151
|
van Eyk CL, O'Keefe LV, Lawlor KT, Samaraweera SE, McLeod CJ, Price GR, Venter DJ, Richards RI. Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Hum Mol Genet 2011; 20:2783-94. [PMID: 21518731 PMCID: PMC3118759 DOI: 10.1093/hmg/ddr177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent evidence supports a role for RNA as a common pathogenic agent in both the ‘polyglutamine’ and ‘untranslated’ dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences—CAG, CUG and AUUCU—were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-β signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.
Collapse
Affiliation(s)
- Clare L van Eyk
- Discipline of Genetics, School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Belorgey D, Irving JA, Ekeowa UI, Freeke J, Roussel BD, Miranda E, Pérez J, Robinson CV, Marciniak SJ, Crowther DC, Michel CH, Lomas DA. Characterisation of serpin polymers in vitro and in vivo. Methods 2011; 53:255-66. [PMID: 21115126 DOI: 10.1016/j.ymeth.2010.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022] Open
Abstract
Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.
Collapse
Affiliation(s)
- Didier Belorgey
- Dept. of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
154
|
Yu Z, Bonini NM. Modeling human trinucleotide repeat diseases in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:191-212. [PMID: 21906541 DOI: 10.1016/b978-0-12-387003-2.00008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drosophila is a powerful model system to study human trinucleotide repeat diseases. Findings in Drosophila models highlighted importance of host proteins, chaperons, and protein clearance pathways in polyglutamine diseases as well as that of RNA-binding proteins in noncoding repeat RNA toxicity diseases. Recent novel aspects revealed in Drosophila models include pleiotropic Ataxin 2 interactions, antisense transcription in trinucleotide repeat diseases, contribution of CAG RNA in polyglutamine diseases, and the role of RNA foci in CUG expansion diseases. Drosophila models have been also used for repeat stability studies.
Collapse
Affiliation(s)
- Zhenming Yu
- Department of Biology, 415 S University Ave., University of Pennsylvania, PA, USA
| | | |
Collapse
|
155
|
Harvey BK, Richie CT, Hoffer BJ, Airavaara M. Transgenic animal models of neurodegeneration based on human genetic studies. J Neural Transm (Vienna) 2011; 118:27-45. [PMID: 20931247 PMCID: PMC3084899 DOI: 10.1007/s00702-010-0476-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/11/2022]
Abstract
The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease.
Collapse
Affiliation(s)
- Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
156
|
Menzies FM, Hourez R, Imarisio S, Raspe M, Sadiq O, Chandraratna D, O'Kane C, Rock KL, Reits E, Goldberg AL, Rubinsztein DC. Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Hum Mol Genet 2010; 19:4573-86. [PMID: 20829225 PMCID: PMC2972693 DOI: 10.1093/hmg/ddq385] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 11/13/2022] Open
Abstract
A major function of proteasomes and macroautophagy is to eliminate misfolded potentially toxic proteins. Mammalian proteasomes, however, cannot cleave polyglutamine (polyQ) sequences and seem to release polyQ-rich peptides. Puromycin-sensitive aminopeptidase (PSA) is the only cytosolic enzyme able to digest polyQ sequences. We tested whether PSA can protect against accumulation of polyQ fragments. In cultured cells, Drosophila and mouse muscles, PSA inhibition or knockdown increased aggregate content and toxicity of polyQ-expanded huntingtin exon 1. Conversely, PSA overexpression decreased aggregate content and toxicity. PSA inhibition also increased the levels of polyQ-expanded ataxin-3 as well as mutant α-synuclein and superoxide dismutase 1. These protective effects result from an unexpected ability of PSA to enhance macroautophagy. PSA overexpression increased, and PSA knockdown or inhibition reduced microtubule-associated protein 1 light chain 3-II (LC3-II) levels and the amount of protein degradation sensitive to inhibitors of lysosomal function and autophagy. Thus, by promoting autophagic protein clearance, PSA helps protect against accumulation of aggregation-prone proteins and proteotoxicity.
Collapse
Affiliation(s)
- Fiona M. Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research and
| | - Raphael Hourez
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Sara Imarisio
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Marcel Raspe
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands and
| | - Oana Sadiq
- Department of Medical Genetics, Cambridge Institute for Medical Research and
| | | | - Cahir O'Kane
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Kenneth L. Rock
- Pathology Department, University of Massachusetts Medical School, Worcester, USA
| | - Eric Reits
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands and
| | | | | |
Collapse
|
157
|
Mallik M, Lakhotia SC. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet 2010; 89:497-526. [DOI: 10.1007/s12041-010-0072-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
158
|
Abstract
The goal of personalized medicine is to treat each patient with the best drug: optimal therapeutic benefit with minimal side effects. The genomic revolution is rapidly identifying the genetic contribution to the diseased state as well as its contribution to drug efficacy and toxicity. The ability to perform genome-wide studies has led to an overwhelming number of candidate genes and/or their associated variants; however, understanding which are of therapeutic importance is becoming the greatest unmet need in the personalized medicine field. A related issue is the need to improve our methods of identifying and characterizing therapeutic drugs in the context of the complex genomic landscape of the intact body. Drosophila have proven to be a powerful tool for understanding the basic biological mechanisms of human development. This article will review Drosophila as a whole animal tool for gene and drug discovery. We will examine how Drosophila can be used to both sort through the myriad of hits coming from human genome-wide scans and to dramatically improve the early steps in pharmaceutical drug development.
Collapse
Affiliation(s)
- Yumi Kasai
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, NY 10029-6574, USA
| | | |
Collapse
|
159
|
Kim J, Lee S, Ko S, Kim-Ha J. dGIPC is required for the locomotive activity and longevity in Drosophila. Biochem Biophys Res Commun 2010; 402:565-70. [PMID: 21029723 DOI: 10.1016/j.bbrc.2010.10.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 11/19/2022]
Abstract
To identify genes that function in the adult neural system, we screened pools of P element-mediated mutants and tested locomotor activity of homozygous flies. Of 1014 P element-mutagenized lines, 638 were homozygous viable. These lines were tested for climbing ability and lifespan. We isolated dGIPC, a Drosophila homolog of GIPC, that produced a 50% premature loss of locomotor activity and a 30% reduction in life span. We found that dGIPC is expressed in the central brain of adult flies, especially in glia and dopaminergic (DA) neurons. Inhibition of dGIPC expression in DA neurons significantly affected climbing ability and survival. In vertebrates, interactions between GIPC with dopamine receptors have been reported. Our findings, together with those obtained from vertebrate models, suggest that DrosophiladGIPC acts in the adult central nervous system and may be required to regulate the trafficking of dopamine receptors needed for proper functioning of dopaminergic neurons.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, 98 Kunja-Dong, Kwangjin-ku, Seoul 143-747, Republic of Korea
| | | | | | | |
Collapse
|
160
|
Gohil VM, Offner N, Walker JA, Sheth SA, Fossale E, Gusella JF, MacDonald ME, Neri C, Mootha VK. Meclizine is neuroprotective in models of Huntington's disease. Hum Mol Genet 2010; 20:294-300. [PMID: 20977989 DOI: 10.1093/hmg/ddq464] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defects in cellular energy metabolism represent an early feature in a variety of human neurodegenerative diseases. Recent studies have shown that targeting energy metabolism can protect against neuronal cell death in such diseases. Here, we show that meclizine, a clinically used drug that we have recently shown to silence oxidative metabolism, suppresses apoptotic cell death in a murine cellular model of polyglutamine (polyQ) toxicity. We further show that this protective effect extends to neuronal dystrophy and cell death in Caenorhabditis elegans and Drosophila melanogaster models of polyQ toxicity. Meclizine's mechanism of action is not attributable to its anti-histaminergic or anti-muscarinic activity, but rather, strongly correlates with its ability to suppress mitochondrial respiration. Since meclizine is an approved drug that crosses the blood-brain barrier, it may hold therapeutic potential in the treatment of polyQ toxicity disorders, such as Huntington's disease.
Collapse
Affiliation(s)
- Vishal M Gohil
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 2010; 40:29-39. [PMID: 20561920 PMCID: PMC2926295 DOI: 10.1016/j.nbd.2010.05.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology and George P. and Cynthia Woods Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
162
|
Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 2010; 190:1023-37. [PMID: 20855506 PMCID: PMC3101586 DOI: 10.1083/jcb.201003122] [Citation(s) in RCA: 639] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/19/2010] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.
Collapse
Affiliation(s)
- Ashley R. Winslow
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Chien-Wen Chen
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - Abraham Acevedo-Arozena
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - David E. Gordon
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Andrew A. Peden
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Maike Lichtenberg
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Fiona M. Menzies
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Brinda Ravikumar
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Sara Imarisio
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire OX11 0RD, England, UK
| | - Cahir J. O’Kane
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - David C. Rubinsztein
- Department of Medical Genetics and Department of Clinical Biochemistry, Cambridge Institute for Medical Research and Department of Genetics, University of Cambridge, Cambridge CB2 0XY, England, UK
| |
Collapse
|
163
|
Underwood BR, Imarisio S, Fleming A, Rose C, Krishna G, Heard P, Quick M, Korolchuk VI, Renna M, Sarkar S, García-Arencibia M, O'Kane CJ, Murphy MP, Rubinsztein DC. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum Mol Genet 2010; 19:3413-29. [PMID: 20566712 PMCID: PMC2916709 DOI: 10.1093/hmg/ddq253] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/15/2010] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS toxicity. Here we show that not all autophagy inducers significantly increase ROS. However, many antioxidants inhibit both basal and induced autophagy. By blocking autophagy, antioxidant drugs can increase the levels of aggregate-prone proteins associated with neurodegenerative disease. In fly and zebrafish models of Huntington's disease, antioxidants exacerbate the disease phenotype and abrogate the rescue seen with autophagy-inducing agents. Thus, the potential benefits in neurodegenerative diseases of some classes of antioxidants may be compromised by their autophagy-blocking properties.
Collapse
Affiliation(s)
- Benjamin R. Underwood
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Sara Imarisio
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics and
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK and
| | - Claudia Rose
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Gauri Krishna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics and
| | | | - Marie Quick
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK and
| | - Viktor I. Korolchuk
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Maurizio Renna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Moisés García-Arencibia
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
164
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
165
|
Persistence of morning anticipation behavior and high amplitude morning startle response following functional loss of small ventral lateral neurons in Drosophila. PLoS One 2010; 5:e11628. [PMID: 20661292 PMCID: PMC2905440 DOI: 10.1371/journal.pone.0011628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
Light-activated large ventral lateral clock neurons (large LNv) modulate behavioral arousal and sleep in Drosophila while their counterparts, the small LNv (s-LNv) are important for circadian behavior. Recently, it has been proposed that the pattern of day-night locomotor behavioral activity is mediated by two anatomically distinct oscillators composed of a morning oscillator in the small LNv and an evening oscillator in the lateral dorsal neurons and an undefined number of dorsal pacemaker neurons. This contrasts with a circuit described by network models which are not as anatomically constrained. By selectively ablating the small LNv while sparing the large LNv, we tested the relative importance of the small and large LNv for regulating morning behavior of animals living in standard light/dark cycles. Behavioral anticipation of the onset of morning and the high amplitude morning startle response which coincides with light onset are preserved in small LNv functionally-ablated animals. However, the amplitude of the morning behavioral peak is severely attenuated in these animals during the transition from regular light/dark cycles to constant darkness, providing further support that small LNv are necessary for circadian behavior. The large LNv, in combination with the network of other circadian neurons, in the absence of functional small LNv are sufficient for the morning anticipation and the high amplitude light-activated morning startle response.
Collapse
|
166
|
Olshina MA, Angley LM, Ramdzan YM, Tang J, Bailey MF, Hill AF, Hatters DM. Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 2010; 285:21807-16. [PMID: 20444706 PMCID: PMC2898425 DOI: 10.1074/jbc.m109.084434] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/08/2010] [Indexed: 01/08/2023] Open
Abstract
Huntington disease is caused by expanded polyglutamine sequences in huntingtin, which procures its aggregation into intracellular inclusion bodies (IBs). Aggregate intermediates, such as soluble oligomers, are predicted to be toxic to cells, yet because of a lack of quantitative methods, the kinetics of aggregation in cells remains poorly understood. We used sedimentation velocity analysis to define and compare the heterogeneity and flux of purified huntingtin with huntingtin expressed in mammalian cells under non-denaturing conditions. Non-pathogenic huntingtin remained as hydrodynamically elongated monomers in vitro and in cells. Purified polyglutamine-expanded pathogenic huntingtin formed elongated monomers (2.4 S) that evolved into a heterogeneous aggregate population of increasing size over time (100-6,000 S). However, in cells, mutant huntingtin formed three major populations: monomers (2.3 S), oligomers (mode s(20,w) = 140 S) and IBs (mode s(20,w) = 320,000 S). Strikingly, the oligomers did not change in size heterogeneity or in their proportion of total huntingtin over 3 days despite continued monomer conversion to IBs, suggesting that oligomers are rate-limiting intermediates to IB formation. We also determined how a chaperone known to modulate huntingtin toxicity, Hsc70, influences in-cell huntingtin partitioning. Hsc70 decreased the pool of 140 S oligomers but increased the overall flux of monomers to IBs, suggesting that Hsc70 reduces toxicity by facilitating transfer of oligomers into IBs. Together, our data suggest that huntingtin aggregation is streamlined in cells and is consistent with the 140 S oligomers, which remain invariant over time, as a constant source of toxicity to cells irrespective of total load of insoluble aggregates.
Collapse
Affiliation(s)
- Maya A. Olshina
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
| | - Lauren M. Angley
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
| | - Yasmin M. Ramdzan
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
| | - Jinwei Tang
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
| | - Michael F. Bailey
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
| | - Andrew F. Hill
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
- Mental Health Research Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Danny M. Hatters
- From the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, and
- Mental Health Research Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
167
|
Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, Sone M, Foulle R, Sawada H, Ishiguro H, Ono T, Murata M, Kanazawa I, Tomilin N, Tagawa K, Wanker EE, Okazawa H. Mutant huntingtin impairs Ku70-mediated DNA repair. ACTA ACUST UNITED AC 2010; 189:425-43. [PMID: 20439996 PMCID: PMC2867301 DOI: 10.1083/jcb.200905138] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutant huntingtin prevents interaction of the DNA damage repair complex component Ku70 with damaged DNA, blocking repair of double-strand breaks. DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We identify Ku70, a component of the DNA damage repair complex, as a mediator of the DNA repair dysfunction in mutant Htt–expressing neurons. Mutant Htt interacts with Ku70, impairs DNA-dependent protein kinase function in nonhomologous end joining, and consequently increases DSB accumulation. Expression of exogenous Ku70 rescues abnormal behavior and pathological phenotypes in the R6/2 mouse model of Huntington’s disease (HD). These results collectively suggest that Ku70 is a critical regulator of DNA damage in HD pathology.
Collapse
Affiliation(s)
- Yasushi Enokido
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Berg I, Nilsson KPR, Thor S, Hammarström P. Efficient imaging of amyloid deposits in Drosophila models of human amyloidoses. Nat Protoc 2010; 5:935-44. [PMID: 20431539 DOI: 10.1038/nprot.2010.41] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drosophila melanogaster is emerging as an important model system for neurodegenerative disease research. In this protocol, we describe an efficient method for imaging amyloid deposits in the Drosophila brain, by the use of a luminescent-conjugated oligothiophene (LCO), p-FTAA polymer probe. We also demonstrate the feasibility of co-staining with antibodies and compare the LCO staining with standard amyloid-specific probes. The LCO protocol enables high-resolution imaging of several different protein aggregates, such as Abeta1-42, Abeta1-42(E22G), Transthyretin V30M and human Tau, in the Drosophila brain. Abeta and Tau aggregates could also be distinguished from each other because of distinct LCO emission spectra. Furthermore, this protocol enables three-dimensional brain mapping of amyloid distribution in whole-mount Drosophila brains. The use of p-FTAA combined with other probes, antibodies and/or dyes will aid the rapid characterization of various amyloid deposits in the rapidly growing number of Drosophila models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ina Berg
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
169
|
Ramdzan YM, Nisbet RM, Miller J, Finkbeiner S, Hill AF, Hatters DM. Conformation sensors that distinguish monomeric proteins from oligomers in live cells. CHEMISTRY & BIOLOGY 2010; 17:371-9. [PMID: 20416508 PMCID: PMC3564667 DOI: 10.1016/j.chembiol.2010.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/10/2010] [Accepted: 03/19/2010] [Indexed: 12/19/2022]
Abstract
Proteins prone to misfolding form large macroscopic deposits in many neurodegenerative diseases. Yet the in situ aggregation kinetics remains poorly understood because of an inability to demarcate precursor oligomers from monomers. We developed a strategy for mapping the localization of soluble oligomers and monomers directly in live cells. Sensors for mutant huntingtin, which forms aggregates in Huntington's disease, were made by introducing a tetracysteine motif into huntingtin that becomes occluded from binding biarsenical fluorophores in oligomers, but not monomers. Up to 70% of the diffusely distributed huntingtin molecules appeared as submicroscopic oligomers in individual neuroblastoma cells expressing mutant huntingtin. We anticipate the sensors to enable insight into cellular mechanisms mediated by oligomers and monomers and for the approach to be adaptable more generally in the study of protein self-association.
Collapse
Affiliation(s)
- Yasmin M. Ramdzan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Bio21 Molecular Science and Biotechnology Institute and Mental Health Research Institute, Parkville, VIC
| | - Rebecca M. Nisbet
- Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Bio21 Molecular Science and Biotechnology Institute and Mental Health Research Institute, Parkville, VIC
| | - Jason Miller
- Gladstone Institute of Neurological Disease, and the Taube-Koret Center for Huntington’s Disease Research, San Francisco CA
- Medical Scientist Training Program and the Chemistry and Chemical Biology Program, University of California, San Francisco, CA
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, and the Taube-Koret Center for Huntington’s Disease Research, San Francisco CA
- Departments of Neurology and Physiology, University of California, San Francisco, CA
| | - Andrew F. Hill
- Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Bio21 Molecular Science and Biotechnology Institute and Mental Health Research Institute, Parkville, VIC
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Bio21 Molecular Science and Biotechnology Institute and Mental Health Research Institute, Parkville, VIC
| |
Collapse
|
170
|
Feany MB. ASIP Outstanding Investigator Award Lecture. New approaches to the pathology and genetics of neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2058-66. [PMID: 20363919 DOI: 10.2353/ajpath.2010.091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathologies of major neurodegenerative diseases including Parkinson disease and Alzheimer disease have been well known for decades. More recently, advances in molecular genetics have suggested important mechanistic links between the pathology of these disorders and pathogenesis of neuronal dysfunction and death. Numerous animal models have been produced based on the new information emerging from human genetic studies. As a complement to traditional mouse models, a number of investigators have modeled neurodegenerative diseases in simple model organisms ranging from yeast to Drosophila. These simple genetic models often display remarkable pathological similarities to their cognate human disorders, and genetic and biochemical studies have yielded important insights into the pathogenesis of the human disorders. Use of these tractable simple models may become even more important as large amounts of genetic data emerge from genome-wide association studies in Alzheimer disease, Parkinson disease, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
171
|
Abstract
HD (Huntington's disease) is produced by the expression of mutant forms of the protein htt (huntingtin) containing a pathologically expanded poly-glutamine repeat. For unknown reasons, in HD patients and HD mouse models, neurons from the striatum and cerebral cortex degenerate and lead to motor dysfunction and dementia. Synaptic transmission in those neurons becomes progressively altered during the course of the disease. However, the relationship between synaptic dysfunction and neurodegeneration in HD is not yet clear. Are there early specific functional synaptic changes preceding symptoms and neurodegeneration? What is the role of those changes in neuronal damage? Recent experiments in a Drosophila model of HD have showed that abnormally increased neurotransmitter release might be a leading cause of neurodegeneration. In the present review, we summarize recently described synaptic alterations in HD animal models and discuss potential underlying molecular mechanisms.
Collapse
|
172
|
Rincon-Limas DE, Casas-Tinto S, Fernandez-Funez P. Exploring prion protein biology in flies: genetics and beyond. Prion 2010; 4:1-8. [PMID: 20083902 DOI: 10.4161/pri.4.1.10504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fruit fly Drosophila melanogaster has been a favored tool for genetic studies for over 100 years and has become an excellent model system to study development, signal transduction, cell biology, immunity and behavior. The relevance of Drosophila to humans is perhaps best illustrated by the fact that more than 75% of the genes identified in human diseases have counterparts in Drosophila. During the last decade, many fly models of neurodegenerative disorders have contributed to the identification of novel pathways mediating pathogenesis. However, the development of prion disease models in flies has been remarkably challenging. We recently reported a Drosophila model of sporadic prion pathology that shares relevant features with the typical disease in mammals. This new model provides the basis to explore relevant aspects of the biology of the prion protein, such as uncovering the genetic mechanisms regulating prion protein misfolding and prion-induced neurodegeneration, in a dynamic, genetically tractable in vivo system.
Collapse
Affiliation(s)
- Diego E Rincon-Limas
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
173
|
Joyner PM, Matheke RM, Smith LM, Cichewicz RH. Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice. J Proteome Res 2010; 9:404-12. [PMID: 19908918 PMCID: PMC2801778 DOI: 10.1021/pr900734g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolomics is a powerful multiparameter tool for evaluating phenotypic traits associated with disease processes. We have used (1)H NMR metabolome profiling to characterize metabolic aberrations in a yeast model of Huntington's disease that are attributable to the mutant huntingtin protein's gain-of-toxic-function effects. A group of 11 metabolites (alanine, acetate, galactose, glutamine, glycerol, histidine, proline, succinate, threonine, trehalose, and valine) exhibited significant concentration changes in yeast expressing the N-terminal fragment of a mutant human huntingtin gene. Correspondence analysis was used to compare results from our yeast model to data reported from transgenic mice expressing a mutant huntingtin gene fragment and Huntington's disease patients. This technique enabled us to identify a variety of both model-specific (pertaining to a single species) and conserved (observed in multiple species) biomarkers related to mutant huntingtin's toxicity. Among the 59 metabolites identified, four compounds (alanine, glutamine, glycerol, and valine) changed significantly in concentration in all three Huntington's disease systems. We propose that alanine, glutamine, glycerol, and valine should be considered as promising biomarkers for evaluating new Huntington's disease therapies, as well as for providing unique insight into the mechanisms associated with mutant huntingtin toxicity.
Collapse
Affiliation(s)
- P. Matthew Joyner
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Ronni M. Matheke
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Lindsey M. Smith
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
- Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| |
Collapse
|
174
|
Abstract
The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy,myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases.
Collapse
Affiliation(s)
- Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/ Meyer 6-181C, Baltimore, MD 21287, , Phone: (410) 955-1223, Fax: (410) 502-6737
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, MS 343, D-4026, 262 Danny Thomas Place, Memphis, TN 38105-3678, , Phone: (901) 595-6047, Fax: (901) 595-2032
| |
Collapse
|
175
|
Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:138-59. [PMID: 20886762 PMCID: PMC3402352 DOI: 10.1007/978-1-4419-7002-2_11] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.
Collapse
Affiliation(s)
| | | | - Richard I. Morimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University; Rice Institute for Biomedical Research; Evanston, IL 60208-3500, USA
| |
Collapse
|
176
|
Moloney A, Sattelle DB, Lomas DA, Crowther DC. Alzheimer's disease: insights from Drosophila melanogaster models. Trends Biochem Sci 2009; 35:228-35. [PMID: 20036556 PMCID: PMC2856915 DOI: 10.1016/j.tibs.2009.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 12/22/2022]
Abstract
The power of fruit fly genetics is being deployed against some of the most intractable and economically significant problems in modern medicine, the neurodegenerative diseases. Fly models of Alzheimer's disease can be exposed to the rich diversity of biological techniques that are available to the community and are providing new insights into disease mechanisms, and assisting in the identification of novel targets for therapy. Similar approaches might also help us to interpret the results of genome-wide association studies of human neurodegenerative diseases by allowing us to triage gene “hits” according to whether a candidate risk factor gene has a modifying effect on the disease phenotypes in fly model systems.
Collapse
Affiliation(s)
- Aileen Moloney
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX13QX
| | | | | | | |
Collapse
|
177
|
Transgenic Drosophila models of Alzheimer's disease and tauopathies. Brain Struct Funct 2009; 214:245-62. [PMID: 19967412 DOI: 10.1007/s00429-009-0234-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 11/14/2009] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia. Aggregation of the amyloid-beta42 peptide (Abeta42) and tau proteins are pathological hallmarks in AD brains. Accumulating evidence suggests that Abeta42 plays a central role in the pathogenesis of AD, and tau acts downstream of Abeta42 as a modulator of the disease progression. Tau pathology is also observed in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and other related diseases, so called tauopathies. Although most cases are sporadic, genes associated with familial AD and FTDP-17 have been identified, which led to the development of transgenic animal models. Drosophila has been a powerful genetic model system used in many fields of biology, and recently emerges as a model for human neurodegenerative diseases. In this review, we will summarize key features of transgenic Drosophila models of AD and tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from these models.
Collapse
|
178
|
Messer A, Lynch SM, Butler DC. Developing intrabodies for the therapeutic suppression of neurodegenerative pathology. Expert Opin Biol Ther 2009; 9:1189-97. [PMID: 19653865 DOI: 10.1517/14712590903176387] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many neurodegenerative diseases have misfolded proteins as a primary occurrence in pathogenesis. A combination of antibody and genetic engineering has emerged as a powerful tool for developing reagents that specifically target the misfolding process itself, and/or abnormal interactions of the misfolded protein species. This review focuses on the selection and testing of intracellular antibody fragments (intrabodies), with a particular focus on Huntington's disease (HD) and Parkinson's disease (PD), both of which show prominent intracellular protein aggregates in affected neurons. The most dramatic advances are in HD, where in vivo efficacy of intrabodies has been demonstrated. Targets in other neurodegenerative disorders, including Alzheimer's disease and prion diseases, are noted more briefly, with an emphasis on the potential for intracellular manipulations. Given the specificity and versatility of antibody-based reagents, the wide range of options for conformational and post-translationally-modified targets, and the recent improvement in gene delivery, this should be a fertile field for 21(st) century pharmacology.
Collapse
Affiliation(s)
- Anne Messer
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA.
| | | | | |
Collapse
|
179
|
Wang T, Lao U, Edgar BA. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. ACTA ACUST UNITED AC 2009; 186:703-11. [PMID: 19720874 PMCID: PMC2742187 DOI: 10.1083/jcb.200904090] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.
Collapse
Affiliation(s)
- Tao Wang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
180
|
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system that affect the function and maintenance of specific neuronal populations. Most disease cases are sporadic with no known cause. The identification of genes associated with familial cases of these diseases has enabled the development of animal models to study disease mechanisms. The model organism Drosophila has been successfully used to study pathogenic mechanisms of a wide range of neurodegenerative diseases. Recent genetic studies in the Drosophila models have provided new insights into disease mechanisms, emphasizing the roles played by mitochondrial dynamics, RNA (including miRNA) function, protein translation, and synaptic plasticity and differentiation. It is anticipated that Drosophila models will further our understanding of mechanisms of neurodegeneration and facilitate the development of novel and rational treatments for these debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
181
|
Affiliation(s)
- Qi Zheng
- Department of Biology, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
182
|
Sugaya K, Matsubara S. Nucleation of protein aggregation kinetics as a basis for genotype-phenotype correlations in polyglutamine diseases. Mol Neurodegener 2009; 4:29. [PMID: 19602294 PMCID: PMC2716343 DOI: 10.1186/1750-1326-4-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
Recent studies of inherited neurodegenerative disorders have suggested a linkage between the propensity toward aggregation of mutant protein and disease onset. This is particularly apparent for polyglutamine (polyQ) diseases caused by expansion of CAG-trinucleotide repeats. However, a quantitative framework for relating aggregation kinetics with molecular mechanisms of neurodegeneration initiation is lacking. Here, using the repeat-length-dependent age-of-onset in polyQ diseases, we derived a mathematical model based on nucleation of aggregation kinetics to describe genotype-phenotype correlations, and validated the model using both in vitro data and clinical data. Instead of describing polyQ aggregation kinetics with a derivative equation, our model divided age-of-onset (equivalent to the time required for aggregation) into two processes: nucleation lag time (a first-order exponential function of CAG-repeat length) and elongation time. With the exception of spinocerebellar ataxia (SCA) 3, the relation between CAG-repeat length and age-of-onset in all examined polyQ diseases, including Huntington's disease, dentatorubral-pallidoluysian atrophy and SCA1, -2, -6 and -7, could be well explained by three parameters derived from linear regression analysis based on the nucleated growth polymerization model. These parameters composed of probability of nucleation at an individual repeat, a protein concentration associated factor, and elongation time predict the overall features of neurodegeneration initiation, including constant risk for cell death, toxic polyQ species, main pathological subcellular site and the contribution of cellular factors. Our model also presents an alternative therapeutic strategy according to the distinct subcellular loci by the finding that nuclear localization of soluble mutant protein monomers itself has great impact on disease onset.
Collapse
Affiliation(s)
- Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan.
| | | |
Collapse
|
183
|
Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington's disease. BRAIN RESEARCH REVIEWS 2009; 61:33-48. [PMID: 19394359 PMCID: PMC2748129 DOI: 10.1016/j.brainresrev.2009.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is an autosomal, dominantly inherited neurodegenerative disorder, characterized by chorea, involuntary movements, and cognitive impairments. Tremendous progress has been made since the discovery of HD gene in 1993, in terms of developing animal models to study the disease process, unraveling the expression and function of wild-type and mutant huntingtin (Htt) proteins in the central and peripheral nervous systems, and understanding expanded CAG repeat containing mutant Htt protein interactions with CNS proteins in the disease process. HD progression has been found to involve several pathomechanisms, including expanded CAG repeat protein interaction with other CNS proteins, transcriptional dysregulation, calcium dyshomeostasis, abnormal vesicle trafficking, and defective mitochondrial bioenergetics. Recent studies have found that mutant Htt is associated with mitochondria and causes mitochondrial structural changes, decreases mitochondrial trafficking, and impairs mitochondrial dynamics in the neurons affected by HD. This article discusses recent developments in HD research, with a particular focus on intracellular and intramitochondrial calcium influx, mitochondrial DNA defects, and mitochondrial structural and functional abnormalities in HD development and progression. Further, this article outlines the current status of mitochondrial therapeutics with a special reference to Dimebon.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
184
|
Fecke W, Gianfriddo M, Gaviraghi G, Terstappen GC, Heitz F. Small molecule drug discovery for Huntington's Disease. Drug Discov Today 2009; 14:453-64. [DOI: 10.1016/j.drudis.2009.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
185
|
Cytoplasmic inclusions of Htt exon1 containing an expanded polyglutamine tract suppress execution of apoptosis in sympathetic neurons. J Neurosci 2009; 28:14401-15. [PMID: 19118173 DOI: 10.1523/jneurosci.4751-08.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins containing extended polyglutamine repeats cause at least nine neurodegenerative disorders, but the mechanisms of disease-related neuronal death remain uncertain. We show that sympathetic neurons containing cytoplasmic inclusions formed by 97 glutamines expressed within human huntingtin exon1-enhanced green fluorescent protein (Q97) undergo a protracted form of nonapoptotic death that is insensitive to Bax deletion or caspase inhibition but is characterized by mitochondrial dysfunction. By treating the neurons with combined cytosine arabinoside and NGF withdrawal, we demonstrate that Q97 confers a powerful resistance to apoptosis at multiple levels: despite normal proapoptotic signaling (elevation of P-ser15-p53 and BimEL), there is no increase of Puma mRNA or Bax activation, both necessary for apoptosis. Even restoration of Bax translocation with overexpressed Puma does not activate apoptosis. We demonstrate that this robust inhibition of apoptosis is caused by Q97-mediated accumulation of Hsp70, which occurs through inhibition of proteasomal activity. Thus, apoptosis is reinstated by short hairpin RNA-mediated knockdown of Hsp70. These findings explain the rarity of apoptotic death in Q97-expressing neurons. Given the proteasomal blockade, we test whether enhancing lysosomal-mediated degradation with rapamycin reduces Q97 accumulation. Rapamycin reduces the amount of nonpathological Q25 by 70% over 3 d, but Q97 accumulation is unaffected. Interestingly, Q47 inclusions form more slowly as a result of constitutive lysosomal degradation, but faster-forming Q97 inclusions escape lysosomal control. Thus, cytoplasmic Q97 inclusions are refractory to clearance by proteasomal and lysosomal systems, leading to a toxicity that dominates over neuroprotective Hsp70. Our findings may explain the rarity of apoptosis but the inevitable cell death associated with polyQ inclusion diseases.
Collapse
|
186
|
Iwata A, Nagashima Y, Matsumoto L, Suzuki T, Yamanaka T, Date H, Deoka K, Nukina N, Tsuji S. Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. J Biol Chem 2009; 284:9796-803. [PMID: 19218238 DOI: 10.1074/jbc.m809739200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Huntington disease and its related autosomal-dominant polyglutamine (pQ) neurodegenerative diseases are characterized by intraneuronal accumulation of protein aggregates. Studies on protein aggregates have revealed the importance of the ubiquitin-proteasome system as the front line of protein quality control (PQC) machinery against aberrant proteins. Recently, we have shown that the autophagy-lysosomal system is also involved in cytoplasmic aggregate degradation, but the nucleus lacked this activity. Consequently, the nucleus relies entirely on the ubiquitin-proteasome system for PQC. According to previous studies, nuclear aggregates possess a higher cellular toxicity than do their cytoplasmic counterparts, however degradation kinetics of nuclear aggregates have been poorly understood. Here we show that nuclear ubiquitin ligases San1p and UHRF-2 each enhance nuclear pQ aggregate degradation and rescued pQ-induced cytotoxicity in cultured cells and primary neurons. Moreover, UHRF-2 is associated with nuclear inclusion bodies in vitro and in vivo. Our data suggest that UHRF-2 is an essential molecule for nuclear pQ degradation as a component of nuclear PQC machinery in mammalian cells.
Collapse
Affiliation(s)
- Atsushi Iwata
- Departments of Molecular Neuroscience on Neurodegeneration and Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Jeibmann A, Paulus W. Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci 2009; 10:407-440. [PMID: 19333415 PMCID: PMC2660653 DOI: 10.3390/ijms10020407] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 01/29/2023] Open
Abstract
Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.
Collapse
Affiliation(s)
- Astrid Jeibmann
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +49-251 83 57549; Fax: +49-251 83 56971
| | | |
Collapse
|
188
|
Abstract
Drosophila has only recently become a model organism to study progressive neurodegeneration, mainly using transgenic flies expressing human disease genes. However, classical forward genetics isolating and characterizing fly mutants that show characteristic features of progressive neurodegeneration can also provide a useful tool to get insights into the mechanisms of neurodegeneration. Interestingly, the first such mutants have been already isolated in the 1970s, and this review focuses on the description of four such mutants originally isolated by Martin Heisenberg.
Collapse
Affiliation(s)
- Doris Kretzschmar
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA.
| |
Collapse
|
189
|
Hatters DM. Protein misfolding inside cells: the case of huntingtin and Huntington's disease. IUBMB Life 2009; 60:724-8. [PMID: 18756529 DOI: 10.1002/iub.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Huntington's disease is one of the several neurodegenerative diseases caused by dominant mutations that expand the number of glutamine codons within an existing poly-glutamine (polyQ) repeat sequence of a gene. An expanded polyQ sequence in the huntingtin gene is known to cause the huntingtin protein to aggregate and form intracellular inclusions as disease progresses. However, the role that polyQ-induced aggregation plays in disease is yet to be fully determined. This review focuses on key questions remaining for how the expanded polyQ sequences affect the aggregation properties of the huntingtin protein and the corresponding effects on cellular machinery. The scope includes the technical challenges that remain for rigorously assessing the effects of aggregation on the cellular machinery.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
190
|
Abstract
Drosophila is a powerful model system for the identification of cell death genes and understanding the role of cell death in development. In this chapter, we describe three methods typically used for the detection of cell death in Drosophila. The TUNEL and acridine orange methods are used to detect dead or dying cells in a variety of tissues. We focus on methods for the embryo and the ovary, but these techniques can be used on other tissues as well. The third method is the detection of genetic interactions by expressing cell death genes in the Drosophila eye.
Collapse
|
191
|
Abstract
Animal models of neurodegenerative disease are excellent tools for studying pathogenesis and therapies including cellular transplantation. In this chapter, we describe different models of Huntington's disease and Parkinson's disease, stereotactic surgery (used in creation of lesion models and transplantation) and finally transplantation studies in these models.
Collapse
|
192
|
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system that affect specific cellular populations in the central and peripheral nervous systems. Although most cases are sporadic, genes associated with familial cases have been identified, thus enabling the development of animal models. Invertebrates such as Drosophila have recently emerged as model systems for studying mechanisms of neurodegeneration in several major neurodegenerative diseases. These models are also excellent in vivo systems for the testing of therapeutic compounds. Genetic studies using these animal models have provided novel insights into the disease process. We anticipate that further exploration of the animal models will further our understanding of mechanisms of neurodegeneration as well as facilitate the development of rational treatments for debilitating degenerative diseases.
Collapse
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
193
|
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 2008; 29:1095-106. [PMID: 19075009 DOI: 10.1128/mcb.01227-08] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular accumulation of unfolded or misfolded proteins is believed to contribute to aging and age-related neurodegenerative diseases. However, the links between age-dependent proteotoxicity and cellular protein degradation systems remain poorly understood. Here, we show that 26S proteasome activity and abundance attenuate with age, which is associated with the impaired assembly of the 26S proteasome with the 19S regulatory particle (RP) and the 20S proteasome. In a genetic gain-of-function screen, we characterized Rpn11, which encodes a subunit of the 19S RP, as a suppressor of expanded polyglutamine-induced progressive neurodegeneration. Rpn11 overexpression suppressed the age-related reduction of the 26S proteasome activity, resulting in the extension of flies' life spans with suppression of the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of function of Rpn11 caused an early onset of reduced 26S proteasome activity and a premature age-dependent accumulation of ubiquitinated proteins. It also caused a shorter life span and an enhanced neurodegenerative phenotype. Our results suggest that maintaining the 26S proteasome with age could extend the life span and suppress the age-related progression of neurodegenerative diseases.
Collapse
|
194
|
Chatterjee S, Sang TK, Lawless GM, Jackson GR. Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 2008; 18:164-77. [PMID: 18930955 PMCID: PMC2644648 DOI: 10.1093/hmg/ddn326] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperphosphorylation of tau at multiple sites has been implicated in the formation of neurofibrillary tangles in Alzheimer’s disease; however, the relationship between toxicity and phosphorylation of tau has not been clearly elucidated. Putative tau kinases that play a role in such phosphorylation events include the proline-directed kinases glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (Cdk5), as well as nonproline-directed kinases such as microtubule affinity-regulating kinase (MARK)/PAR-1; however, whether the cascade of events linking tau phosphorylation and neurodegeneration involves sequential action of kinases as opposed to parallel pathways is still a matter of controversy. Here, we employed a well-characterized Drosophila model of tauopathy to investigate the interdependence of tau kinases in regulating the phosphorylation and toxicity of tau in vivo. We found that tau mutants resistant to phosphorylation by MARK/PAR-1 were indeed less toxic than wild-type tau; however, this was not due to their resistance to phosphorylation by GSK-3β/Shaggy. On the contrary, a tau mutant resistant to phosphorylation by GSK-3β/Shaggy retained substantial toxicity and was found to have increased affinity for microtubules compared with wild-type tau. The fly homologs of Cdk5/p35 did not have major effects on tau toxicity or phosphorylation in this model. These data suggest that, in addition to tau phosphorylation, microtubule binding plays a crucial role in the regulation of tau toxicity when misexpressed. These data have important implications for the understanding and interpretation of animal models of tauopathy.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Department of Neurology, Neurogenetics and Movement Disorders Programs, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
195
|
Mugat B, Parmentier ML, Bonneaud N, Chan HYE, Maschat F. Protective role of Engrailed in a Drosophila model of Huntington's disease. Hum Mol Genet 2008; 17:3601-16. [PMID: 18718937 DOI: 10.1093/hmg/ddn255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Huntington's disease (HD) is caused by the expansion of the polyglutamine (polyQ) tract in the human Huntingtin (hHtt) protein (polyQ-hHtt). Although this mutation behaves dominantly, htt loss of function may also contribute to HD pathogenesis. Using a Drosophila model of HD, we found that Engrailed (EN), a transcriptional activator of endogenous Drosophila htt (dhtt), is able to prevent aggregation of polyQ-hHtt. To interpret these findings, we tested and identified a protective role of N-terminal fragments of both Drosophila and Human wild-type Htt onto polyQ-hHtt-induced cellular defects. In addition, N-terminal parts of normal hHtt were also able to rescue eye degeneration due to the loss of Drosophila endogenous dhtt function. Thus, our data indicate that Drosophila and Human Htt share biological properties, and confirm a model whereby EN activates endogenous dhtt, which in turn prevents polyQ-hHtt-induced phenotypes. The protective role of wild-type hHtt N-terminal parts, specifically onto polyQ-hHtt-induced cellular toxicity suggests that the HD may be considered as a dominant negative disease rather than solely dominant.
Collapse
Affiliation(s)
- Bruno Mugat
- Institute of Human Genetics, UPR1142, CNRS 141, Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
196
|
Mast JD, Tomalty KM, Vogel H, Clandinin TR. Reactive oxygen species act remotely to cause synapse loss in a Drosophila model of developmental mitochondrial encephalopathy. Development 2008; 135:2669-79. [PMID: 18599508 PMCID: PMC2892278 DOI: 10.1242/dev.020644] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many neurodegenerative diseases, yet its precise role in disease pathology remains unclear. To examine this link directly, we subtly perturbed electron transport chain function in the Drosophila retina, creating a model of Leigh Syndrome, an early-onset neurodegenerative disorder. Using mutations that affect mitochondrial complex II, we demonstrate that mild disruptions of mitochondrial function have no effect on the initial stages of photoreceptor development, but cause degeneration of their synapses and cell bodies in late pupal and adult animals. In this model, synapse loss is caused by reactive oxygen species (ROS) production, not energy depletion, as ATP levels are normal in mutant photoreceptors, and both pharmacological and targeted genetic manipulations that reduce ROS levels prevent synapse degeneration. Intriguingly, these manipulations of ROS uncouple synaptic effects from degenerative changes in the cell body, suggesting that mitochondrial dysfunction activates two genetically separable processes, one that induces morphological changes in the cell body, and another that causes synapse loss. Finally, by blocking mitochondrial trafficking into the axon using a mutation affecting a mitochondrial transport complex, we find that ROS action restricted to the cell body is sufficient to cause synaptic degeneration, demonstrating that ROS need not act locally at the synapse. Thus, alterations in electron transport chain function explain many of the neurodegenerative changes seen in both early- and late-onset disorders.
Collapse
Affiliation(s)
- Joshua D. Mast
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Katharine M.H. Tomalty
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Thomas R. Clandinin
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
197
|
Wong SLA, Chan WM, Chan HYE. Sodium dodecyl sulfate-insoluble oligomers are involved in polyglutamine degeneration. FASEB J 2008; 22:3348-57. [PMID: 18559990 DOI: 10.1096/fj.07-103887] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In polyglutamine (polyQ) degeneration, disease protein that carries an expanded polyQ tract is neurotoxic. Expanded polyQ protein exists in different conformations that display distinct solubility properties. In this study, an inducible transgenic Drosophila model is established to define the pathogenic form of polyQ protein at an early stage of degeneration in vivo. We show that microscopic polyQ aggregates are neither pathogenic nor protective. Further, no toxic effect of sodium dodecyl sulfate (SDS) -soluble polyQ protein is observed in our model. By means of filtration, 2 forms of SDS-insoluble protein species are identified according to their size. Coexpression of an ATPase-defective form of the molecular chaperone Hsc70 (Hsc70-K71S) selectively reduces the abundance of the large SDS-insoluble polyQ species, but such modulation has no modifying effects on degeneration. Notably, we detect a distinct Hsc70-K71S-resistant, small, SDS-insoluble polyQ oligomeric species that is closely correlated with degeneration. Our data highlight the toxic role of SDS-insoluble oligomers in polyQ degeneration in vivo.
Collapse
Affiliation(s)
- S L Alan Wong
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | | | | |
Collapse
|
198
|
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC. Huntington's disease: from pathology and genetics to potential therapies. Biochem J 2008; 412:191-209. [PMID: 18466116 DOI: 10.1042/bj20071619] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
Affiliation(s)
- Sara Imarisio
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 2008; 121:1649-60. [PMID: 18430781 PMCID: PMC2635563 DOI: 10.1242/jcs.025726] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington disease (HD) is caused by a polyglutamine-expansion mutation in huntingtin (HTT) that makes the protein toxic and aggregate-prone. The subcellular localisation of huntingtin and many of its interactors suggest a role in endocytosis, and recently it has been shown that huntingtin interacts indirectly with the early endosomal protein Rab5 through HAP40. Here we show that Rab5 inhibition enhanced polyglutamine toxicity, whereas Rab5 overexpression attenuated toxicity in our cell and fly models of HD. We tried to identify a mechanism for the Rab5 effects in our HD model systems, and our data suggest that Rab5 acts at an early stage of autophagosome formation in a macromolecular complex that contains beclin 1 (BECN1) and Vps34. Interestingly chemical or genetic inhibition of endocytosis also impeded macroautophagy, and enhanced aggregation and toxicity of mutant huntingtin. However, in contrast to Rab5, inhibition of endocytosis by various means suppressed autophagosome-lysosome fusion (the final step in the macroautophagy pathway) similar to bafilomycin A1. Thus, Rab5, which has previously been thought to be exclusively involved in endocytosis, has a new role in macroautophagy. We have previously shown that macroautophagy is an important clearance route for several aggregate-prone proteins including mutant huntingtin. Thus, better understanding of Rab5-regulated autophagy might lead to rational therapeutic targets for HD and other protein-conformation diseases.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | - Sara Imarisio
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
- Department of Genetics, University of Cambridge, CB2 3EH, UK
| | - Sovan Sarkar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge, CB2 3EH, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| |
Collapse
|
200
|
Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O’Kane CJ, Floto RA, Rubinsztein DC. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295-305. [PMID: 18391949 PMCID: PMC2635566 DOI: 10.1038/nchembio.79] [Citation(s) in RCA: 640] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/07/2008] [Indexed: 01/23/2023]
Abstract
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.
Collapse
Affiliation(s)
- Andrea Williams
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Sovan Sarkar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Paul Cuddon
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Summit plc, 7340 Cambridge Research Park, Beach Drive, Waterbeach, Cambridge, CB25 9TN
| | - Evangelia K. Ttofi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Shinji Saiki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Farah H. Siddiqi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Luca Jahreiss
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Angeleen Fleming
- Summit plc, 7340 Cambridge Research Park, Beach Drive, Waterbeach, Cambridge, CB25 9TN
| | - Dean Pask
- Summit plc, 7340 Cambridge Research Park, Beach Drive, Waterbeach, Cambridge, CB25 9TN
| | - Paul Goldsmith
- Department of Neurology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - R. Andres Floto
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|