151
|
Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J Virol 2011; 85:8116-32. [PMID: 21680520 DOI: 10.1128/jvi.00341-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian tripartite motif protein, TRIM5α, recognizes retroviral capsids entering the cytoplasm and blocks virus infection. Depending on the particular TRIM5α protein and retrovirus, complete disruption of the TRIM5α RING domain decreases virus-restricting activity to various degrees. TRIM5α exhibits RING domain-dependent E3 ubiquitin ligase activity, but the specific role of this activity in viral restriction is unknown. We created a panel of African green monkey TRIM5α (TRIM5α(AGM)) mutants, many of which are specifically altered in RING domain E3 ubiquitin ligase function, and characterized the phenotypes of these mutants with respect to restriction of simian and human immunodeficiency viruses (SIV(mac) and HIV-1, respectively). TRIM5α(AGM) ubiquitin ligase activity was essential for both the accelerated disassembly of SIV(mac) capsids and the disruption of reverse transcription. The levels of SIV(mac) particulate capsids in the cytosol of target cells expressing the TRIM5α variants strongly correlated with the levels of viral late reverse transcripts. RING-mediated ubiquitylation and B30.2(SPRY) domain-determined capsid binding independently contributed to the potency of SIV(mac) restriction by TRIM5α(AGM). In contrast, TRIM5α proteins attenuated in RING ubiquitin ligase function still accelerated HIV-1 capsid disassembly, inhibited reverse transcription, and blocked infection. Replacement of the helix-4/5 loop in the SIV(mac) capsid with the corresponding region of the HIV-1 capsid diminished the dependence of restriction on TRIM5α RING function. Thus, ubiquitylation mediated by the RING domain of TRIM5α(AGM) is essential for blocking SIV(mac) infection at the stage of capsid uncoating.
Collapse
|
152
|
Evolution of Vertebrate Immunity: Sequence and Functional Analysis of the SEFIR Domain Family Member Act1. J Mol Evol 2011; 72:521-30. [DOI: 10.1007/s00239-011-9450-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/19/2011] [Indexed: 12/22/2022]
|
153
|
TRIM8 regulates Nanog via Hsp90β-mediated nuclear translocation of STAT3 in embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1784-92. [PMID: 21689689 DOI: 10.1016/j.bbamcr.2011.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/13/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
Abstract
TRIM8 is a member of a protein family defined by the presence of a common domain structure composed of a tripartite motif including a RING-finger, one or two B-box domains and a coiled-coil motif. Here, we show that TRIM8 interacts with Hsp90β, which interacts with STAT3 and selectively downregulates transcription of Nanog in embryonic stem cells. Knock-down of TRIM8 increased phosphorylated STAT3 in the nucleus and also enhanced transcription of Nanog. These findings suggest that TRIM8 modulates translocation of phosphorylated STAT3 into the nucleus through interaction with Hsp90β and consequently regulates transcription of Nanog in embryonic stem cells.
Collapse
|
154
|
Abstract
Ubiquitination, the covalent attachment of ubiquitin molecules to proteins, is emerging as a widely utilized mechanism for rapidly regulating cell signaling. Recent studies indicate that ubiquitination plays potent roles in regulating a variety of signals in both innate and adaptive immune cells. Here, we will review recent studies of ubiquitin ligases, ubiquitin chain linkages, and ubiquitin binding proteins that highlight the diversity and specificity of ubiquitin dependent functions in immune cells. We will also review studies that shed light on how ubiquitination signals are integrated in cell-type-specific fashion to regulate the immune system in vivo.
Collapse
Affiliation(s)
- Barbara A Malynn
- Department of Medicine, Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | | |
Collapse
|
155
|
Hervé C, Lefebvre B, Cullimore J. How many E3 ubiquitin ligase are involved in the regulation of nodulation? PLANT SIGNALING & BEHAVIOR 2011; 6:660-4. [PMID: 21543887 PMCID: PMC3172832 DOI: 10.4161/psb.6.5.15024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plants, as in animals, recent work has established that many developmental and defence response pathways are regulated by E3 ubiquitin ligases which control the level or the activity of key proteins through ubiquitination. Nodule formation is a tightly regulated process that integrates specific signal exchange and the coordinated activation of developmental mechanisms to synchronize bacterial infection and organ development. In the last decade, the characterization of several E3 ubiquitin ligase with roles during nodulation has been reported. These are mainly RING-finger and U-Box proteins involved either in nodule organogenesis or in the infection process. In this review, we summarize the knowledge in this field and conclude that the major challenge will be the identification of the regulation and targets of these E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Christine Hervé
- Laboratoire des Interactions Plantes Micro-Organismes, Unité Mixte de Recherche 2594/441, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique, Castanet-Tolosan Cedex, France.
| | | | | |
Collapse
|
156
|
Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. J Mol Biol 2011; 407:505-20. [PMID: 21296087 DOI: 10.1016/j.jmb.2011.01.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/24/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
Abstract
Human MID1 (midline-1) is a microtubule-associated protein that is postulated to target the catalytic subunit of protein phosphatase 2A for degradation. It binds alpha4 that then recruits the catalytic subunit of protein phosphatase 2A. As a member of the TRIM (tripartite motif) family, MID1 has three consecutive zinc-binding domains-RING (really interesting new gene), Bbox1, and Bbox2-that have similar ββα-folds. Here, we describe the in vitro characterization of these domains individually and in tandem. We observed that the RING domain exhibited greater ubiquitin (Ub) E3 ligase activity compared to the Bbox domains. The amount of autopolyubiquitinated products with RING-Bbox1 and RING-Bbox1-Bbox2 domains in tandem was significantly greater than those of the individual domains. However, no polyubiquitinated products were observed for the Bbox1-Bbox domains in tandem. Using mutants of Ub, we observed that these MID1 domain constructs facilitate Ub chain elongation via Lys63 of Ub. In addition, we observed that the high-molecular-weight protein products were primarily due to polyubiquitination at one site (Lys154) on the Bbox1 domain of the RING-Bbox1 and RING-Bbox1-Bbox2 constructs. We observed that MID1 E3 domains could interact with multiple E2-conjugating enzymes. Lastly, a 45-amino-acid peptide derived from the C-terminus of alpha4 that binds tightly to Bbox1 was observed to be monoubiquitinated in the assay and appears to down-regulate the amount of polyubiquitinated products formed. These studies shed light on MID1 E3 ligase activity and show how its three zinc-binding domains can contribute to MID1's overall function.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
157
|
Lee JH, Kim WT. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 2011; 31:201-8. [PMID: 21347703 PMCID: PMC3932693 DOI: 10.1007/s10059-011-0031-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is a unique protein degradation system utilized by eukaryotes to efficiently degrade detrimental cellular proteins and control the entire pool of regulatory components. In plants, adaptation in response to various abiotic stresses can be achieved through ubiquitination and the resulting degradation of components specific to these stress signalings. Arabidopsis has more than 1,400 E3 enzymes, indicating E3 ligase acts as a main determinant of substrate specificity. However, as only a minority of E3 ligases related to abiotic stress signaling have been studied in Arabidopsis, the further elucidation of the biological roles and related substrates of newly identified E3 ligases is essential in order to clarify the functional relationship between abiotic stress and E3 ligases. Here, we review the current knowledge and future prospects of the regulatory mechanism and role of several E3 ligases involved in abiotic stress signal transduction in Arabidopsis. As another potential approach to understand how ubiquitination is involved in such signaling, we also briefly introduce factors that regulate the activity of cullin in multisubunit E3 ligase complexes.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | |
Collapse
|
158
|
Fine mapping and candidate gene analysis of the dwarf gene d162(t) in rice (Oryza sativa L.). Genes Genomics 2011. [DOI: 10.1007/s13258-010-0056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
159
|
Isokpehi RD, Simmons SS, Cohly HHP, Ekunwe SIN, Begonia GB, Ayensu WK. Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights 2011; 5:41-58. [PMID: 21423406 PMCID: PMC3045048 DOI: 10.4137/bbi.s6061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diverse plant universal stress proteins and Expressed Sequence Tags (ESTs) responsive to water-deficit stress. We hypothesize that cross-database mining of functional annotations in protein and gene transcript bioinformatics resources would help identify candidate drought-responsive universal stress proteins and transcripts from multiple plant species. Our bioinformatics approach retrieved, mined and integrated comprehensive functional annotation data on 511 protein and 1561 ESTs sequences from 161 viridiplantae taxa. A total of 32 drought-responsive ESTs from 7 plant genera Glycine, Hordeum, Manihot, Medicago, Oryza, Pinus and Triticum were identified. Two Arabidopsis USP genes At3g62550 and At3g53990 that encode ATP-binding motif were up-regulated in a drought microarray dataset. Further, a dataset of 80 simple sequence repeats (SSRs) linked to 20 singletons and 47 transcript assembles was constructed. Integrating the datasets on SSRs and drought-responsive ESTs identified three drought-responsive ESTs from bread wheat (BE604157), soybean (BM887317) and maritime pine (BX682209). The SSR sequence types were CAG, ATA and AT respectively. The datasets from cross-database mining provide organized resources for the characterization of USP genes as useful targets for engineering plant varieties tolerant to unfavorable environmental conditions.
Collapse
|
160
|
Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol Cell Biol 2011; 31:1528-39. [PMID: 21282470 DOI: 10.1128/mcb.00962-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.
Collapse
|
161
|
Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:194-205. [PMID: 21223385 DOI: 10.1111/j.1365-313x.2010.04416.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant U-box (PUB) protein functions as an E3 ligase to poly-ubiquitinate a target protein for its degradation or post-translational modification. Here, we report functional roles for OsPUB15, which encodes a cytosolic U-box protein in the class-II PUB family. Self-ubiquitination assays showed that bacterially expressed MBP-OsPUB15 protein has E3 ubiquitin ligase activity. A T-DNA insertional mutation in OsPUB15 caused severe growth retardation and a seedling-lethal phenotype. Mutant seeds did not produce primary roots, and their shoot development was significantly delayed. Transgenic plants expressing the OsPUB15 antisense transcript phenocopied these mutant characters. The abnormal phenotypes were partially rescued by two antioxidants, catechin and ascorbic acid. Germinating seeds in the dark also recovered the rootless defect. Levels of H2O2 and oxidized proteins were higher in the knock-out mutant compared with the wild type. OsPUB15 transcript levels were increased upon H2O2, salt and drought stresses; plants overexpressing the gene grew better than the wild type under high salinity. These results indicate that PUB15 is a regulator that reduces reactive oxygen species (ROS) stress and cell death.
Collapse
Affiliation(s)
- Jong-Jin Park
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH. Evolutionary relationships and functional diversity of plant sulfate transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:119. [PMID: 22629272 PMCID: PMC3355512 DOI: 10.3389/fpls.2011.00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/31/2011] [Indexed: 05/03/2023]
Abstract
Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Hideki Takahashi, Department of Biochemistry and Molecular Biology, Michigan State University, 209 Biochemistry Building, East Lansing, MI 48824, USA. e-mail: ; Shin-Han Shiu, Department of Plant Biology, Michigan State University, S308 Plant Biology Building, East Lansing, MI 48824, USA. e-mail:
| | - Peter Buchner
- Plant Science Department, Rothamsted ResearchHarpenden, UK
| | - Naoko Yoshimoto
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | | | - Shin-Han Shiu
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Hideki Takahashi, Department of Biochemistry and Molecular Biology, Michigan State University, 209 Biochemistry Building, East Lansing, MI 48824, USA. e-mail: ; Shin-Han Shiu, Department of Plant Biology, Michigan State University, S308 Plant Biology Building, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
163
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
164
|
Drechsel G, Bergler J, Wippel K, Sauer N, Vogelmann K, Hoth S. C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:775-85. [PMID: 20956359 PMCID: PMC3003819 DOI: 10.1093/jxb/erq313] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 05/21/2023]
Abstract
Ubiquitination plays important roles in plant growth and development. Whereas ubiquitin-dependent protein degradation and modulation in the cytoplasm and nucleus are well established in plants, ubiquitination events mediated by E3 ubiquitin ligases at the plasma membrane are largely unknown. Here, it is demonstrated that the suppressor of premature senescence and cell death SENESCENCE-ASSOCIATED UBIQUITIN LIGASE 1 (SAUL1), a plant U-box armadillo repeat (PUB-ARM) E3 ubiquitin ligase, localizes at the plasma membrane. Among the members of the PUB-ARM protein family, this localization is unique to SAUL1 and its two closest homologues. A novel armadillo repeat domain was identified at the SAUL1 C-terminus that directs specific association with the plasma membrane and is crucial for SAUL1 function in vivo. The data suggest that a small subgroup of PUB-ARM proteins including SAUL1 have functions at the plasma membrane probably by modifying target proteins by ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Hoth
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
165
|
Abstract
Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.
Collapse
|
166
|
Tinel A, Eckert MJ, Logette E, Lippens S, Janssens S, Jaccard B, Quadroni M, Tschopp J. Regulation of PIDD auto-proteolysis and activity by the molecular chaperone Hsp90. Cell Death Differ 2010; 18:506-15. [PMID: 20966961 DOI: 10.1038/cdd.2010.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.
Collapse
Affiliation(s)
- A Tinel
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Narayan V, Pion E, Landré V, Müller P, Ball KL. Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J Biol Chem 2010; 286:607-19. [PMID: 20947504 DOI: 10.1074/jbc.m110.153122] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20-40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106-140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or "docking" of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase.
Collapse
Affiliation(s)
- Vikram Narayan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Institute of Genetics and Molecular Medicine, Crewe Road South, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | |
Collapse
|
168
|
Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 2010; 10:308. [PMID: 20942953 PMCID: PMC2964712 DOI: 10.1186/1471-2148-10-308] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/13/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The poly(ADP-ribose) polymerase (PARP) superfamily was originally identified as enzymes that catalyze the attachment of ADP-ribose subunits to target proteins using NAD+ as a substrate. The family is characterized by the catalytic site, termed the PARP signature. While these proteins can be found in a range of eukaryotes, they have been best studied in mammals. In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation. More recently it has been found that proteins within the PARP superfamily have altered catalytic sites, and have mono(ADP-ribose) transferase (mART) activity or are enzymatically inactive. These findings suggest that the PARP signature has a broader range of functions that initially predicted. In this study, we investigate the evolutionary history of PARP genes across the eukaryotes. RESULTS We identified in silico 236 PARP proteins from 77 species across five of the six eukaryotic supergroups. We performed extensive phylogenetic analyses of the identified PARPs. They are found in all eukaryotic supergroups for which sequence is available, but some individual lineages within supergroups have independently lost these genes. The PARP superfamily can be subdivided into six clades. Two of these clades were likely found in the last common eukaryotic ancestor. In addition, we have identified PARPs in organisms in which they have not previously been described. CONCLUSIONS Three main conclusions can be drawn from our study. First, the broad distribution and pattern of representation of PARP genes indicates that the ancestor of all extant eukaryotes encoded proteins of this type. Second, the ancestral PARP proteins had different functions and activities. One of these proteins was similar to human PARP1 and likely functioned in DNA damage response. The second of the ancestral PARPs had already evolved differences in its catalytic domain that suggest that these proteins may not have possessed poly(ADP-ribosyl)ation activity. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.
Collapse
Affiliation(s)
- Matteo Citarelli
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
| | - Sachin Teotia
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| | - Rebecca S Lamb
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
169
|
Vander Kooi CW, Ren L, Xu P, Ohi MD, Gould KL, Chazin WJ. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function. Structure 2010; 18:584-93. [PMID: 20462492 DOI: 10.1016/j.str.2010.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 01/03/2023]
Abstract
Prp19 is a member of the WD40 repeat family of E3 ubiquitin ligases and a conserved eukaryotic RNA splicing factor essential for activation and stabilization of the spliceosome. To understand the role of the WD40 repeat domain of Prp19 we have determined its structure using X-ray crystallography. The domain has a distorted seven bladed WD40 architecture with significant asymmetry due to irregular packing of blades one and seven into the core of the WD40 domain. Structure-based mutagenesis identified a highly conserved surface centered around blade five that is required for the physical interaction between Prp19 and Cwc2, another essential splicing factor. This region is found to be required for Prp19 function and yeast viability. Experiments in vitro and in vivo demonstrate that two molecules of Cwc2 bind to the Prp19 tetramer. These coupled structural and functional studies provide a model for the functional architecture of Prp19.
Collapse
Affiliation(s)
- Craig W Vander Kooi
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
170
|
Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 2010; 12:1272-91. [DOI: 10.1111/j.1462-5822.2010.01467.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
171
|
Benirschke RC, Thompson JR, Nominé Y, Wasielewski E, Juranić N, Macura S, Hatakeyama S, Nakayama KI, Botuyan MV, Mer G. Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 2010; 18:955-65. [PMID: 20696396 PMCID: PMC3005147 DOI: 10.1016/j.str.2010.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/04/2023]
Abstract
Human E4B, also called UFD2a, is a U box-containing protein that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor. E4B is thought to participate in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. The U box domain is an anchor site for E2 ubiquitin-conjugating enzymes, but little is known of the binding mechanism. Using X-ray crystallography and NMR spectroscopy, we determined the structures of E4B U box free and bound to UbcH5c and Ubc4 E2s. Whereas previously characterized U box domains are homodimeric, we show that E4B U box is a monomer stabilized by a network of hydrogen bonds identified from scalar coupling measurements. These structural studies, complemented by calorimetry- and NMR-based binding assays, suggest an allosteric regulation of UbcH5c and Ubc4 by E4B U box and provide a molecular basis to understand how the ubiquitylation machinery involving E4B assembles.
Collapse
Affiliation(s)
- Robert C. Benirschke
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Structural Biology Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - James R. Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yves Nominé
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Emeric Wasielewski
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Nenad Juranić
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Kyushu University, Fukuoka 812-8582, Japan
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
172
|
Huang A, de Jong RN, Folkers GE, Boelens R. NMR characterization of foldedness for the production of E3 RING domains. J Struct Biol 2010; 172:120-7. [PMID: 20682345 DOI: 10.1016/j.jsb.2010.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 07/23/2010] [Accepted: 07/28/2010] [Indexed: 01/17/2023]
Abstract
We summarize the use of NMR spectroscopy in the production and the screening of stability and foldedness of protein domains, and apply it to the RING domains of E3 ubiquitin-ligases. RING domains are involved in specific interactions with E2 ubiquitin-conjugating enzymes and thus play an essential role in the ubiquitination pathway. Protein production of the Zn(2+) containing and cysteine rich RING domains for molecular studies frequently turns out to be problematic. We compared the expression and solubility of 14 E3 RING/U-box domains fused to the N-terminal tags of His(6), His(6)-GB1, His(6)-Trx and His(6)-GST at small scale and analyzed, by NMR spectroscopy, their correct folding after purification. The addition of GST, Trx or GB1 to the N-terminal His(6) tag significantly improved both the expression and solubility of target proteins as compared to His(6) tag alone. More importantly most of the immobilized metal affinity chromatography (IMAC) purified proteins were largely unfolded as judged by analysis of the (1)H-(15)N HSQC spectra. We demonstrate that imidazole causes a concentration dependent decrease in stability of RING proteins ascribed to metal depletion and resulting in unfolding or precipitation. In contrast, using glutathione affinity chromatography, the His(6)-GST fused RING and U-box domains were purified as correctly folded proteins with high yields. Our data clearly demonstrate that IMAC should be avoided and that GST-fusion affinity chromatography is generally applicable for expression and purification of Zn(2+) containing proteins.
Collapse
Affiliation(s)
- Anding Huang
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
173
|
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-47. [PMID: 20595234 DOI: 10.1101/gad.1925010] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spliceosome, a dynamic assembly of proteins and RNAs, catalyzes the excision of intron sequences from nascent mRNAs. Recent work has suggested that the activity and composition of the spliceosome are regulated by ubiquitination, but the underlying mechanisms have not been elucidated. Here, we report that the spliceosomal Prp19 complex modifies Prp3, a component of the U4 snRNP, with nonproteolytic K63-linked ubiquitin chains. The K63-linked chains increase the affinity of Prp3 for the U5 snRNP component Prp8, thereby allowing for the stabilization of the U4/U6.U5 snRNP. Prp3 is deubiquitinated by Usp4 and its substrate targeting factor, the U4/U6 recycling protein Sart3, which likely facilitates ejection of U4 proteins from the spliceosome during maturation of its active site. Loss of Usp4 in cells interferes with the accumulation of correctly spliced mRNAs, including those for alpha-tubulin and Bub1, and impairs cell cycle progression. We propose that the reversible ubiquitination of spliceosomal proteins, such as Prp3, guides rearrangements in the composition of the spliceosome at distinct steps of the splicing reaction.
Collapse
Affiliation(s)
- Eun Joo Song
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
|
175
|
Okumura F, Matsunaga Y, Katayama Y, Nakayama KI, Hatakeyama S. TRIM8 modulates STAT3 activity through negative regulation of PIAS3. J Cell Sci 2010; 123:2238-45. [PMID: 20516148 DOI: 10.1242/jcs.068981] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRIM8 is a member of the protein family defined by the presence of a common domain structure composed of a tripartite motif: a RING-finger, one or two B-box domains and a coiled-coil motif. Here, we show that TRIM8 interacts with protein inhibitor of activated STAT3 (PIAS3), which inhibits IL-6-dependent activation of STAT3. Ectopic expression of TRIM8 cancels the negative effect of PIAS3 on STAT3, either by degradation of PIAS3 through the ubiquitin-proteasome pathway or exclusion of PIAS3 from the nucleus. Furthermore, expression of TRIM8 in NIH3T3 cells enhances Src-dependent tumorigenesis. These findings indicate that TRIM8 enhances the STAT3-dependent signal pathway by inhibiting the function of PIAS3.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | |
Collapse
|
176
|
The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. J Struct Biol 2010; 172:294-9. [PMID: 20580930 DOI: 10.1016/j.jsb.2010.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/20/2010] [Indexed: 11/23/2022]
Abstract
Members of the Ku superfamily are DNA-end-binding proteins involved in non-homologous end-joining (NHEJ) DNA repair. The published crystal structure of human Ku-DNA complex reveals a heterodimer that forms a ring around dsDNA by means of the Ku core modules. These modules contain a highly conserved seven-stranded β-barrel, which in turn contains an insertion, termed the bridge-region, between its second and third β-strands. The bridge-region adopts an unusual β-strand-rich structure critical for dsDNA-binding and Ku function, but its provenance remains unclear. Here, we demonstrate that the bridge-region of Ku is a novel member of the diverse Zn-ribbon fold group. Sequence analysis reveals that Ku from several Gram-positive bacteria and bacteriophages retain metal-chelating motifs, whereas they have been lost in the versions from most other organisms. Structural comparisons suggest that the Zn-ribbon from Ku-bridge-region is the first example of a circularly permuted, segment-swapped Zn-ribbon. This finding helps explain how Ku is likely to bind DNA as an obligate dimer. Further, we hypothesize that retention of the unusual conformation of the turns of the Zn-ribbons, despite loss of the Zn-binding sites, provides clues regarding the mechanism by which the Ku-bridge-regions sense the DNA state.
Collapse
|
177
|
Müssig C, Schröder F, Usadel B, Lisso J. Structure and putative function of NFX1-like proteins in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:381-394. [PMID: 20522174 DOI: 10.1111/j.1438-8677.2009.00303.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human NFX1 transcription factor constitutes a group of NFX1-type zinc finger proteins. It forms a central Cys-rich region with several NFX1-type zinc finger domains that have been shown to mediate DNA binding. Proteins with NFX1-type zinc fingers are found in protists, fungi, animals and plants, and may be ubiquitous in eukaryotes. This review discusses the structure and putative roles of NFX1-like proteins, with a focus on human NFX1 and Arabidopsis NFXL1 proteins. By means of manual sequence analysis and application of hidden Markov models, we demonstrate that NFX1-like proteins form a specific RING finger motif with a C(4)HC(3) Zn ligand signature and additional distinct features, suggesting that these proteins function as E3 ubiquitin ligases. Phylogenetic analysis revealed different clades of NFX1-like proteins. The plant proteins group into two distinct clades. The genomes of plants such as rice, Arabidopsis, poplar and grapevine encode one member of each clade, suggesting that the presence of two NFX1-like factors is sufficient in flowering plants. The Arabidopsis proteins presumably fine-tune opposed biotic and abiotic stress response pathways.
Collapse
Affiliation(s)
- C Müssig
- Universität Potsdam, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
178
|
Ho MH, Saha S, Jenkins JN, Ma DP. Characterization and Promoter Analysis of a Cotton RING-Type Ubiquitin Ligase (E3) Gene. Mol Biotechnol 2010; 46:140-8. [DOI: 10.1007/s12033-010-9280-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
179
|
Eldridge AG, O'Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 2010; 17:4-13. [PMID: 19557013 DOI: 10.1038/cdd.2009.82] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-dependent proteolysis system (UPS) is the main driver of regulated protein degradation in all eukaryotic cells, and it is becoming increasingly clear that defects within this pathway drive a large number of human pathologies. Recent success in the use of proteasome inhibitors in the treatment of hematological malignancies validates the UPS as a viable therapeutic pathway, and substantial effort is now focused on the development of both second-generation proteasome inhibitors as well as novel strategies for the inhibition of upstream UPS enzymes. In this review we discuss the potential 'druggability' of key nodes within the UPS and summarize recent advances within the field.
Collapse
Affiliation(s)
- A G Eldridge
- Department of Cell Regulation, Genentech Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
180
|
Hicks SW, Galán JE. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr Opin Microbiol 2009; 13:41-6. [PMID: 20036613 DOI: 10.1016/j.mib.2009.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/23/2009] [Accepted: 11/28/2009] [Indexed: 01/24/2023]
Abstract
Ubiquitinylation of proteins is a critical mechanism in regulating numerous eukaryotic cellular processes including cell cycle progression, inflammatory response, and vesicular trafficking. Given the importance of ubiquitinylation, it is not surprising that several pathogenic bacteria have developed strategies to exploit various stages of the ubiquitin pathway for their own benefit. One such strategy is the delivery of bacterial 'effector' proteins into the host cell cytosol, which mimic the activities of components of the host ubiquitin pathway. Recent studies have highlighted a number of bacterial effectors that functionally mimic the activity of eukaryotic E3 ubiquitin ligases, including a novel structural class of bacterial E3 ligases that provides a striking example of convergent evolution.
Collapse
Affiliation(s)
- Stuart W Hicks
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
181
|
Zhang N, Kaur R, Akhter S, Legerski RJ. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep 2009; 10:1029-35. [PMID: 19633697 DOI: 10.1038/embor.2009.122] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 11/09/2022] Open
Abstract
Cell division cycle 5-like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre-messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physically with the cell-cycle checkpoint kinase ataxia-telangiectasia and Rad3-related (ATR). Depletion of Cdc5L by RNA-mediated interference methods results in a defective S-phase cell-cycle checkpoint and cellular sensitivity in response to replication-fork blocking agents. Furthermore, we show that Cdc5L is required for the activation of downstream effectors or mediators of ATR checkpoint function such as checkpoint kinase 1 (Chk1), cell cycle checkpoint protein Rad 17 (Rad17) and Fanconi anaemia complementation group D2 protein (FancD2). In addition, we have mapped the ATR-binding region in Cdc5L and show that a deletion mutant that is unable to interact with ATR is defective in the rescue of the checkpoint deficiency in Cdc5L-depleted cells. These findings show a new function for Cdc5L in the regulation of the ATR-mediated cell-cycle checkpoint in response to genotoxic agents.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
182
|
Abstract
E3 ligases confer specificity to ubiquitination by recognizing target substrates and mediating transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to substrate. The activity of most E3s is specified by a RING domain, which binds to an E2 approximately ubiquitin thioester and activates discharge of its ubiquitin cargo. E2-E3 complexes can either monoubiquitinate a substrate lysine or synthesize polyubiquitin chains assembled via different lysine residues of ubiquitin. These modifications can have diverse effects on the substrate, ranging from proteasome-dependent proteolysis to modulation of protein function, structure, assembly, and/or localization. Not surprisingly, RING E3-mediated ubiquitination can be regulated in a number of ways. RING-based E3s are specified by over 600 human genes, surpassing the 518 protein kinase genes. Accordingly, RING E3s have been linked to the control of many cellular processes and to multiple human diseases. Despite their critical importance, our knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E3s remains at a rudimentary stage.
Collapse
Affiliation(s)
- Raymond J Deshaies
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
183
|
Abstract
It has been more than 30 years since the initial report of the discovery of ubiquitin as an 8.5 kDa protein of unknown function expressed universally in living cells. And still, protein modification by covalent conjugation of the ubiquitin molecule is one of the most dynamic posttranslational modifications studied in terms of biochemistry and cell physiology. Ubiquitination plays a central regulatory role in number of eukaryotic cellular processes such as receptor endocytosis, growth-factor signaling, cell-cycle control, transcription, DNA repair, gene silencing, and stress response. Ubiquitin conjugation is a three step concerted action of the E1-E2-E3 enzymes that produces a modified protein. In this review we investigate studies undertaken to identify both ubiquitin and SUMO (small ubiquitin-related modifier) substrates with the goal of understanding how lysine selectivity is achieved. The SUMOylation pathway though distinct from that of ubiquitination, draws many parallels. Based upon the recent findings, we present a model to explain how an individual ubiquitin ligase may target specific lysine residue(s) with the co-operation from a scaffold protein.
Collapse
Affiliation(s)
- Trafina Jadhav
- Program in Cellular and Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | |
Collapse
|
184
|
McGrail JC, Krause A, O'Keefe RT. The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing. Nucleic Acids Res 2009; 37:4205-17. [PMID: 19435883 PMCID: PMC2715229 DOI: 10.1093/nar/gkp341] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.
Collapse
Affiliation(s)
- Joanne C McGrail
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT
| | | | | |
Collapse
|
185
|
Wickliffe K, Williamson A, Jin L, Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev 2009; 109:1537-48. [PMID: 19146381 PMCID: PMC3206288 DOI: 10.1021/cr800414e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Katherine Wickliffe
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Adam Williamson
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Lingyan Jin
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| |
Collapse
|
186
|
Venancio TM, Balaji S, Iyer LM, Aravind L. Reconstructing the ubiquitin network: cross-talk with other systems and identification of novel functions. Genome Biol 2009; 10:R33. [PMID: 19331687 PMCID: PMC2691004 DOI: 10.1186/gb-2009-10-3-r33] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/11/2009] [Accepted: 03/30/2009] [Indexed: 12/31/2022] Open
Abstract
A computational model of the yeast Ubiquitin system highlights interesting biological features including functional interactions between components and interplay with other regulatory mechanisms. Background The ubiquitin system (Ub-system) can be defined as the ensemble of components including Ub/ubiquitin-like proteins, their conjugation and deconjugation apparatus, binding partners and the proteasomal system. While several studies have concentrated on structure-function relationships and evolution of individual components of the Ub-system, a study of the system as a whole is largely lacking. Results Using numerous genome-scale datasets, we assemble for the first time a comprehensive reconstruction of the budding yeast Ub-system, revealing static and dynamic properties. We devised two novel representations, the rank plot to understand the functional diversification of different components and the clique-specific point-wise mutual-information network to identify significant interactions in the Ub-system. Conclusions Using these representations, evidence is provided for the functional diversification of components such as SUMO-dependent Ub-ligases. We also identify novel components of SCF (Skp1-cullin-F-box)-dependent complexes, receptors in the ERAD (endoplasmic reticulum associated degradation) system and a key role for Sus1 in coordinating multiple Ub-related processes in chromatin dynamics. We present evidence for a major impact of the Ub-system on large parts of the proteome via its interaction with the transcription regulatory network. Furthermore, the dynamics of the Ub-network suggests that Ub and SUMO modifications might function cooperatively with transcription control in regulating cell-cycle-stage-specific complexes and in reinforcing periodicities in gene expression. Combined with evolutionary information, the structure of this network helps in understanding the lineage-specific expansion of SCF complexes with a potential role in pathogen response and the origin of the ERAD and ESCRT systems.
Collapse
Affiliation(s)
- Thiago M Venancio
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
187
|
Characterization of cyclophilin-encoding genes in Phytophthora. Mol Genet Genomics 2009; 281:565-78. [PMID: 19221798 DOI: 10.1007/s00438-009-0431-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
Recent research has shown that cyclophilins, proteins that catalyze the isomerization of peptidyl-prolyl bonds, play a variety of important roles in infection, including facilitating host penetration and colonization and activating pathogen effector proteins within the host cytoplasm. In the current study, bioinformatic analysis of the genomes of three species of plant pathogens in the genus Phytophthora has revealed extensive synteny between the 20 or 21 members of the cyclophilin gene family. In P. infestans, extensive EST studies give evidence of the expression of 14 of the 21 genes. Sequences homologous to 12 of the 14 expressed P. infestans cyclophilins were isolated using PCR and gene-specific primers in the broad host range pathogen, P. nicotianae. Quantitative real-time PCR measurements of transcript levels in P. nicotianae at four stages of asexual development and during infection of resistant and susceptible tobacco plants gave evidence of expression of seven of the P. nicotianae homologs. The most abundantly expressed gene, PnCyPA, has a lower mRNA level in zoospores compared to other stages of asexual development and its expression increases during infection of susceptible plants. Immunocytochemical studies indicate that PnCyPA occurs in the nucleus and cytoplasm of P. nicotianae cells and is secreted from germinated cysts.
Collapse
|
188
|
Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1109-21. [PMID: 19196749 DOI: 10.1093/jxb/ern369] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ubiquitin-mediated proteolysis is an integral part of diverse cellular functions, and of the three enzymes involved in linking ubiquitin to protein targets, the E3 ubiquitin ligases are of particular interest as they confer substrate specificity during this process. The E3 ubiquitin ligases can be categorized based on mechanism of action and on the presence of specific domains such as RING, HECT, F-box, and U-box. In plants, the U-box family has undergone a large gene expansion that may be attributable to biological processes unique to the plant life cycle. For example, there are 64 predicted plant U-box (PUB) proteins in Arabidopsis, and the biological roles of many of these have yet to be determined. Research on PUB genes from several different plants has started to elucidate a range of functions for this family, from self-incompatibility and hormone responses to defence and abiotic stress responses. Expression profiling has also been used as a starting point to elucidate PUB function, and has uncovered a strong connection of PUB genes to various stress responses. Finally, some PUB proteins have been linked to receptor kinases as upstream activators, and downstream target substrates are also starting to emerge. The mechanisms of action range from the observation of mono-ubiquitination during non-proteolytic signalling to directed regulation of proteasomal components during stress responses, and cell death appears to be a theme underlying many PUB functions.
Collapse
Affiliation(s)
- Donna Yee
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
189
|
Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin–proteasome system in cardiac dysfunction. Biochim Biophys Acta Mol Basis Dis 2008; 1782:749-63. [DOI: 10.1016/j.bbadis.2008.06.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/12/2008] [Accepted: 06/18/2008] [Indexed: 12/31/2022]
|
190
|
Trujillo M, Ichimura K, Casais C, Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 2008; 18:1396-401. [PMID: 18771922 DOI: 10.1016/j.cub.2008.07.085] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 01/22/2023]
Abstract
The first line of active defense in plants is triggered by invariant microbial epitopes known as pathogen-associated molecular patterns (PAMPs). Perception of PAMPs by receptors activates a plethora of reactions ending in PAMP-triggered immunity (PTI), which contributes to broad-spectrum resistance. Here, we report a homologous triplet of U-box type E3 ubiquitin ligases (PUBs), PUB22, PUB23, and PUB24 in Arabidopsis, that act as negative regulators of PTI in response to several distinct PAMPs. Expression of PUB22/PUB23/PUB24 was induced by PAMPs and infection by pathogens. The pub22/pub23/pub24 triple mutant displayed derepression and impaired downregulation of responses triggered by PAMPs. Immune responses including the oxidative burst, the MPK3 activity, and transcriptional activation of marker genes were increased and/or prolonged. Enhanced activation of PTI responses also resulted in increased resistance against bacterial and oomycete pathogens, which was accompanied by increased production of reactive oxygen species and cell death. Our data provide novel insights into the regulation of immunity in plants and links ubiquitination as a mechanism of negative regulation of PTI.
Collapse
Affiliation(s)
- Marco Trujillo
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
191
|
Abstract
The ubiquitin-proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons that are subject to signalling-dependent modification with those that are controlled by protein folding or assembly, as frequently occurs during protein quality control.
Collapse
|
192
|
Zeng LR, Park CH, Venu RC, Gough J, Wang GL. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. MOLECULAR PLANT 2008; 1:800-15. [PMID: 19825583 DOI: 10.1093/mp/ssn044] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification. The U-box is a recently identified, ubiquitin ligase activity-related protein domain that shows greater presence in plants than in other organisms. In this study, we identified 77 putative U-box proteins from the rice genome using a battery of whole genome analysis algorithms. Most of the U-box protein genes are expressed, as supported by the identification of their corresponding expressed sequence tags (ESTs), full-length cDNAs, or massively parallel signature sequencing (MPSS) tags. Using the same algorithms, we identified 61 U-box proteins from the Arabidopsis genome. The rice and Arabidopsis U-box proteins were classified into nine major classes based on their domain compositions. Comparison between rice and Arabidopsis U-box proteins indicates that the majority of rice and Arabidopsis U-box proteins have the same domain organizations. The inferred phylogeny established the homology between rice and Arabidopsis U-box/ARM proteins. Cell death assay using the rice protoplast system suggests that one rice U-box gene, OsPUB51, might act as a negative regulator of cell death signaling. In addition, the selected U-box proteins were found to be functional E3 ubiquitin ligases. The identification and analysis of rice U-box proteins hereby at the genomic level will help functionally characterize this class of E3 ubiquitin ligase in the future.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
193
|
Abstract
Ubiquitin is a highly conserved 76-amino acid polypeptide that is found throughout the eukaryotic kingdom. The covalent conjugation of ubiquitin (often in the form of a polymer) to substrates governs a variety of biological processes ranging from proteolysis to DNA damage tolerance. The functional flexibility of this post-translational modification has its roots in the existence of a large number of ubiquitinating enzymes that catalyze the formation of distinct ubiquitin polymers, which in turn encode different signals. This review summarizes recent advances in the field with an emphasis on the non-canonical functions of polyubiquitination. We also discuss the potential mechanism of chain linkage specification as well as how structural disparity in ubiquitin polymers may be distinguished by ubiquitin receptors to translate the versatile ubiquitin signals into various cellular functions.
Collapse
Affiliation(s)
- W. Li
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 center drive, Bethesda, MD 20892 USA
| | - Y. Ye
- Building 5, Room 433, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 center drive, Bethesda, MD 20892 USA
| |
Collapse
|
194
|
Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:2084-95. [PMID: 18552232 PMCID: PMC2492606 DOI: 10.1104/pp.108.123380] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/08/2008] [Indexed: 05/19/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
Collapse
Affiliation(s)
- Marcus A Samuel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | | | | | | | |
Collapse
|
195
|
|
196
|
Brooks WS, Helton ES, Banerjee S, Venable M, Johnson L, Schoeb TR, Kesterson RA, Crawford DF. G2E3 is a dual function ubiquitin ligase required for early embryonic development. J Biol Chem 2008; 283:22304-15. [PMID: 18511420 DOI: 10.1074/jbc.m803238200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G2E3 is a putative ubiquitin ligase (E3) identified in a microarray screen for mitotic regulatory proteins. It shuttles between the cytoplasm and nucleus, concentrating in nucleoli and relocalizing to the nucleoplasm in response to DNA damage. In this study, we demonstrate that G2E3 is an unusual ubiquitin ligase that is essential in early embryonic development to prevent apoptotic death. This protein has a catalytically inactive HECT domain and two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination. To address in vivo function, we generated a knock-out mouse model of G2E3 deficiency that incorporates a beta-galactosidase reporter gene under control of the endogenous promoter. Animals heterozygous for G2E3 inactivation are phenotypically normal with no overt change in development, growth, longevity, or fertility, whereas G2E3 null embryos die prior to implantation. Although normal numbers of G2E3(-/-) blastocysts are present at embryonic day 3.5, these blastocysts involute in culture as a result of massive apoptosis. Using beta-galactosidase staining as a marker for protein expression, we demonstrate that G2E3 is predominantly expressed within the central nervous system and the early stages of limb bud formation of the developing embryo. In adult animals, the most intense staining is found in Purkinje cell bodies and cells lining the ductus deferens. In summary, G2E3 is a dual function ubiquitin ligase essential for prevention of apoptosis in early embryogenesis.
Collapse
Affiliation(s)
- William S Brooks
- Department of Cell Biology, University of Alabama, Birmingham, Alabama 35233, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Lorick KL, Yang Y, Jensen JP, Iwai K, Weissman AM. Studies of the ubiquitin proteasome system. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15.9. [PMID: 18228479 DOI: 10.1002/0471143030.cb1509s31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A concept that has arisen over the last decade is that proteins can, in general, be covalently modified by polypeptides, resulting in alterations in their fate and function. The first-identified and most well studied of these modifying polypeptides is ubiquitin. Although targeting for proteasomal degradation is the best studied outcome of ubiquitylation, we now understand that modification of proteins with ubiquitin has numerous other cellular roles that alter protein function and that are unrelated to proteasomal degradation. Ubiquitylation is a complex process that is regulated at the level of both addition and removal of ubiquitin from target proteins. This unit includes a number of different basic protocols that will facilitate the study of components of the ubiquitin system and substrate ubiquitylation both in vitro and in cells. Because another protein modifier, NEDD8, itself regulates aspects of the ubiquitin system, basic protocols on neddylation are also included in this unit.
Collapse
|
198
|
Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 2008; 67:1307-19. [DOI: 10.1111/j.1365-2958.2008.06124.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
199
|
CHIP-Mediated Degradation and DNA Damage-Dependent Stabilization Regulate Base Excision Repair Proteins. Mol Cell 2008; 29:477-87. [DOI: 10.1016/j.molcel.2007.12.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/24/2007] [Accepted: 12/03/2007] [Indexed: 11/24/2022]
|
200
|
Tu D, Li W, Ye Y, Brunger AT. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc Natl Acad Sci U S A 2007; 104:15599-606. [PMID: 17890322 PMCID: PMC2000413 DOI: 10.1073/pnas.0701369104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-beta-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.
Collapse
Affiliation(s)
- Daqi Tu
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University and Howard Hughes Medical Institute, Stanford, CA 94305; and
| | - Wei Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Axel T. Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University and Howard Hughes Medical Institute, Stanford, CA 94305; and
- To whom correspondence should be addressed at:
Stanford University, 318 Campus Drive, Room E300C, Stanford, CA 94305. E-mail:
| |
Collapse
|