151
|
Kedmi M, Bar-Shira A, Gurevich T, Giladi N, Orr-Urtreger A. Decreased expression of B cell related genes in leukocytes of women with Parkinson's disease. Mol Neurodegener 2011; 6:66. [PMID: 21943286 PMCID: PMC3189133 DOI: 10.1186/1750-1326-6-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Background Parkinson's disease (PD) is a complex disorder caused by genetic, environmental and age-related factors, and it is more prevalent in men. We aimed to identify differentially expressed genes in peripheral blood leukocytes (PBLs) that might be involved in PD pathogenesis. Transcriptomes of 30 female PD-patients and 29 age- and sex-matched controls were profiled using GeneChip Human Exon 1.0 ST Arrays. Samples were from unrelated Ashkenazi individuals, non-carriers of LRRK2 G2019S or GBA founder mutations. Results Differential expression was detected in 115 genes (206 exons), with over-representation of immune response annotations. Thirty genes were related to B cell functions, including the uniquely B cell-expressed IGHM and IGHD, the B cell surface molecules CD19, CD22 and CD79A, and the B cell gene regulator, PAX5. Quantitative-RT-PCR confirmation of these 6 genes in 79 individuals demonstrated decreased expression, mainly in women patients, independent of PD-pharmacotherapy status. Conclusions Our results suggest that the down regulation of genes related to B cell activity reflect the involvement of these cells in PD in Ashkenazi individuals and represents a molecular aspect of gender-specificity in PD.
Collapse
Affiliation(s)
- Merav Kedmi
- Genetic Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239, Israel.
| | | | | | | | | |
Collapse
|
152
|
Bousquet M, St-Amour I, Vandal M, Julien P, Cicchetti F, Calon F. High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol Dis 2011; 45:529-38. [PMID: 21971528 DOI: 10.1016/j.nbd.2011.09.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023] Open
Abstract
The identification of modifiable nutritional risk factors is highly relevant to the development of preventive strategies for neurodegenerative disorders including Parkinson's disease (PD). In this study, adult C57BL/6 mice were fed either a control (CD-12%kcal) or a high-fat diet (HFD-60%kcal) for 8 weeks prior to MPTP exposure, a toxin which recreates a number of pathological features of PD. HFD-fed mice significantly gained weight (+41%), developed insulin resistance and a systemic immune response characterized by an increase in circulating leukocytes and plasmatic cytokines/chemokines (interleukin-1α, MCP-1, MIP-1α). As expected, the MPTP treatment produced nigral dopaminergic degeneration as evidenced by the loss of striatal dopamine and the decreased number of nigral tyrosine hydroxylase (TH)- and dopamine transporter-expressing neurons (23% and 25%, respectively). However, exposure to HFD exacerbated the effects of MPTP on striatal TH (23%) and dopamine levels (32%), indicating that diet-induced obesity is associated with a reduced capacity of nigral dopaminergic terminals to cope with MPTP-induced neurotoxicity. Since high-fat consumption is commonplace in our modern society, dietary fat intake may represent an important modifiable risk factor for PD.
Collapse
Affiliation(s)
- M Bousquet
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
153
|
Niwa F, Kuriyama N, Nakagawa M, Imanishi J. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson's disease. Geriatr Gerontol Int 2011; 12:102-7. [PMID: 21929737 DOI: 10.1111/j.1447-0594.2011.00740.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To understand the characteristics of peripheral immunity in patients with Parkinson's disease (PD), we investigated the natural killer (NK) cell activity and lymphocyte subpopulations including regulatory T (Treg) cells and type 17 helper T (Th17) cells. METHODS Peripheral blood was collected from 29 PD patients (mean age 70.4 years) and 30 healthy controls (mean age 68.9 years). NK cell activity was measured by a calcein acetoxymethyl ester release assay using NK-sensitive K562 cells, peripheral NK cells and lymphocytes subsets were analyzed using flow cytometry techniques. RESULTS Comparison of the two groups demonstrated that the percentage of NK cells increased and that of helper T cells, particularly type 1 (Th1), decreased in patients with PD. There was no evidence of Th1/Th2 or Treg/Th17 cell predominance in PD. Moreover, the increase of NK cells and the decrease of Th1 cells correlated with Unified Parkinson's Disease Rating Scale scores and the heart-to-mediastinum ratios based on myocardial (123) I-metaiodobenzylguanidine uptake, both of which represent disease severity in patients with PD. CONCLUSION Our investigation indicates that a certain proportion of NK cells and other lymphocytes in the peripheral blood of patients with PD and their association with disease severity may reflect the effect of innate immunity in patients with PD in addition to the effect of dopaminergic-related agents.
Collapse
Affiliation(s)
- Fumitoshi Niwa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|
154
|
Cao JJ, Li KS, Shen YQ. Activated immune cells in Parkinson's disease. J Neuroimmune Pharmacol 2011; 6:323-9. [PMID: 21553347 DOI: 10.1007/s11481-011-9280-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/28/2011] [Indexed: 02/05/2023]
Abstract
Recently, an interaction between neurodegenerative processes and the innate and adaptive immune responses has been increasingly recognized. Activation of microglia, infiltration of peripheral T lymphocytes, and T-cell interaction with microglia may strongly affect the progression of Parkinson's disease (PD) both in patients and in animal models of the disease. Here, we summarize the current knowledge regarding the role of microglia in the progression of PD. The plasticity of the microglial response is also discussed in the context of PD. In addition, we also focus on the influence of several peripheral T-cell subsets on PD progression as well as on possible pathways by which they might act. This review should help increase our understanding of the effects of innate and adaptive immune cells in the pathogenesis of PD.
Collapse
Affiliation(s)
- Jun-Jun Cao
- Animal Core, Shantou University Medical College, Shantou 515041, China
| | | | | |
Collapse
|
155
|
Ferrari CC, Tarelli R. Parkinson's disease and systemic inflammation. PARKINSONS DISEASE 2011; 2011:436813. [PMID: 21403862 PMCID: PMC3049348 DOI: 10.4061/2011/436813] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/07/2011] [Indexed: 12/20/2022]
Abstract
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Collapse
Affiliation(s)
- Carina C Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | |
Collapse
|
156
|
Tufekci KU, Genc S, Genc K. The endotoxin-induced neuroinflammation model of Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:487450. [PMID: 21331154 PMCID: PMC3034925 DOI: 10.4061/2011/487450] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 12/16/2010] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Although the exact cause of the dopaminergic neurodegeneration remains elusive, recent postmortem and experimental studies have revealed an essential role for neuroinflammation that is initiated and driven by activated microglial and infiltrated peripheral immune cells and their neurotoxic products (such as proinflammatory cytokines, reactive oxygen species, and nitric oxide) in the pathogenesis of PD. A bacterial endotoxin-based experimental model of PD has been established, representing a purely inflammation-driven animal model for the induction of nigrostriatal dopaminergic neurodegeneration. This model, by itself or together with genetic and toxin-based animal models, provides an important tool to delineate the precise mechanisms of neuroinflammation-mediated dopaminergic neuron loss. Here, we review the characteristics of this model and the contribution of neuroinflammatory processes, induced by the in vivo administration of bacterial endotoxin, to neurodegeneration. Furthermore, we summarize the recent experimental therapeutic strategies targeting endotoxin-induced neuroinflammation to elicit neuroprotection in the nigrostriatal dopaminergic system. The potential of the endotoxin-based PD model in the development of an early-stage specific diagnostic biomarker is also emphasized.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| |
Collapse
|
157
|
Effects of bacterial lipopolysaccharide exposure on immune responsiveness in a rodent model of Parkinson’s disease. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1101099h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effects of lipopolysaccharide (LPS) on immune modulation in rats
subjected to a right-unilateral lesion of the substantia nigra neurons by
means of 6-hydroxydopamine (6-OHDA), were investigated. LPS administration
(250 ?g) significantly decreases the total number of leukocytes and
erythrocytes, as well as the hemoglobin level in the 6-OHDAlesioned rats. In
addition, LPS administration was also associated with an increase, relative
to control, in the erythrocyte indexes and the phagocytosis by neutrophils,
and in blastic transformation of T lymphocytes. The obtained data indicated
that LPS exposure might represent a risk factor for the development of the
immunological changes associated with Parkinson?s disease.
Collapse
|
158
|
González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J. Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Front Neuroanat 2010; 4:140. [PMID: 21079748 PMCID: PMC2978035 DOI: 10.3389/fnana.2010.00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022] Open
Abstract
The term vulnerability was first associated with the midbrain dopaminergic neurons 85 years ago, before they were identified as monoaminergic neurons, when Foix and Nicolesco (1925) reported the loss of neuromelanin containing neurons in the midbrain of patients with post-encephalitic Parkinson's disease (PD). A few years later, Hassler (1938) showed that degeneration is more intense in the ventral tier of the substantia nigra compacta than in its dorsal tier and the ventral tegmental area (VTA), outlining the concept of differential vulnerability of midbrain dopaminergic (DA-) neurons. Nowadays, we know that other neuronal groups degenerate in PD, but the massive loss of nigral DA-cells is its pathological hallmark, having a pivotal position in the pathophysiology of the disease as it is responsible for the motor symptoms. Data from humans as well as cellular and animal models indicate that DA-cell degeneration is a complex process, probably precipitated by the convergence of different risk factors, mediated by oxidative stress, and involving pathogenic factors arising within the DA-neuron (intrinsic factors), and from its environment and distant interconnected brain regions (extrinsic factors). In light of current data, intrinsic factors seem to be preferentially involved in the first steps of the degenerative process, and extrinsic factors in its progression. A controversial issue is the relative weight of the impairment of common cell functions, such as energy metabolism and proteostasis, and specific dopaminergic functions, such as pacemaking activity and DA handling, in the pathogenesis of DA-cell degeneration. Here we will review the current knowledge about the relevance of these factors at the beginning and during the progression of PD, and in the differential vulnerability of midbrain DA-cells.
Collapse
|
159
|
Calopa M, Bas J, Callén A, Mestre M. Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis 2010; 38:1-7. [DOI: 10.1016/j.nbd.2009.12.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 11/26/2022] Open
|
160
|
Abstract
Although fetal nigral transplants have been shown to survive grafting into the striatum, increased [(18)F]6-fluroro-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) uptake and improved motor function in open-label assessments have failed to establish any clinical benefits in double-blind, sham-controlled studies. To understand morphological and neurochemical alterations of grafted neurons, we performed postmortem analyses on six Parkinson's disease (PD) patients who had received fetal tissue transplantation 18-19 months, 4 years, and 14 years previously. These studies revealed robust neuronal survival with normal dopaminergic phenotypes in 18-month-old grafts and decreased dopamine transporter and increased cytoplasmic alpha-synuclein in 4-year-old grafts. We also found a decline of both dopamine transporter and tyrosine hydroxylase and the formation of Lewy body-like inclusions in 14-year-old grafts, which stained positive for alpha-synuclein and ubiquitin proteins. These pathological changes suggest that PD is an ongoing process that affects grafted cells in the striatum in a manner similar to how resident dopamine neurons are affected in the substantia nigra.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
161
|
Przedborski S. Inflammation and Parkinson's disease pathogenesis. Mov Disord 2010; 25 Suppl 1:S55-7. [DOI: 10.1002/mds.22638] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
162
|
Blood profile holds clues to role of infection in a premonitory state for idiopathic parkinsonism and of gastrointestinal infection in established disease. Gut Pathog 2009; 1:20. [PMID: 19941660 PMCID: PMC2795757 DOI: 10.1186/1757-4749-1-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/26/2009] [Indexed: 12/25/2022] Open
Abstract
The two-stage neuroinflammatory process, containment and progression, proposed to underlie neurodegeneration may predicate on systemic inflammation arising from the gastrointestinal tract. Helicobacter infection has been described as one switch in the pathogenic-circuitry of idiopathic parkinsonism (IP): eradication modifies disease progression and marked deterioration accompanies eradication-failure. Moreover, serum Helicobacter-antibody-profile predicts presence, severity and progression of IP. Slow gastrointestinal-transit precedes IP-diagnosis and becomes increasingly-apparent after, predisposing to small-intestinal bacterial-overgrowth (SIBO). Although IP is well-described as a systemic illness with a long prodrome, there has been no comprehensive overview of the blood profile. Here, it is examined in relation to Helicobacter status and lactulose-hydrogen-breath-testing for SIBO. A robust finding of reduced lymphocyte count in 126 IP-probands and 79 spouses (without clinically-definite IP), compared with that in 381 controls (p < 0.001 in each case), was not explained by Helicobacter-status or breath-hydrogen. This complements a previous report that spouses were 'down-the-pathway' to 'clinically-definite' disease. In 205 other controls without clinically-definite IP, there were strong associations between sporadic cardinal features and immunoglobulin class concentration, not explained by Helicobacter-status. Premonitory states for idiopathic parkinsonism associated with relative lymphopenia, higher serum immunoglobulin concentrations and evidence of enteric-nervous-system damage may prove viral in origin. Although only 8% of the above 79 spouses were urea-breath-test-positive for Helicobacter, all 8 spouses with clinically-definite IP were (p < 0.0001). Transmission of a 'primer' to a Helicobacter-colonised recipient might result in progression to the diagnostic threshold. Twenty-five percent of the 126 probands were seropositive for anti-nuclear autoantibody. In 20 probands, monitored before and serially after anti-Helicobacter therapy, seropositivity marked a severe hypokinetic response (p = 0.03). It may alert to continuing infection, even at low-density. Hyperhomocysteinemia is a risk factor for dementia and depression. Serum homocysteine exceeded the target in 43% of the 126 IP-probands. It was partially explained by serum B12 (12% variance, p < 0.001), but not by Helicobacter-status (gastric-atrophy uncommon in IP) or levodopa treatment. Immune-inflammatory activation increases homocysteine production. Since an estimated 60% of probands are hydrogen-breath-test positive, SIBO, with its increased bacterial utilisation of B12, is a likely cause. Thus, two prognostic indicators in established IP fit with involvement of Helicobacter and SIBO.
Collapse
|
163
|
Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson's disease. Antioxid Redox Signal 2009; 11:2151-66. [PMID: 19243239 PMCID: PMC2788126 DOI: 10.1089/ars.2009.2460] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 02/08/2009] [Accepted: 02/21/2009] [Indexed: 01/04/2023]
Abstract
Innate and adaptive immunity affect the pathogenesis of Parkinson's disease (PD). In particular, activation of microglia influences degeneration of dopaminergic neurons. Cell-to-cell interactions and immune regulation critical for neuronal homeostasis also influence immune responses. The links between T cell immunity and nigrostriatal degeneration are supported by laboratory, animal model, and human pathologic investigations. Immune-associated biomarkers in spinal fluids and brain tissue of patients with idiopathic or familial forms of PD provide means to improve diagnosis and therapeutic monitoring. Relationships between oxidative stress, inflammation, and immune-mediated cell death pathways are examined in this review as they are linked to PD pathogenesis. Harnessing the immune system by drugs or by vaccination remain promising future therapeutic options.
Collapse
Affiliation(s)
- David K Stone
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | |
Collapse
|
164
|
Kusbeci T, Kusbeci ÖY, Aktepe OC, Yavas G, Ermis SS. Conjunctival Flora in Patients with Parkinson's Disease. Curr Eye Res 2009; 34:251-6. [DOI: 10.1080/02713680902725970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
165
|
Engler H, Doenlen R, Riether C, Engler A, Niemi MB, Besedovsky HO, del Rey A, Pacheco-López G, Feldon J, Schedlowski M. Time-dependent alterations of peripheral immune parameters after nigrostriatal dopamine depletion in a rat model of Parkinson's disease. Brain Behav Immun 2009; 23:518-26. [PMID: 19486644 DOI: 10.1016/j.bbi.2009.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 11/26/2022] Open
Abstract
Dysfunction of the central dopaminergic system is associated with neurodegenerative disorders and mental illnesses such as Parkinson's disease and schizophrenia. Patients suffering from these diseases were reported to exhibit altered immune functions compared to healthy subjects and imbalance of the central dopaminergic system has been suggested as one causative factor for the immune disturbances. However, it is unclear whether the observed immune changes are primary or secondary to the disease. Here we demonstrate that central dopamine (DA) depletion in a rat model of Parkinson's disease induced transient changes in blood leukocyte distribution and cytokine production that were apparent until four weeks after bilateral intrastriatal administration of the neurotoxin 6-hydroxydopamine (6-OHDA). Eight weeks after treatment, no differences in blood immune parameters were anymore evident between neurotoxin-treated and control animals. Nevertheless, animals with a widespread damage of dopaminergic neurons in the nigrostriatal system showed an exacerbated pro-inflammatory response following in vivo challenge with bacterial lipopolysaccharide. Our data indicate that peripheral immune perturbations in the early phase after intrastriatal 6-OHDA administration might have been related to the neurodegenerative process itself whereas the increased sensitivity to the inflammatory stimulus seems to have resulted from an impaired dopaminergic control of prolactin (PRL) and corticosterone (CORT) secretion. The findings demonstrate that the brain dopaminergic system is involved in peripheral immune regulation and suggest that central dopaminergic hypoactivity bears the risk of excessive inflammation, e.g., during infection or tissue injury.
Collapse
Affiliation(s)
- Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Parkinson's disease is characterised by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the cause of the neuronal loss in Parkinson's disease is poorly understood. Neuroinflammatory mechanisms might contribute to the cascade of events leading to neuronal degeneration. In this Review, we describe the evidence for neuroinflammatory processes from post-mortem and in vivo studies in Parkinson's disease. We further identify the cellular and molecular events associated with neuroinflammation that are involved in the degeneration of dopaminergic neurons in animal models of the disease. Overall, available data support the importance of non-cell-autonomous pathological mechanisms in Parkinson's disease, which are mostly mediated by activated glial and peripheral immune cells. This cellular response to neurodegeneration triggers deleterious events (eg, oxidative stress and cytokine-receptor-mediated apoptosis), which might eventually lead to dopaminergic cell death and hence disease progression. Finally, we highlight possible therapeutic strategies (including immunomodulatory drugs and therapeutic immunisation) aimed at downregulating these inflammatory processes that might be important to slow the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Etienne C Hirsch
- INSERM, UMRS 975, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Experimental Therapeutics of Neurodegeneration, Paris, France.
| | | |
Collapse
|
167
|
Dobbs RJ, Dobbs SM, Weller C, Charlett A, Bjarnason IT, Curry A, Ellis DS, Ibrahim MAA, McCrossan MV, O'Donohue J, Owen RJ, Oxlade NL, Price AB, Sanderson JD, Sudhanva M, Williams J. Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. Helicobacter 2008; 13:309-22. [PMID: 19250506 PMCID: PMC7165675 DOI: 10.1111/j.1523-5378.2008.00622.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We challenge the concept of idiopathic parkinsonism (IP) as inevitably progressive neurodegeneration, proposing a natural history of sequential microbial insults with predisposing host response. Proof-of-principle that infection can contribute to IP was provided by case studies and a placebo-controlled efficacy study of Helicobacter eradication. "Malignant" IP appears converted to "benign", but marked deterioration accompanies failure. Similar benefit on brady/hypokinesia from eradicating "low-density" infection favors autoimmunity. Although a minority of UK probands are urea breath test positive for Helicobacter, the predicted probability of having the parkinsonian label depends on the serum H. pylori antibody profile, with clinically relevant gradients between this "discriminant index" and disease burden and progression. In IP, H. pylori antibodies discriminate for persistently abnormal bowel function, and specific abnormal duodenal enterocyte mitochondrial morphology is described in relation to H. pylori infection. Slow intestinal transit manifests as constipation from the prodrome. Diarrhea may flag secondary small-intestinal bacterial overgrowth. This, coupled with genetically determined intense inflammatory response, might explain evolution from brady/hypokinetic to rigidity-predominant parkinsonism.
Collapse
Affiliation(s)
- R John Dobbs
- Section of Clinical Neuropharmacology, Institute of Psychiatry, King's College London, London, UK. or
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Earley CJ, Ponnuru P, Wang X, Patton SM, Conner JR, Beard JL, Taub DD, Allen RP. Altered iron metabolism in lymphocytes from subjects with restless legs syndrome. Sleep 2008; 31:847-52. [PMID: 18548829 DOI: 10.1093/sleep/31.6.847] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Studies using cerebrospinal fluid, magnetic resonance imaging, and autopsy tissue have implicated a primary role for brain iron insufficiency in restless legs syndrome (RLS). If the abnormalities of brain iron regulation reflect a basic disturbance of iron metabolism, then this might be expressed at least partially in some peripheral systems. Thus the study aim was to determine whether patients with RLS and control subjects show differences in lymphocyte iron regulator proteins. METHODS Fasting morning blood samples were used to obtain common serum measures of iron status and to determine lymphocyte iron management proteins. Twenty-four women with early-onset RLS and 25 control women without RLS symptoms were studied. RESULTS RLS and control subjects were matched for age, hemoglobin, and serum iron profile. However, transferrin receptor (TfR) and DMT1 (divalent metal transporter 1 protein) levels in lymphocytes were significantly higher for RLS patients than for controls. No significant differences in ferritin subtypes or transferrin levels were found. No significant correlations were found between lymphocyte and serum indices of iron status. INTERPRETATION RLS lymphocytes showed an increase in ferroportin, implying increased cellular iron excretion, in the face of increased iron need (increased TfR and DMT1). In the absence of changes in H-ferritin, the findings indicate a balance between input and output with no net iron change but probable overall increase in iron turnover. The lack of any significant correlation between serum and lymphocyte iron indices indicates that iron management proteins from lymphocytes are at a minimum an alternative and independent marker of cellular iron metabolism.
Collapse
|
169
|
Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 2008; 3:e2740. [PMID: 18648532 PMCID: PMC2481277 DOI: 10.1371/journal.pone.0002740] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/25/2008] [Indexed: 12/12/2022] Open
Abstract
Background Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS). However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1) transgenic (Tg) mice and subsequently in ALS patients. Methods and Findings Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt) littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1) immunization to affect longevity. In addition, among CD4+ T cells in ALS patients, levels of CD45RA+ (naïve) T cells were diminished, while CD45RO+ (memory) T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4+CD25+ T regulatory cells (Treg) or CD4+CD25− T effector cells (Teff) from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. Conclusions A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings, taken together, suggest caution in ascribing vaccination outcomes when these animal models of human ALS are used for study. Nonetheless, the abilities to improve neurological function and life expectancy in G93A-SOD1 Tg mice by reconstitution with activated T cells do provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (RM); (SP); (HG)
| | - Ashley D. Reynolds
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alok Dhar
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vernice Jackson-Lewis
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
| | - Paul H. Gordon
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
| | - Serge Przedborski
- Department of Neurology, Center for Motor Neuron Biology and Disease, Eleanor and Lou Gehrig MDA/ALS Research Center, Columbia University, New York, New York, United States of America
- * E-mail: (RM); (SP); (HG)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (RM); (SP); (HG)
| |
Collapse
|
170
|
Monahan AJ, Warren M, Carvey PM. Neuroinflammation and Peripheral Immune Infiltration in Parkinson's Disease: An Autoimmune Hypothesis. Cell Transplant 2008. [DOI: 10.3727/096368908784423328] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research and the development of a large group of animal models, our understanding of the mechanisms responsible for the progressive loss of dopamine neurons in Parkinson's disease (PD) is unknown. So-called neuroprotective studies demonstrate that a vast group of molecules readily attenuate the dopamine (DA) neuron loss produced by DA neurotoxin insult. Despite these successes, these neuroprotective strategies have been surprisingly ineffective in patients. This may reflect the fact that the initial pathogenic event and the subsequent disease progression is a consequence of different mechanisms. As we began to think about this disconnect, we discovered that animals exposed to DA neurotoxins exhibited blood–brain barrier (BBB) dysfunction. If the BBB in PD patients is disrupted, then the barrier that normally segregates peripheral vascular factors from brain parenchyma is no longer present. Immune cells could then enter brain and produce a self-perpetuating (progressive) degenerative process. In this review, we propose that peripheral immunity contributes to the degenerative process of PD and may be responsible for the progressive nature of the disease. This hypothesis is supported by a broad and diverse literature that is just beginning to come together to suggest that PD is, in part, an autoimmune disease. In order to understand this hypothesis, the reader must question the conventional wisdom that the BBB is intact in PD, the brain is an immune privileged area, and that pathogenic insult and disease progression may reflect different mechanisms.
Collapse
Affiliation(s)
- Angela J. Monahan
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| | - Michael Warren
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| | - Paul M. Carvey
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
171
|
Maguire-Zeiss KA, Mhyre TR, Federoff HJ. Gazing into the future: Parkinson's disease gene therapeutics to modify natural history. Exp Neurol 2007; 209:101-13. [PMID: 18035353 DOI: 10.1016/j.expneurol.2007.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/19/2007] [Accepted: 09/24/2007] [Indexed: 12/21/2022]
Abstract
PD gene therapy clinical trials have primarily focused on increasing the production of dopamine (DA) through supplemental amino acid decarboxylase (AADC) expression, neurotrophic support for surviving dopaminergic neurons (DAN) or altering brain circuitry to compensate for DA neuron loss. The future of PD gene therapy will depend upon resolving a number of important issues that are discussed in this special issue. Of particular importance is the identification of novel targets that are amenable to early intervention prior to the substantial loss of DAN. However, for the most part the etiopathogenesis of PD is unknown making early intervention a challenge and the development of early biomarker diagnostics imperative.
Collapse
|
172
|
Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease. J Leukoc Biol 2007; 82:1083-94. [PMID: 17675560 DOI: 10.1189/jlb.0507296] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Progressive loss of dopaminergic neurons in the substantia nigra pars compacta and their terminal connections in the striatum are central features in Parkinson's disease (PD). Emerging evidence supports the notion that microglia neuroinflammatory responses speed neurodegenerative events. We demonstrated previously that this can be slowed by adoptive transfer of T cells from Copolymer-1-immunized mice administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recipients. The cellular basis for this neuroprotective response was the CD4+ T cell population, suggesting involvement of CD4+CD25+ regulatory T cells (Tregs), cells known to suppress immune activation and maintain immune homeostasis and tolerance. We show for the first time that adoptive transfer of CD3-activated Tregs to MPTP-intoxicated mice provides greater than 90% protection of the nigrostriatal system. The response was dose-dependent and paralleled modulation of microglial responses and up-regulation of glial cell-derived neurotrophic factor (CDNF) and TGF-beta. Interestingly, that adoptive transfer of effector T cells showed no significant neuroprotective activities. Tregs were found to mediate neuroprotection through suppression of microglial responses to stimuli, including aggregated, nitrated alpha-synuclein. Moreover, Treg-mediated suppression was also operative following removal of Tregs from culture prior to stimulation. This neuroprotection was achieved through modulation of microglial oxidative stress and inflammation. As Tregs can be modulated in vivo, these data strongly support the use of such immunomodulatory strategies to treat PD.
Collapse
Affiliation(s)
- Ashley D Reynolds
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
173
|
Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 2007; 188:117-27. [PMID: 17582512 DOI: 10.1016/j.jneuroim.2007.05.011] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 12/14/2022]
Abstract
The involvement of regulatory T cells (Treg) in autoimmune-disease development has been demonstrated. However, their alteration during ageing and age-related diseases has not been thoroughly investigated yet. Alzheimer (AD) and Parkinson disease (PD), are related to protein-misfolding and are accompanied by neuroinflammation. Since, it has been hypothesized that the neuroinflammation attempts to prevent disease development, we speculated that changes in Treg might affect any relevant immune mechanism. The analysis of Treg from AD and PD patients as well as non-affected individuals, revealed that the frequency of Treg (CD4(+)Foxp3(+)) increases with age and is accompanied by intensified suppressive activity for Treg in patients.
Collapse
|
174
|
Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL. Autoantibodies to alpha-synuclein in inherited Parkinson's disease. J Neurochem 2007; 101:749-56. [PMID: 17448146 PMCID: PMC3154646 DOI: 10.1111/j.1471-4159.2006.04365.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurodegeneration in Parkinson's disease (PD) is accompanied by a local immune reaction in the affected brain regions. It is well established that alpha-synuclein is directly implicated in the pathogenesis of PD. Development of the disease is often associated with changes of expression and cellular compartmentalisation of this protein; moreover, its oligomers or protofibrils are often released to the CSF and plasma of patients. Aggregated alpha-synuclein can trigger the activation of microglia; however, its capacity to induce production of specific autoantibodies (AAb) has not been assessed. In this study, we examined the presence of AAb against synuclein family members in the peripheral blood serum of PD patients and control individuals. Presence of AAb against beta-synuclein or gamma-synuclein showed no association with PD. Multi-epitopic AAb against alpha-synuclein were detected in 65% of all patients tested and their presence strongly correlated with an inherited mode of the disease but not with other disease-related factors. The frequency of the presence of AAb in the studied group of patients with sporadic form of PD was not significantly different from the frequency in the control group but very high proportion (90%) of patients with familial form of the disease were positive for AAb against alpha-synuclein. We hypothesise that these AAb could be involved in pathogenesis of the inherited form of PD.
Collapse
Affiliation(s)
- Katerina K Papachroni
- Laboratory of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. CLINICAL NEUROSCIENCE RESEARCH 2006; 6:261-281. [PMID: 18060039 PMCID: PMC1831679 DOI: 10.1016/j.cnr.2006.09.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
Collapse
Affiliation(s)
- R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Mark Thomas
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Michael D. Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas School at Houston, Houston, TX
| | - Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
177
|
Besser MJ, Ganor Y, Levite M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 2005; 169:161-71. [PMID: 16150496 DOI: 10.1016/j.jneuroim.2005.07.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022]
Abstract
The neurotransmitter dopamine on its own increased significantly TNFalpha and IL-10 secretion by resting normal-human T-cells, and induced approximately 5-fold elevation of the corresponding mRNA's, without affecting IFNgamma and IL-4. Using seven highly selective dopamine-receptor (DR) agonists and antagonists we found that TNFalpha-upregulation, evident after 24 h, was mediated by D3R and D1/D5R while IL-10-upregulation, evident after 72 h, was mediated by D2R and D1/D5R. We confirmed the expression of D2R and D3R in these human T cells. Dopamine's unique ability to trigger a selective secretion of either TNFalpha only (via D3R) or IL-10 only (via D2R) or both (via D1/D5R), differs from the robust and non-selective cytokine-secretion induced by 'classical' TCR-activation, and as such may have important beneficial or detrimental implications in various immunological and neurological diseases/injuries/cancers.
Collapse
Affiliation(s)
- Michal J Besser
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
178
|
Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 2005; 11:493-8. [PMID: 16154792 DOI: 10.1016/j.parkreldis.2005.07.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022]
Abstract
Immune reaction-related inflammation may be important in the pathogenesis of Parkinson disease (PD). To elucidate peripheral immunologic alterations in PD, we characterized extended peripheral T-lymphocyte populations in 33 patients with PD and 34 normal subjects. Patients with PD had significantly decreased CD4+:CD8(+)T-cell ratios (P<0.001), fewer CD4(+)CD25(+)T cells (P<0.01), and significantly increased ratios of IFN-gamma-producing to IL-4-producing T cells (P<0.001). The characteristics of predominant expression of CD8(+)T cells, depletion of CD4(+)CD25(high) cells, and a shift to a T(H)1-type immune response in the peripheral immune system in PD patients may reflect an immune reaction-associated inflammatory process in the brain.
Collapse
Affiliation(s)
- Yasuhiko Baba
- Department of Neurology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Johnan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | |
Collapse
|
179
|
Bjarnason IT, Bjarnason IT, Charlett A, Dobbs RJ, Dobbs SM, Ibrahim MAA, Kerwin RW, Mahler RF, Oxlade NL, Peterson DW, Plant JM, Price AB, Weller C. Role of chronic infection and inflammation in the gastrointestinal tract in the etiology and pathogenesis of idiopathic parkinsonism. Part 2: response of facets of clinical idiopathic parkinsonism to Helicobacter pylori eradication. A randomized, double-blind, placebo-controlled efficacy study. Helicobacter 2005; 10:276-87. [PMID: 16104943 DOI: 10.1111/j.1523-5378.2005.00330.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Links between etiology/pathogenesis of neuropsychiatric disease and infection are increasingly recognized. AIM Proof-of-principle that infection contributes to idiopathic parkinsonism. METHODS Randomized, double-blind, placebo-controlled efficacy study of proven Helicobacter pylori eradication on the time course of facets of parkinsonism. Intervention was 1 week's triple eradication therapy/placebos. Routine deblinding at 1 year (those still infected received open-active), with follow-up to 5 years post-eradication. Primary outcome was mean stride length at free-walking speed, sample size 56 for a difference, active vs. placebo, of 3/4 (between-subject standard deviation). Recruitment of subjects with idiopathic parkinsonism and H. pylori infection was stopped at 31, because of marked deterioration with eradication failure. Interim analysis was made in the 20 who had reached deblinding, seven of whom were receiving antiparkinsonian medication (long-t(1/2), evenly spaced) which remained unchanged. RESULTS Improvement in stride-length, on active (n = 9) vs. placebo (11), exceeded size of effect on which the sample size was calculated when analyzed on intention-to-treat basis (p = .02), and on protocol analysis of six weekly assessments, including (p = .02) and excluding (p = .05) those on antiparkinsonian medication. Active eradication (blind or open) failed in 4/20, in whom B-lymphocyte count was lower. Their mean time course was: for stride-length, -243 (95% CI -427, -60) vs. 45 (-10, 100) mm/year in the remainder (p = .001); for the ratio, torque to extend to flex relaxed arm, 349 (146, 718) vs. 58 (27, 96)%/ year (p < .001); and for independently rated, visual-analog scale of stance-walk videos (worst-best per individual identical with 0-100 mm), -64 vs. -3 mm from anterior and -50 vs. 11 lateral (p = .004 and .02). CONCLUSIONS Interim analysis points to a direct or surrogate (not necessarily unique) role of a particular infection in the pathogenesis of parkinsonism. With eradication failure, bolus release of antigen from killed bacteria could aggravate an effect of ongoing infection.
Collapse
|
180
|
Shen YQ, Hebert G, Lin LY, Luo YL, Moze E, Li KS, Neveu PJ. Interleukine-1beta and interleukine-6 levels in striatum and other brain structures after MPTP treatment: influence of behavioral lateralization. J Neuroimmunol 2005; 158:14-25. [PMID: 15589033 DOI: 10.1016/j.jneuroim.2004.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/27/2004] [Accepted: 06/24/2004] [Indexed: 02/05/2023]
Abstract
MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces diminution of the dopamine in nigrostriatal pathway and cognitive deficits in mice. MPTP treatment also increases pro-inflammatory cytokine production in substantia nigra and striatum. Since, pro-inflammatory cytokines influence striatal dopamine content and provoke cognitive impairments, the cognitive defects induced by MPTP may be partly due to brain cytokine induction in other structures than nigrostriatal pathway. Furthermore, behavioral lateralization, as assessed by paw preference, influences cytokine production at the periphery and in the central nervous system. Behavioral lateralization may thus influence brain cytokine levels after MPTP. In order to address these issues, mice selected for paw preference were injected with 25 mg/kg MPTP i.p. for five consecutive days after which striatal dopamine and DOPAC contents were measured by HPLC and IL-1beta and IL-6 quantified by ELISA in the striatum, cerebral cortex, hippocampus and hypothalamus. The results showed that MPTP treatment induced dramatic loss of DA in striatum, simultaneously, IL-6 levels decreased in the striatum and increased in hippocampus and hypothalamus, while IL-1beta levels decreased in the striatum, cerebral cortex and hippocampus. Interestingly, striatal dopamine turnover under basal conditions as well as striatal IL-1beta and IL-6 levels under basal conditions and after MPTP depended on behavioral lateralization. Left pawed mice showed a higher decrease in dopamine turnover and lower cytokine levels as compared to right pawed animals. Behavioral lateralization also influenced IL-6 hippocampal levels under basal conditions and IL-1beta cortical levels after MPTP. From these results, it can be concluded that MPTP-induced cognitive defects are accompanied by an alteration of pro-inflammatory cytokine levels in brain structures other than those involved in the nigrostriatal pathway. In addition, MPTP-induced dopamine decrease is influenced by behavioral lateralization, possibly through an effect on brain cytokine levels.
Collapse
Affiliation(s)
- Yan-Qin Shen
- Department of Microbiology and Immunology, Shantou University Medical College, 12 Raoping Road, Shantou, Guangdong 515031, P.R. China
| | | | | | | | | | | | | |
Collapse
|
181
|
Kim S, Jeon BS, Heo C, Im PS, Ahn TB, Seo JH, Kim HS, Park CH, Choi SH, Cho SH, Lee WJ, Suh YH. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson's disease. FASEB J 2004; 18:1615-7. [PMID: 15289452 DOI: 10.1096/fj.04-1917fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Though the etiology of Parkinson's disease (PD) remains unclear, alpha-synuclein (alpha-SN) is regarded as a major causative agent of PD. Several lines of evidence indicate that immunological abnormalities are associated with PD for unknown reasons. The present study was performed to assess whether peripheral blood mononuclear cells (PBMCs) show altered alpha-SN expression in PD patients and to identify its functions, which may be related to peripheral immune abnormalities in PD. alpha-SN was found to be expressed more in 151 idiopathic PD (IPD) patients than in 101 healthy controls, who nevertheless showed as age-dependent increases. By in vitro transfection, alpha-SN expression was shown to be correlated with glucocorticoid sensitive apoptosis, possibly caused by the enhanced expression of glucocorticoid receptor (GR), caspase activations (caspase-8, caspase-9), CD95 up-regulation, and reactive oxygen species (ROS) production. An understanding of the correlation between alpha-SN levels and apoptosis in the presence of the coordinated involvement of multiple processes would provide an insight into the molecular basis of the disease. The present study provides a clue that the alpha-SN may be one of the primary causes of the immune abnormalities observed in PD and offers new targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Kim S, Seo JH, Suh YH. Alpha-synuclein, Parkinson's disease, and Alzheimer's disease. Parkinsonism Relat Disord 2004; 10 Suppl 1:S9-13. [PMID: 15109581 DOI: 10.1016/j.parkreldis.2003.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Accepted: 11/30/2003] [Indexed: 11/21/2022]
Abstract
Alpha synuclein (alpha-SN) is a ubiquitous protein that is especially abundant in the brain and has been postulated to play a central role in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease, and other neurodegenerative disorders. Here, we show that alpha-SN plays dual role of neuroprotection and neurotoxicity depending on its concentration or level of expression. In addition, our study shows that alpha-synuclein is differentially expressed in human peripheral blood mononuclear cells. PD patients expressed more alpha-synuclein than healthy controls. Thus, the alpha-synuclein expression in the peripheral immune system might be one of the primary causes of immune abnormalities in PD patients.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, National Creative Research Initiative Center for Alzheimer's Dementia, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, South Korea
| | | | | |
Collapse
|
183
|
Li G, Sun S, Cao X, Zhong J, Tong E. LPS-induced degeneration of dopaminergic neurons of substantia nigra in rats. Curr Med Sci 2004; 24:83-6. [PMID: 15165124 DOI: 10.1007/bf02830714] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Indexed: 10/19/2022]
Abstract
In order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease, LPS was stereotaxically infused into substantia nigra (SN). At different dosages and different time points with 5 microg LPS, the damage of the dopaminergic neurons in SN was observed by using tyrosine-hydroxylase (TH) immunohistochemical staining. The results showed that 14 days after injection of 0.1 microg to 10 microg LPS into the rat SN, TH-positive (TH+) neurons in the SN were decreased by 5%, 15%, 20%, 45 %, 96% and 99% respectively. After injection of 5 microg LPS, as compared with the control groups, TH+ neurons began to decrease at 3rd day and obviously decrease at 14th day, only 5% of total cells, and almost disappeared 30 days later. The results suggested that LPS could induce the degeneration of dopaminergic neurons in the SN in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022
| | | | | | | | | |
Collapse
|
184
|
Pacheco-López G, Niemi MB, Kou W, Bildhäuser A, Gross CM, Goebel MU, del Rey A, Besedovsky HO, Schedlowski M. Central catecholamine depletion inhibits peripheral lymphocyte responsiveness in spleen and blood. J Neurochem 2003; 86:1024-31. [PMID: 12887699 DOI: 10.1046/j.1471-4159.2003.01914.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental and clinical evidence has demonstrated extensive communication between the CNS and the immune system. To analyse the role of central catecholamines in modulating peripheral immune functions, we injected the neurotoxin 6-hydroxydopamine (6-OHDA) i.c.v. in rats. This treatment significantly reduced brain catecholamine content 2, 4 and 7 days after injection, and in the periphery splenic catecholamine levels were reduced 4 days after treatment. Central catecholamine depletion induced an inhibition of splenic and blood lymphocyte proliferation and splenic cytokine production and expression (interleukin-2 and interferon-gamma) 7 days after injection. In addition, central treatment with 6-OHDA reduced the percentage of spleen and peripheral blood natural killer (CD161 +) cells, and T-cytotoxic (CD8 +) cells in peripheral blood. The reduction in splenocyte proliferation was not associated with a glucocorticoid alteration but was completely abolished by prior peripheral sympathectomy. These data demonstrate a crucial role of central and peripheral catecholamines in modulating immune function.
Collapse
|
185
|
Abstract
The symptoms of Parkinson's disease (PD) were first described nearly two centuries ago and its characteristic pathology identified nearly a century ago, yet its pathogenesis is still poorly understood. Parkinson's disease is the most prevalent neurodegenerative movement disorder and research into its pathogenesis recently accelerated following the identification of a number of causal genetic mutations. The mutant gene products all cause dysfunction of the ubiquitin-proteosome system, identifying protein modification and degradation as critical for pathogenesis. Modified non-degraded intracellular proteins accumulate in certain neuronal populations in all forms of the disease. However, neuronal degeneration is more highly selective and associates with substantial activation of microglia, the inflammatory cells of the brain. We review the current change in thinking regarding the role of microglia in the brain in the context of Parkinson's disease and animal models of the disease. Comparison of the cellular tissue changes across a number of animal models using diverse stimuli to mimic Parkinson's disease reveals a consistent pattern implicating microglia as the effector for the selective degeneration of dopaminergic neurons. While previous reviews have concentrated on the intracellular neuronal changes in Parkinson's disease, we highlight the cell to cell interactions and immune regulation critical for neuronal homeostasis and survival in Parkinson's disease.
Collapse
Affiliation(s)
- C F Orr
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney 2031, Royal North Shore Hospital, Sydney 2065, Australia
| | | | | |
Collapse
|
186
|
Abstract
Inflammation is a defense reaction against diverse insults, designed to remove noxious agents and to inhibit their detrimental effects. It consists of a dazzling array of molecular and cellular mechanisms and an intricate network of controls to keep them in check. In neurodegenerative diseases, inflammation may be triggered by the accumulation of proteins with abnormal conformations or by signals emanating from injured neurons. Given the multiple functions of many inflammatory factors, it has been difficult to pinpoint their roles in specific (patho)physiological situations. Studies of genetically modified mice and of molecular pathways in activated glia are beginning to shed light on this issue. Altered expression of different inflammatory factors can either promote or counteract neurodegenerative processes. Since many inflammatory responses are beneficial, directing and instructing the inflammatory machinery may be a better therapeutic objective than suppressing it.
Collapse
Affiliation(s)
- Tony Wyss-Coray
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California-San Francisco, San Francisco, CA 94141, USA.
| | | |
Collapse
|