. Possible mapping in Isl2/EphB knock-ins is also discussed.
Collapse
Affiliation(s)
- Alexei A Koulakov
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Dmitry N Tsigankov
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
187
|
Abstract
The multiple functions of a neuron depend on the proper assembly of axonal connections during the development of the nervous systems. This assembly involves the motile behavior of growth cones at the ends of elongating axons. The growth cones express receptors that bind to specific guidance molecules in the local environment. In turn, this initiates the attractive and repulsive forces required to give the appropriate direction to the elongating axon. The process implicates a tightly regulated remodeling of the actin cytoskeleton in response to the activation of the Rho GTPases, Cdc42, Rac and RhoA. In this article, we will review how the ephrin-Eph receptor system regulates the activity of the Rho GTPases, to modulate the mechanics of growth cone activity and then axon guidance.
Collapse
Affiliation(s)
- Jacques Huot
- Le Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9, rue McMahon, Québec, Canada G1R 2J6.
| |
Collapse
|
188
|
Abstract
Ephrin-As have been implicated as topographic mapping labels in the retinotectal system, but the underlying molecular mechanisms for their activities in this context remain somewhat mysterious. Hansen et al. (this issue of Neuron) developed an assay that reveals new mechanisms for ephrins in topographic mapping and suggest a model whereby retinal axons grow and terminate in the tectum via a balance of growth promotion and repulsion, with the balance point depending on retinal position and concentration of ephrin-As.
Collapse
Affiliation(s)
- Pierre Godement
- Laboratoire de Neurobiologie des Reseaux Sensorimoteurs, CNRS UMR 7060, Universite Paris 5, UFR Biomedicale, Paris, France
| | | |
Collapse
|
189
|
Vanderhaeghen P, Polleux F. Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci 2004; 27:384-91. [PMID: 15219737 DOI: 10.1016/j.tins.2004.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Roger Sperry proposed 40 years ago that topographic neural connections are established through complementary expression of chemoaffinity labels in projecting neurons and their final targets. This led to the identification of ephrins as key molecular cues controlling the topography of retinotectal projections. Recent studies have revealed a surprising twist to this model, shedding light on the developmental mechanisms patterning the projections between the thalamus and the cortex: ephrins, unexpectedly expressed in an intermediate target, control the establishment of topography of axonal projections between these two structures. The same cues are re-used later to control the mapping of thalamocortical projections within a given cortical area, which strikingly illustrates how a limited set of genes can contribute to generate several levels of complexity of a neuronal network.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), University of Brussels (ULB), 808 Route de Lennik, B-1070 Brussels, Belgium.
| | | |
Collapse
|
190
|
Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 2004; 1014:140-54. [PMID: 15153429 DOI: 10.1196/annals.1294.015] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation is a fundamental event in the development of the nervous system as well as in the regeneration of damaged nervous tissue. The initiation and guidance of a neurite are accomplished by positive (permissive or attractive), negative (inhibitory or repulsive), or guiding (affecting the advance of the growth cone) signals from the extracellular space. The signals may arise from either the extracellular matrix (ECM) or the surface of other cells, or be diffusible secreted factors. Based on this classification, we briefly describe selected positive, negative, and guiding signaling cues focusing on the role of cell adhesion molecules (CAMs). CAMs not only regulate cell-cell and cell-ECM adhesion "mechanically," they also trigger intracellular signaling cascades launching neurite outgrowth. Here, we describe the structure, function, and signaling of three key CAMs found in the nervous system: N-cadherin and two Ig-CAMs, L1 and the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | |
Collapse
|
191
|
Bureau I, Shepherd GMG, Svoboda K. Precise Development of Functional and Anatomical Columns in the Neocortex. Neuron 2004; 42:789-801. [PMID: 15182718 DOI: 10.1016/j.neuron.2004.05.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/23/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Sensory cortex is ordered into columns, each tuned to a subset of peripheral stimuli. To identify the principles underlying the construction of columnar architecture, we monitored the development of circuits in the rat barrel cortex, using laser-scanning photostimulation analysis of synaptic connectivity, reconstructions of axonal arbors, and in vivo whole-cell recording. Circuits impinging onto layer 2/3 neurons from layers 4 and 2/3 developed in a monotonic, precise progression, with little evidence for transient hyperinnervation at the level of cortical columns. Consistent with this, synaptic currents measured in layer 2/3 neurons at PND 8, just after these neurons ceased to migrate, revealed already spatially well-tuned receptive fields.
Collapse
Affiliation(s)
- Ingrid Bureau
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
192
|
Hansen MJ, Dallal GE, Flanagan JG. Retinal Axon Response to Ephrin-As Shows a Graded, Concentration-Dependent Transition from Growth Promotion to Inhibition. Neuron 2004; 42:717-30. [PMID: 15182713 DOI: 10.1016/j.neuron.2004.05.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/30/2004] [Accepted: 05/03/2004] [Indexed: 01/25/2023]
Abstract
Ephrin-As act as retinal topographic mapping labels, but the molecular basis for two key aspects of mapping remains unclear. First, although mapping is believed to require balanced opposing forces, ephrin-As have been reported to be retinal axon repellents, and the counterbalanced force has not been molecularly identified. Second, although graded responsiveness across the retina is required for smooth mapping, a sharp discontinuity has instead been reported. Here, an axon growth assay was developed to systematically vary both retinal position and ephrin concentration and test responses quantitatively. Responses varied continuously with retinal position, fulfilling the requirement for smooth mapping. Ephrin-A2 inhibited growth at high concentrations but promoted growth at lower concentrations. Moreover, the concentration producing a transition from promotion to inhibition varied topographically with retinal position. These results lead directly to a mapping model where position within a concentration gradient may be specified at the neutral point between growth promotion and inhibition.
Collapse
Affiliation(s)
- Michael J Hansen
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
193
|
Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG. Loss-of-function analysis of EphA receptors in retinotectal mapping. J Neurosci 2004; 24:2542-50. [PMID: 15014130 PMCID: PMC6729493 DOI: 10.1523/jneurosci.0239-03.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EphA tyrosine kinases are thought to act as topographically specific receptors in the well-characterized projection map from the retina to the tectum. Here, we describe a loss-of-function analysis of EphA receptors in retinotectal mapping. Expressing patches of a cytoplasmically truncated EphA3 receptor in chick retina caused temporal axons to have reduced responsiveness to posterior tectal repellent activity in vitro and to shift more posteriorly within the map in vivo. A gene disruption of mouse EphA5, replacing the intracellular domain with beta-galactosidase, reduced in vitro responsiveness of temporal axons to posterior target membranes. It also caused map abnormalities in vivo, with temporal axons shifted posteriorly and nasal axons anteriorly, but with the entire target still filled by retinal axons. The anterior shift of nasal axons was not accompanied by increased responsiveness to tectal repellent activity, in contrast to the comparable anterior shift in ephrin-A knock-outs, helping to resolve a previous ambiguity in interpreting the ephrin gene knock-outs. The results show the functional requirement for endogenous EphA receptors in retinotectal mapping, show that the receptor intracellular domain is required for a forward signaling response to topographic cues, and provide new evidence for a role of axon competition in topographic mapping.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/physiology
- Chick Embryo
- Gene Targeting
- Genes, Reporter
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Mice
- Mice, Mutant Strains
- Receptor, EphA3/biosynthesis
- Receptor, EphA3/genetics
- Receptor, EphA3/physiology
- Receptor, EphA5/biosynthesis
- Receptor, EphA5/genetics
- Receptor, EphA5/physiology
- Receptors, Eph Family/deficiency
- Receptors, Eph Family/genetics
- Receptors, Eph Family/physiology
- Retinal Ganglion Cells/cytology
- Retinal Ganglion Cells/metabolism
- Sequence Deletion
- Superior Colliculi/cytology
- Superior Colliculi/metabolism
- Visual Pathways/cytology
- Visual Pathways/metabolism
Collapse
Affiliation(s)
- David A Feldheim
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Rodger J, Vitale PN, Tee LBG, King CE, Bartlett CA, Fall A, Brennan C, O'Shea JE, Dunlop SA, Beazley LD. EphA/ephrin-A interactions during optic nerve regeneration: restoration of topography and regulation of ephrin-A2 expression. Mol Cell Neurosci 2004; 25:56-68. [PMID: 14962740 DOI: 10.1016/j.mcn.2003.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 09/15/2003] [Accepted: 09/18/2003] [Indexed: 11/20/2022] Open
Abstract
During visual system development, interactions between Eph tyrosine kinase receptors and their ligands, the ephrins, guide retinal ganglion cell (RGC) axons to their topographic targets in the optic tectum. Here we show that Eph/ephrin interactions are also involved in restoring topography during RGC axon regeneration in goldfish. Following optic nerve crush, EphA/ephrin-A interactions were blocked by intracranial injections of recombinant Eph receptor (EphA3-AP) or phospho-inositol phospholipase-C. Topographic errors with multiple inputs to some tectal loci were detected electrophysiologically and increased projections to caudal tectum demonstrated by RT-97 immunohistochemistry. In EphA3-AP-injected fish, ephrin-A2-expressing cells in the retino-recipient tectal layers were reduced in number compared to controls and their distribution was no longer graded. The findings, supported by in vitro studies, implicate EphA/ephrin-A interactions in restoring precise topography and in regulating ephrin-A2 expression during regeneration.
Collapse
Affiliation(s)
- J Rodger
- School of Animal Biology, The University of Western Australia, Crawley 6009, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Yates PA, Holub AD, McLaughlin T, Sejnowski TJ, O'Leary DDM. Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. ACTA ACUST UNITED AC 2004; 59:95-113. [PMID: 15007830 PMCID: PMC2927824 DOI: 10.1002/neu.10341] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The topographic projection of retinal ganglion cell (RGC) axons to mouse superior colliculus (SC) or chick optic tectum (OT) is formed in three phases: RGC axons overshoot their termination zone (TZ); they exhibit interstitial branching along the axon that is topographically biased for the correct location of their future TZ; and branches arborize preferentially at the TZ and the initial exuberant projection refines through axon and branch elimination to generate a precise retinotopic map. We present a computational model of map development that demonstrates that the countergradients of EphAs and ephrinAs in retina and the OT/SC and bidirectional repellent signaling between RGC axons and OT/SC cells are sufficient to direct an initial topographic bias in RGC axon branching. Our model also suggests that a proposed repellent action of EphAs/ephrinAs present on RGC branches and arbors added to that of EphAs/ephrinAs expressed by OT/SC cells is required to progressively restrict branching and arborization to topographically correct locations and eliminate axon overshoot. Simulations show that this molecular framework alone can develop considerable topographic order and refinement, including axon elimination, a feature not programmed into the model. Generating a refined map with a condensed TZ as in vivo requires an additional parameter that enhances branch formation along an RGC axon near sites that it has a higher branch density, and resembles an assumed role for patterned neural activity. The same computational model generates the phenotypes reported in ephrinA deficient mice and Isl2-EphA3 knockin mice. This modeling suggests that gradients of counter-repellents can establish a substantial degree of topographic order in the OT/SC, and that repellents present on RGC axon branches and arbors make a substantial contribution to map refinement. However, competitive interactions between RGC axons that enhance the probability of continued local branching are required to generate precise retinotopy.
Collapse
Affiliation(s)
- Paul A Yates
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
196
|
Shintani T, Kato A, Yuasa-Kawada J, Sakuta H, Takahashi M, Suzuki R, Ohkawara T, Takahashi H, Noda M. Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. ACTA ACUST UNITED AC 2004; 59:34-47. [PMID: 15007825 DOI: 10.1002/neu.10338] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand the molecular basis of topographic retinotectal projection, an overall view of the asymmetrically expressed molecules in the developing retina is needed. We performed a large-scale screening using restriction landmark cDNA scanning (RLCS) in the embryonic day 8 (E8) chick retina. RLCS is a cDNA display system, in which a large number of cDNA species are displayed as two-dimensional spots with intensities reflecting their expression levels as mRNA. We searched for spots that gave different signal intensities between the nasal and temporal retinas or between the dorsal and ventral retinas, and detected about 200 spots that were preferential on one side in the retina. The asymmetric expression of each gene was verified by Northern blotting and in situ hybridization. By subsequent analyses using molecular cloning, DNA sequencing, and database searching, 33 asymmetric molecules along the nasotemporal (N-T) axis and 20 along the dorsoventral (D-V) axis were identified. These included transcription factors, secretory factors, transmembrane proteins, and intracellular proteins with various putative functions. Their expression profiles revealed by in situ hybridization are highly diverse and individual. Moreover, many of them begin to be expressed in the retina from the early developmental stages, suggesting that they are implicated in the establishment and maintenance of regional specificity in the developing retina. The molecular repertoire revealed by this work will provide candidates for future studies to elucidate the molecular mechanisms of topographic retinotectal map formation.
Collapse
Affiliation(s)
- Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Wong EV, Kerner JA, Jay DG. Convergent and divergent signaling mechanisms of growth cone collapse by ephrinA5 and slit2. ACTA ACUST UNITED AC 2004; 59:66-81. [PMID: 15007828 DOI: 10.1002/neu.10342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EphrinA5 and slit2 are important repulsive guidance cues in the developing retinotectal system. Both ephrinA5 and slit2 cause growth cone collapse of embryonic chick retinal ganglion growth cones cultured on EHS laminin. However, the signaling mechanism that these guidance cues initiate to cause collapse remains unclear. Here we provide evidence that while both ephrinA5 and slit2 cause collapse in morphologically similar ways, the intracellular signaling leading to the collapse involves shared as well as divergent paths. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or src family kinases prevented both ephrinA5-mediated and slit2-mediated growth cone collapse. In contrast, the inhibition of nonclassical protein kinase C (PKC) isoforms blocked ephrinA5-mediated collapse, but did not interfere with slit2-mediated collapse. PI3K was copurified by affinity chromatography with either the ephrinA5 receptors (ephAs) or the slit2 receptor (roundabout). Colocalization studies have also shown that src family kinase members are recruited to the ephA and roundabout receptors upon activation. In contrast, PKC members are recruited to the ephA receptors, but not to the roundabout receptors, upon activation. This demonstrates distinct points of convergence and divergence between the two signaling molecules, ephrinA5 and slit2, and their repulsive guidance in the chick retinotectal system.
Collapse
Affiliation(s)
- Eric V Wong
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
198
|
Ruthazer ES, Cline HT. Insights into activity-dependent map formation from the retinotectal system: A middle-of-the-brain perspective. ACTA ACUST UNITED AC 2004; 59:134-46. [PMID: 15007832 DOI: 10.1002/neu.10344] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of orderly topographic maps in the central nervous system (CNS) results from a collaboration of chemoaffinity cues that establish the coarse organization of the projection and activity-dependent mechanisms that fine-tune the map. Using the retinotectal projection as a model system, we describe evidence that biochemical tags and patterned neural activity work in parallel to produce topographically ordered axonal projections. Finally, we review recent experiments in other CNS projections that support the proposition that cooperation between molecular guidance cues and activity-dependent processes constitutes a general paradigm for CNS map formation.
Collapse
Affiliation(s)
- Edward S Ruthazer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
199
|
Liu Y, Berndt J, Su F, Tawarayama H, Shoji W, Kuwada JY, Halloran MC. Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum. J Neurosci 2004; 24:310-8. [PMID: 14724229 PMCID: PMC6730002 DOI: 10.1523/jneurosci.4287-03.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the role of Sema3D, a semaphorin of previously unknown function, in guiding retinal ganglion cell (RGC) axons to the optic tectum in the developing zebrafish. Sema3D is expressed more strongly in the ventral versus dorsal tectum, suggesting that it may participate in guiding RGC axons along the dorsoventral axis of the tectum. Ubiquitous misexpression of Sema3D in transgenic zebrafish inhibits ventral but not dorsal RGC axon growth. In addition, ventral RGC axons avoid or stop at individual cells misexpressing Sema3D along their pathway. Sema3D ubiquitous misexpression at later stages also causes ventral RGC axon arbors to spread more widely along the dorsoventral axis of the tectum. Knock-down of Sema3D with morpholino antisense causes ventral RGC axons to extend aberrantly into the ventral tectum. These results suggest that Sema3D in the ventral tectum normally acts to inhibit ventral RGCs from extending into ventral tectum, ensuring their correct innervation of dorsal tectum.
Collapse
Affiliation(s)
- Yan Liu
- Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
McLaughlin T, Torborg CL, Feller MB, O'Leary DDM. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 2004; 40:1147-60. [PMID: 14687549 DOI: 10.1016/s0896-6273(03)00790-6] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice lack waves during the first postnatal week, but RGCs have high levels of uncorrelated firing. By P8, the wild-type retinocollicular projection remodels into a refined map characterized by axons of neighboring RGCs forming focal termination zones (TZs) of overlapping arbors. In contrast, in P8 beta2(-/-) mice, neighboring RGC axons form large TZs characterized by broadly distributed arbors. At P8, glutamatergic retinal waves appear in beta2(-/-) mice, and later, visually patterned activity appears, but the diffuse TZs fail to remodel. Thus, spontaneous retinal waves that correlate RGC activity are required for retinotopic map remodeling during a brief early critical period.
Collapse
Affiliation(s)
- Todd McLaughlin
- Molecular Neurobiology Lab, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|