151
|
Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 2007; 8:692-702. [PMID: 17700626 DOI: 10.1038/nrm2238] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eukaryotes come in many shapes and sizes, yet one thing that they all seem to share is a decline in vitality and health over time--a process known as ageing. If there are conserved causes of ageing, they may be traced back to common biological structures that are inherently difficult to maintain throughout life. One such structure is chromatin, the DNA-protein complex that stabilizes the genome and dictates gene expression. Studies in the budding yeast Saccharomyces cerevisiae have pointed to chromatin reorganization as a main contributor to ageing in that species, which raises the possibility that similar processes underlie ageing in more complex organisms.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Pathology, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, USA
| | | |
Collapse
|
152
|
Meyer JN, Boyd WA, Azzam GA, Haugen AC, Freedman JH, Van Houten B. Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans. Genome Biol 2007; 8:R70. [PMID: 17472752 PMCID: PMC1929140 DOI: 10.1186/gb-2007-8-5-r70] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/03/2006] [Accepted: 05/01/2007] [Indexed: 11/29/2022] Open
Abstract
Repair of UVC-induced DNA damage in Caenorhabditis elegans is similar kinetically and genetically to repair in humans, and it slows significantly in aging C. elegans. Background Caenorhabditis elegans is an important model for the study of DNA damage and repair related processes such as aging, neurodegeneration, and carcinogenesis. However, DNA repair is poorly characterized in this organism. We adapted a quantitative polymerase chain reaction assay to characterize repair of DNA damage induced by ultraviolet type C (UVC) radiation in C. elegans, and then tested whether DNA repair rates were affected by age in adults. Results UVC radiation induced lesions in young adult C. elegans, with a slope of 0.4 to 0.5 lesions per 10 kilobases of DNA per 100 J/m2, in both nuclear and mitochondrial targets. L1 and dauer larvae were more than fivefold more sensitive to lesion formation than were young adults. Nuclear repair kinetics in a well expressed nuclear gene were biphasic in nongravid adult nematodes: a faster, first order (half-life about 16 hours) phase lasting approximately 24 hours and resulting in removal of about 60% of the photoproducts was followed by a much slower phase. Repair in ten nuclear DNA regions was 15% and 50% higher in more actively transcribed regions in young and aging adults, respectively. Finally, repair was reduced by 30% to 50% in each of the ten nuclear regions in aging adults. However, this decrease in repair could not be explained by a reduction in expression of nucleotide excision repair genes, and we present a plausible mechanism, based on gene expression data, to account for this decrease. Conclusion Repair of UVC-induced DNA damage in C. elegans is similar kinetically and genetically to repair in humans. Furthermore, this important repair process slows significantly in aging C. elegans, the first whole organism in which this question has been addressed.
Collapse
Affiliation(s)
- Joel N Meyer
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Windy A Boyd
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Gregory A Azzam
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Astrid C Haugen
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jonathan H Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
153
|
Yashin AI, Arbeev KG, Akushevich I, Kulminski A, Akushevich L, Ukraintseva SV. Model of hidden heterogeneity in longitudinal data. Theor Popul Biol 2007; 73:1-10. [PMID: 17977568 DOI: 10.1016/j.tpb.2007.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/17/2007] [Accepted: 09/04/2007] [Indexed: 11/29/2022]
Abstract
Variables measured in longitudinal studies of aging and longevity do not exhaust the list of all factors affecting health and mortality transitions. Unobserved factors generate hidden variability in susceptibility to diseases and death in populations and in age trajectories of longitudinally measured indices. Effects of such heterogeneity can be manifested not only in observed hazard rates but also in average trajectories of measured indices. Although effects of hidden heterogeneity on observed mortality rates are widely discussed, their role in forming age patterns of other aging-related characteristics (average trajectories of physiological state, stress resistance, etc.) is less clear. We propose a model of hidden heterogeneity to analyze its effects in longitudinal data. The approach takes the presence of hidden heterogeneity into account and incorporates several major concepts currently developing in aging research (allostatic load, aging-associated decline in adaptive capacity and stress-resistance, age-dependent physiological norms). Simulation experiments confirm identifiability of model's parameters.
Collapse
Affiliation(s)
- Anatoli I Yashin
- Center for Population Health and Aging, Duke University, Trent Hall, Room 002, Box 90408, Durham, NC 27708-0408, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Zahn JM, Kim SK. Systems biology of aging in four species. Curr Opin Biotechnol 2007; 18:355-9. [PMID: 17681777 PMCID: PMC3224768 DOI: 10.1016/j.copbio.2007.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Using DNA microarrays to generate transcriptional profiles of the aging process is a powerful tool for identifying biomarkers of aging. In Caenorhabditis elegans, a number of whole-genome profiling studies identified genes that change expression levels with age. High-throughput RNAi screens in worms determined a number of genes that modulate lifespan when silenced. Transcriptional profiling of the fly head identified a molecular pathway, the 'response to light' gene set, that increases expression with age and could be directly related to the tendency for a reduction in light levels to extend fly's lifespan. In mouse, comparing the gene expression profiles of several drugs to the gene expression profile of caloric restriction identified metformin as a drug whose action could potentially mimic caloric restriction in vivo. Finally, genes in the mitochondrial electron transport chain group decrease expression with age in the human, mouse, fly, and worm.
Collapse
Affiliation(s)
- Jacob M. Zahn
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
- Corresponding author ()
| |
Collapse
|
155
|
Zhan M, Yamaza H, Sun Y, Sinclair J, Li H, Zou S. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genes Dev 2007; 17:1236-43. [PMID: 17623811 PMCID: PMC1933522 DOI: 10.1101/gr.6216607] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 05/24/2007] [Indexed: 01/07/2023]
Abstract
Temporal and tissue-specific alterations in gene expression have profound effects on aging of multicellular organisms. However, much remains unknown about the patterns of molecular changes in different tissues and how different tissues interact with each other during aging. Previous genomic studies on invertebrate aging mostly utilized the whole body or body parts and limited age-points, and failed to address tissue-specific aging. Here we measured genome-wide expression profiles of aging in Drosophila melanogaster for seven tissues representing nervous, muscular, digestive, renal, reproductive, and storage systems at six adult ages. In each tissue, we identified hundreds of age-related genes exhibiting significant changes of transcript levels with age. The age-related genes showed clear tissue-specific patterns: <10% of them in each tissue were in common with any other tissue; <20% of the biological processes enriched with the age-related genes were in common between any two tissues. A significant portion of the age-related genes were those involved in physiological functions regulated by the corresponding tissue. Nevertheless, we identified some overlaps of the age-related functional groups among tissues, suggesting certain common molecular mechanisms that regulate aging in different tissues. This study is one of the first that defined global, temporal, and spatial changes associated with aging from multiple tissues at multiple ages, showing that different tissues age in different patterns in an organism. The spatial and temporal transcriptome data presented in this study provide a basis and a valuable resource for further genetic and genomic investigation of tissue-specific regulation of aging.
Collapse
Affiliation(s)
- Ming Zhan
- Bioinformatics Unit, Branch of Research Resources, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | - Haruyoshi Yamaza
- Functional Genomics Unit, Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | - Yu Sun
- Bioinformatics Unit, Branch of Research Resources, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | - Jason Sinclair
- Functional Genomics Unit, Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | - Huai Li
- Bioinformatics Unit, Branch of Research Resources, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | - Sige Zou
- Functional Genomics Unit, Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| |
Collapse
|
156
|
Jafari M, Khodayari B, Felgner J, Bussel II, Rose MR, Mueller LD. Pioglitazone: an anti-diabetic compound with anti-aging properties. Biogerontology 2007; 8:639-51. [PMID: 17628757 DOI: 10.1007/s10522-007-9105-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Insulin and Insulin-Growth-Factor-like (IGF) signaling pathways are well known longevity pathways in nematodes, insects and mammals. To our knowledge, there are no systematic pharmacological studies evaluating the anti-aging properties of medications that target this pathway in Drosophila. Although there are no published data implicating an anti-aging role for these compounds in Drosophila, we hypothesized that their promising pharmacological profile might decrease mortality. However, the decrease in mortality could be due to a number of potential artifacts and confounds such as fecundity depression, decrease in metabolic rate, or CNS depression. Therefore, the mere finding that a compound decreases mortality does not qualify it as an anti-aging compound. In this study, we evaluated the anti-aging properties of four compounds that might target the insulin signaling pathway in Drosophila. Once it was established that the compound decreased mortality, we proceeded to evaluate possible confounding factors that could have contributed to the mortality reduction. We show that only piolglitazone displayed anti-aging properties. At present, we do not have a mechanistic explanation for this pharmacological disparity.
Collapse
Affiliation(s)
- Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Hartman PS, Ishii N. Chromosome dosage as a life span determinant in Caenorhabiditis elegans. Mech Ageing Dev 2007; 128:437-43. [PMID: 17644160 DOI: 10.1016/j.mad.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/27/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
Caenorhabiditis elegans males live longer than hermaphrodites when cultured individually. Since hermaphrodites contain a pair of X chromosomes (XX) and males are XO (there is no Y chromosome in C. elegans), we questioned whether chromosomal differences per se might impact life span. The use of mutations in the sex-determination genes tra-1 and her-1 allowed us to uncouple sexual phenotype from the normal X chromosomal composition and demonstrate that possession of two X chromosomes limits hermaphrodite life span. We also provide evidence that diplo-X animals live shorter than haplo-X animals because faulty dosage compensation results in inappropriately high expression of X-linked genes in geriatric animals. First, three dosage-compensation-defective Dpy mutants were short lived, but four other Dpy mutants with wild-type dosage compensation had normal life spans. Second, we employed the microarray data generated by Lund and coworkers to show that X-linked gene expression in the roughly 10% of geriatric worms that were still alive between 16 and 19 days was almost 20% higher than autosomal gene expression. While this increase was statistically insignificant owing to wide variation in the gene-to-gene expression, our collective data suggest that age-related reductions in dosage compensation may occur in this nematode and, as a consequence, limit the life span of XX animals.
Collapse
Affiliation(s)
- Phil S Hartman
- Biology Department, Texas Christian University, Fort Worth, TX 76129, USA.
| | | |
Collapse
|
158
|
Lu Y, He X, Zhong S. Cross-species microarray analysis with the OSCAR system suggests an INSR->Pax6->NQO1 neuro-protective pathway in aging and Alzheimer's disease. Nucleic Acids Res 2007; 35:W105-14. [PMID: 17545194 PMCID: PMC1933158 DOI: 10.1093/nar/gkm408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OSCAR is a web platform for cluster and cross-species analysis of microarray data. It provides a comprehensive but friendly environment to both users and algorithm developers. For users, OSCAR provides cluster tools for both single and multiple species data, together with interactive analysis features. For single species data, OSCAR currently provides Hierarchical Clustering, K-means, partition around medoids (PAM), Self-Organizing Map (SOM), Tight Clustering and a novel algorithm called ‘Consensus Tight-clustering’. The new Consensus Tight-clustering algorithm delivers robust gene clusters and its result is more resistant to false positives than other state-of-the-art algorithms. For cross-species data analysis, OSCAR provides two novel computational tools: ‘coherentCluster’, ‘coherentSubset’ and a novel visualization tool: ‘comparative heatmap’. Applying the coherentCluster algorithm to human and fly aging data, we identified several coherent clusters of genes, which share co-regulation patterns that are highly correlated with the aging process in both of the two species. One coherent cluster suggests insulin receptor (INSR) may regulate Pax6 in both species and across different tissues. Further analysis with human brain expression and pathological data suggests an INSR->Pax6->quinone oxidoreductase (NQO1)->detoxification neuro-protective pathway might be present in aging or diseased brain. For algorithm developers, OSCAR is a plug-and-play platform. With little effort, developers can plug their own algorithms into the OSCAR server without revealing the source codes, which will equip their command line executables with user-friendly interface and interactive analysis capability. In summary, OSCAR initiates an open platform for development and application of clustering and cross-species analysis programs. OSCAR stands for an open system for cluster analysis of microarray data. It is available at: http://biocomp.bioen.uiuc.edu/oscar
Collapse
Affiliation(s)
- Yue Lu
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Xin He
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
| | - Sheng Zhong
- Department of Computer Science, Department of Bioengineering and Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA
- *To whom correspondence should be addressed.
| |
Collapse
|
159
|
Ruzanov P, Riddle DL, Marra MA, McKay SJ, Jones SM. Genes that may modulate longevity in C. elegans in both dauer larvae and long-lived daf-2 adults. Exp Gerontol 2007; 42:825-39. [PMID: 17543485 PMCID: PMC2755518 DOI: 10.1016/j.exger.2007.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
We used Serial Analysis of Gene Expression (SAGE) to compare the global transcription profiles of long-lived mutant daf-2 adults and dauer larvae, aiming to identify aging-related genes based on similarity of expression patterns. Genes that are expressed similarly in both long-lived types potentially define a common life-extending program. Comparison of eight SAGE libraries yielded a set of 120 genes, the expression of which was significantly different in long-lived worms vs. normal adults. The gene annotations indicate a strong link between oxidative stress and life span, further supporting the hypothesis that metabolic activity is a major determinant in longevity. The SAGE data show changes in mRNA levels for electron transport chain components, elevated expression of glyoxylate shunt enzymes and significantly reduced expression for components of the TCA cycle in longer-lived nematodes. We propose a model for enhanced longevity through a cytochrome c oxidase-mediated reduction in reactive oxygen species commonly held to be a major contributor to aging.
Collapse
Affiliation(s)
- Peter Ruzanov
- Genome Sciences Centre, BC Cancer Research Centre, Ste 100-570 West 7th Ave Vancouver, BC V5Z 4S6 Canada
| | - Donald L. Riddle
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Marco A. Marra
- Genome Sciences Centre, BC Cancer Research Centre, Ste 100-570 West 7th Ave Vancouver, BC V5Z 4S6 Canada
| | - Sheldon J. McKay
- Genome Sciences Centre, BC Cancer Research Centre, Ste 100-570 West 7th Ave Vancouver, BC V5Z 4S6 Canada
| | - Steven M Jones
- Genome Sciences Centre, BC Cancer Research Centre, Ste 100-570 West 7th Ave Vancouver, BC V5Z 4S6 Canada
| |
Collapse
|
160
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
161
|
Curran SP, Ruvkun G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 2007; 3:e56. [PMID: 17411345 PMCID: PMC1847696 DOI: 10.1371/journal.pgen.0030056] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 02/26/2007] [Indexed: 02/02/2023] Open
Abstract
Evolutionarily conserved mechanisms that control aging are predicted to have prereproductive functions in order to be subject to natural selection. Genes that are essential for growth and development are highly conserved in evolution, but their role in longevity has not previously been assessed. We screened 2,700 genes essential for Caenorhabditis elegans development and identified 64 genes that extend lifespan when inactivated postdevelopmentally. These candidate lifespan regulators are highly conserved from yeast to humans. Classification of the candidate lifespan regulators into functional groups identified the expected insulin and metabolic pathways but also revealed enrichment for translation, RNA, and chromatin factors. Many of these essential gene inactivations extend lifespan as much as the strongest known regulators of aging. Early gene inactivations of these essential genes caused growth arrest at larval stages, and some of these arrested animals live much longer than wild-type adults. daf-16 is required for the enhanced survival of arrested larvae, suggesting that the increased longevity is a physiological response to the essential gene inactivation. These results suggest that insulin-signaling pathways play a role in regulation of aging at any stage in life.
Collapse
Affiliation(s)
- Sean P Curran
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
162
|
Abstract
Several technologies that emerged in the post-genomic era have been particularly useful in dissecting the molecular mechanisms of complex biological processes through the systems approach. Here, we review how three of these technologies, namely transcriptional profiling, large-scale RNA interference (RNAi) and genome-wide location analysis of protein-DNA interactions, have been used in the study of ageing in metazoans. We also highlight recent developments of these three technologies and how these developments are applicable to ageing research.
Collapse
Affiliation(s)
- Ching-Aeng Lim
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672.
| | | |
Collapse
|
163
|
Braeckman BP, Vanfleteren JR. Genetic control of longevity in C. elegans. Exp Gerontol 2007; 42:90-8. [PMID: 16829009 DOI: 10.1016/j.exger.2006.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 11/22/2022]
Abstract
The nematode Caenorhabditis elegans has proven to be a very useful tool for studying the genetics of longevity. Over 70 genes have been found to influence lifespan in this worm. Those related to the Ins/IGF signaling pathway are among the best studied and will be focused on in this review. The master regulator of this pathway, the forkhead transcription factor DAF-16, can activate an enhanced life maintenance program in response to environmental and gonadal inputs. DAF-16 up- and downregulates expression of many genes leading to metabolic alterations and increased stress and microbial resistance. This is generally confirmed by biochemical and physiological data. Longevity mutants are not hypometabolic and probably produce more reactive oxygen species than wild type. However, their high antioxidant capacity may result in lower oxidative damage. Enhanced molecular turnover rates may also play a role in their longevity phenotype.
Collapse
Affiliation(s)
- Bart P Braeckman
- Biology Department, Ghent University, K.L.Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | |
Collapse
|
164
|
Derry WB, Bierings R, van Iersel M, Satkunendran T, Reinke V, Rothman JH. Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ 2006; 14:662-70. [PMID: 17186023 DOI: 10.1038/sj.cdd.4402075] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans CEP-1 activates germline apoptosis in response to genotoxic stress, similar to its mammalian counterpart, tumor suppressor p53. In mammals, there are three p53 family members (p53, p63, and p73) that activate and repress many distinct and overlapping sets of genes, revealing a complex transcriptional regulatory network. Because CEP-1 is the sole p53 family member in C. elegans, analysis of this network is greatly simplified in this organism. We found that CEP-1 functions during normal development in the absence of stress to repress many (331) genes and activate only a few (28) genes. In response to genotoxic stress, 1394 genes are activated and 942 are repressed, many of which contain p53-binding sites. Comparison of the CEP-1 transcriptional network with transcriptional targets of the human p53 family reveals considerable overlap between CEP-1-regulated genes and homologues regulated by human p63 and p53, suggesting a composite p53/p63 action for CEP-1. We found that phg-1, the C. elegans Gas1 (growth arrest-specific 1) homologue, is activated by CEP-1 and is a negative regulator of cell proliferation in the germline in response to genotoxic stress. Further, we find that CEP-1 and PHG-1 mediate the decreased developmental rate and embryonic viability of mutations in the clk-2/TEL2 gene, which regulates lifespan and checkpoint responses.
Collapse
Affiliation(s)
- W B Derry
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
165
|
Yashin AI, Arbeev KG, Akushevich I, Kulminski A, Akushevich L, Ukraintseva SV. Stochastic model for analysis of longitudinal data on aging and mortality. Math Biosci 2006; 208:538-51. [PMID: 17300818 PMCID: PMC2084381 DOI: 10.1016/j.mbs.2006.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/07/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
Aging-related changes in a human organism follow dynamic regularities, which contribute to the observed age patterns of incidence and mortality curves. An organism's 'optimal' (normal) physiological state changes with age, affecting the values of risks of disease and death. The resistance to stresses, as well as adaptive capacity, declines with age. An exposure to improper environment results in persisting deviation of individuals' physiological (and biological) indices from their normal state (due to allostatic adaptation), which, in turn, increases chances of disease and death. Despite numerous studies investigating these effects, there is no conceptual framework, which would allow for putting all these findings together, and analyze longitudinal data taking all these dynamic connections into account. In this paper we suggest such a framework, using a new version of stochastic process model of aging and mortality. Using this model, we elaborated a statistical method for analyses of longitudinal data on aging, health and longevity and tested it using different simulated data sets. The results show that the model may characterize complicated interplay among different components of aging-related changes in humans and that the model parameters are identifiable from the data.
Collapse
Affiliation(s)
- Anatoli I Yashin
- Duke University, Center for Demographic Studies, 2117 Campus Drive, Box 90408, Durham, NC 27708-0408, USA.
| | | | | | | | | | | |
Collapse
|
166
|
Cook PE, Hugo LE, Iturbe-Ormaetxe I, Williams CR, Chenoweth SF, Ritchie SA, Ryan PA, Kay BH, Blows MW, O'Neill SL. The use of transcriptional profiles to predict adult mosquito age under field conditions. Proc Natl Acad Sci U S A 2006; 103:18060-5. [PMID: 17110448 PMCID: PMC1838706 DOI: 10.1073/pnas.0604875103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Indexed: 11/18/2022] Open
Abstract
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
Collapse
Affiliation(s)
- Peter E. Cook
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leon E. Hugo
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Institute of Medical Research, Herston, Queensland 4029, Australia
| | - Iñaki Iturbe-Ormaetxe
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig R. Williams
- Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Cairns, Queensland 4870, Australia; and
| | - Stephen F. Chenoweth
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Scott A. Ritchie
- Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Cairns, Queensland 4870, Australia; and
- Tropical Population Health Unit, Queensland Health, Cairns, Queensland 4870, Australia
| | - Peter A. Ryan
- Queensland Institute of Medical Research, Herston, Queensland 4029, Australia
| | - Brian H. Kay
- Queensland Institute of Medical Research, Herston, Queensland 4029, Australia
| | - Mark W. Blows
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Scott L. O'Neill
- *School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
167
|
Abstract
Each animal species displays a specific life span, rate of aging and pattern of development of age-dependent diseases. The genetic bases of these related features are being studied experimentally in invertebrate and vertebrate model systems as well as in humans through medical records. Three types of mutants are being analyzed: (i) short-lived mutants that are prone to age-dependent diseases and might be models of accelerated aging; (ii) mutants that show overt molecular defects but that do not live shorter lives than controls, and can be used to test specific theories about the molecular causes of aging and age-dependent diseases; and (iii) long-lived mutants that might advance the understanding of the molecular physiology of slow-aging animals and aid the discovery of molecular targets that could be used to manipulate rates of aging to benefit human health. Here, I analyze some of what we know today and discuss what we should try to find out in the future to understand the aging phenomenon.
Collapse
Affiliation(s)
- Siegfried Hekimi
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec H3A 1B1, Canada.
| |
Collapse
|
168
|
Cypser JR, Tedesco P, Johnson TE. Hormesis and aging in Caenorhabditis elegans. Exp Gerontol 2006; 41:935-9. [PMID: 17067771 PMCID: PMC1847401 DOI: 10.1016/j.exger.2006.09.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/22/2022]
Abstract
Hormesis has emerged as an important manipulation for the study of aging. Although hormesis is manifested in manifold combinations of stress and model organism, the mechanisms of hormesis are only partly understood. The increased stress resistance and extended survival caused by hormesis can be manipulated to further our understanding of the roles of intrinsic and induced stress resistance in aging. Genes of the dauer/insulin/insulin-like signaling (IIS) pathway have well-established roles in aging in Caenorhabditis elegans. Here, we discuss the role of some of those genes in the induced stress resistance and induced life extension attributable to hormesis. Mutations in three genes (daf-16, daf-18, and daf-12) block hormetically induced life extension. However, of these three, only daf-18 appears to be required for a full induction of thermotolerance induced by hormesis, illustrating possible separation of the genetic requirements for stress resistance and life extension. Mutations in three other genes of this pathway (daf-3, daf-5, and age-1) do not block induced life extension or induced thermotolerance; daf-5 mutants may be unusually sensitive to hormetic conditions.
Collapse
Affiliation(s)
- James R Cypser
- University of Colorado, Institute for Behavioral Genetics, Box 447 Boulder, CO 80309, Fedex, 1480 30th St., Boulder, CO 80303, USA.
| | | | | |
Collapse
|
169
|
Syntichaki P, Tavernarakis N. Signaling pathways regulating protein synthesis during ageing. Exp Gerontol 2006; 41:1020-5. [PMID: 16829008 DOI: 10.1016/j.exger.2006.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 01/17/2023]
Abstract
Ageing in many organisms, including humans, is accompanied by marked alterations in both general and specific protein synthesis. Protein synthesis is normally under tight control by a broad array of regulatory factors, which facilitate appropriate rates of mRNA translation. Are the wide changes in protein synthesis simply a corollary of the ageing process or do they have a causative role in senescent decline? The jury is still out on this important question. Nevertheless, recent studies reveal an intimate interface between mechanisms that govern the translation of mRNA and molecular pathways implicated in ageing. In our manuscript we consider these links, which potentially underlie age-associated changes in protein synthesis.
Collapse
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
170
|
Abstract
Sch9 appears to be the Saccharomyces cerevisiae homolog of protein kinase B and is involved in the control of numerous nutrient-sensitive processes, including regulation of cell size, cell cycle progression, and stress resistance. Sch9 has also been implicated in the regulation of replicative and chronological life span. Systematic comparison of the phenotypes of sch9 and other AGC kinase mutants in fungal species with their counterparts in model eukaryotic organisms provides insight into the functions of AGC kinases. The availability of data from global studies of protein-protein interactions now makes it possible to predict and validate functional connections between Sch9, its putative substrates, and other proteins. This review highlights several emerging paradigms of AGC kinase signaling that are relevant for growth, development, and aging.
Collapse
Affiliation(s)
- Alex Sobko
- Iogen Corporation, 310 Hunt Club Road East, Ottawa, Ontario, K1V 1C1, Canada.
| |
Collapse
|
171
|
Nitta RT, Jameson SA, Kudlow BA, Conlan LA, Kennedy BK. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol Cell Biol 2006; 26:5360-72. [PMID: 16809772 PMCID: PMC1592700 DOI: 10.1128/mcb.02464-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
172
|
Golden TR, Hubbard A, Melov S. Microarray analysis of variation in individual aging C. elegans: approaches and challenges. Exp Gerontol 2006; 41:1040-5. [PMID: 16876364 DOI: 10.1016/j.exger.2006.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/30/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Aging is generally defined and studied as a population phenomenon. However, there is great interest, especially when discussing human aging, in the identification of factors that influence the life span of an individual organism. The nematode Caenorhabditis elegans provides an excellent model system for the study of aging at the level of the individual, since young nematodes are essentially clonal yet experience a large range of individual life spans. We are conducting gene expression profiling of individual nematodes, with the aim of discovering genes that vary stochastically in expression between individuals of the same age. Such genes are candidates to modulate the ultimate life span achieved by each individual. We here present statistical analysis of gene expression profiles of individual nematodes from two different microarray platforms, examining the issue of technical vs. biological variance as it pertains to uncovering genes of interest in this paradigm of individual aging.
Collapse
Affiliation(s)
- T R Golden
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | | | | |
Collapse
|
173
|
Henderson ST, Bonafè M, Johnson TE. daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 2006; 61:444-60. [PMID: 16720740 DOI: 10.1093/gerona/61.5.444] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhibition of either the insulin-like or target of rapamycin (TOR) pathways in the nematode Caenorhabditis elegans extends life span. Here, we demonstrate that starvation and inhibition of the C. elegans insulin receptor homolog (daf-2) elicits a daf-16-dependent up-regulation of a mitochondrial superoxide dismutase (sod-3). We also find that although heat and oxidative stress result in nuclear localization of the DAF-16 protein, these stressors do not activate a SOD-3 reporter, suggesting that nuclear localization alone may not be sufficient for transcriptional activation of DAF-16. We show that inhibition of either TOR activity or key components of the cognate translational machinery (eIF-4G and EIF-2B homologs) increases life span by both daf-16-dependent and -independent mechanisms. Finally, we demonstrate that at least one nematode hexokinase is localized to the mitochondria. We propose that the increased life spans conferred by alterations in both the TOR and insulin-like pathways function by inappropriately activating food-deprivation pathways.
Collapse
Affiliation(s)
- Samuel T Henderson
- Institute for Behavioral Genetics, Box 447, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
174
|
Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2006; 2:e115. [PMID: 16789832 PMCID: PMC1513263 DOI: 10.1371/journal.pgen.0020115.eor] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/09/2006] [Indexed: 11/19/2022] Open
Abstract
We analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in the kidney and the brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in humans to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.
Collapse
Affiliation(s)
- Jacob M Zahn
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Rebecca Sonu
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Hannes Vogel
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Emily Crane
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Krystyna Mazan-Mamczarz
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ralph Rabkin
- Department of Medicine, Stanford University Medical Center, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Ronald W Davis
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- Department of Biochemistry, Stanford University Medical Center, Stanford, California, United States of America
| | - Kevin G Becker
- Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Art B Owen
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Stuart K Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
175
|
Abstract
We analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in the kidney and the brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in humans to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.
Collapse
|
176
|
Ibáñez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 2006; 5:235-46. [PMID: 16842496 DOI: 10.1111/j.1474-9726.2006.00210.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small, abundant transcripts that can bind partially homologous target messages to inhibit their translation in animal cells. miRNAs have been shown to affect a broad spectrum of biological activities, including developmental fate determination, cell signaling and oncogenesis. Little is known, however, of miRNA contributions to aging. We examined the expression of 114 identified Caenorhabditis elegans miRNAs during the adult lifespan and find that 34 miRNAs exhibit changes in expression during adulthood (P<or= 0.05), 31 with more than a twofold level change. The majority of age-regulated miRNAs decline in relative abundance as animals grow older. Expression profiles of developmental timing regulators lin-4 and let-7 miRNAs, as well as conserved muscle miRNA miR-1, show regulation during adulthood. We also used bioinformatic approaches to predict miRNA targets encoded in the C. elegans genome and we highlight candidate miRNA-regulated genes among C. elegans genes previously shown to affect longevity, genes encoding insulin-like ligands, and genes preferentially expressed in C. elegans muscle. Our observations identify miRNAs as potential modulators of age-related decline and suggest a general reduction of message-specific translational inhibition during aging, a previously undescribed feature of C. elegans aging. Since many C. elegans age-regulated miRNAs are conserved across species, our observations identify candidate age-regulating miRNAs in both nematodes and humans.
Collapse
Affiliation(s)
- Carolina Ibáñez-Ventoso
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson Biological Laboratories, 604 Allison Road, Piscataway NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
177
|
Using whole-genome transcriptional analyses to identify molecular mechanisms of aging. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddmec.2006.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
178
|
Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 2006; 5:59-68. [PMID: 16441844 PMCID: PMC1413581 DOI: 10.1111/j.1474-9726.2006.00192.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blueberry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects.
Collapse
Affiliation(s)
- Mark A Wilson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
179
|
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2006; 39:359-407. [PMID: 16285865 PMCID: PMC2821041 DOI: 10.1146/annurev.genet.39.110304.095751] [Citation(s) in RCA: 2386] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the age-related diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
180
|
Pletcher SD, Libert S, Skorupa D. Flies and their golden apples: the effect of dietary restriction on Drosophila aging and age-dependent gene expression. Ageing Res Rev 2005; 4:451-80. [PMID: 16263339 DOI: 10.1016/j.arr.2005.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
Abstract
Reduced nutrient availability (dietary restriction) extends lifespan in species as diverse as yeast, nematode worms, Daphnia, Drosophila, and mammals. Recent demographic experiments have shown that moderate nutrient manipulation in adult Drosophila affects current mortality rate in a completely reversible manner, which suggests that dietary restriction in Drosophila increases lifespan through a reduction of the current risk of death rather than a slowing of aging-related damage. When examined in the light of the new demographic data, age-dependent changes in gene expression in normal and diet-restricted flies can provide unique insight into the biological processes affected by aging and may help identify molecular pathways that regulate it.
Collapse
Affiliation(s)
- Scott D Pletcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
181
|
Reichert K, Menzel R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. CHEMOSPHERE 2005; 61:229-37. [PMID: 16168746 DOI: 10.1016/j.chemosphere.2005.01.077] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/07/2004] [Accepted: 01/21/2005] [Indexed: 05/04/2023]
Abstract
The soil nematode Caenorhabditis elegans is frequently used in ecotoxicological studies due to its wide distribution in terrestrial habitats, its easy handling in the laboratory, and its sensitivity against different kinds of stress. Since its genome has been completely sequenced, more and more studies are investigating the functional relation of gene expression and phenotypic response. For these reasons C. elegans seems to be an attractive animal for the development of a new, genome based, ecotoxicological test system. In recent years, the DNA array technique has been established as a powerful tool to obtain distinct gene expression patterns in response to different experimental conditions. Using a C. elegans whole genome DNA microarray in this study, the effects of five different xenobiotics on the gene expression of the nematode were investigated. The exposure time for the following five applied compounds beta-NF (5 mg/l), Fla (0.5 mg/l), atrazine (25 mg/l), clofibrate (10 mg/l) and DES (0.5 mg/l) was 48+/-5 h. The analysis of the data showed a clear induction of 203 genes belonging to different families like the cytochromes P450, UDP-glucoronosyltransferases (UDPGT), glutathione S-transferases (GST), carboxylesterases, collagenes, C-type lectins and others. Under the applied conditions, fluoranthene was able to induce most of the induceable genes, followed by clofibrate, atrazine, beta-naphthoflavone and diethylstilbestrol. A decreased expression could be shown for 153 genes with atrazine having the strongest effect followed by fluoranthene, diethylstilbestrol, beta-naphthoflavone and clofibrate. For upregulated genes a change ranging from approximately 2.1- till 42.3-fold and for downregulated genes from approximately 2.1 till 6.6-fold of gene expression could be affected through the applied xenobiotics. The results confirm the applicability of the gene expression for the development of an ecotoxicological test system. Compared to classical tests the main advantages of this new approach will be the increased sensitivity and it's potential for a substance class specific effect determination as well as the large numbers of genes that can be screened rapidly at the same time and the selection of well regulated marker genes to study more in detail.
Collapse
Affiliation(s)
- Kerstin Reichert
- Institute of Biology, Ecotoxicology and Biochemistry, Free University Berlin, Ehrenbergstrasse 26-28, 14195 Berlin, Germany.
| | | |
Collapse
|
182
|
Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 2005; 19:1544-55. [PMID: 15998808 PMCID: PMC1172061 DOI: 10.1101/gad.1308205] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report here the first genome-wide functional genomic screen for longevity genes. We systematically surveyed Caenorhabditis elegans genes using large-scale RNA interference (RNAi), and found that RNAi inactivation of 89 genes extend C. elegans lifespan. Components of the daf-2/insulin-like signaling pathway are recovered, as well as genes that regulate metabolism, signal transduction, protein turnover, and gene expression. Many of these candidate longevity genes are conserved across animal phylogeny. Genetic interaction analyses with the new longevity genes indicate that some act upstream of the daf-16/FOXO transcription factor or the sir2.1 protein deacetylase, and others function independently of daf-16/FOXO and sir2.1, and might define new pathways to regulate lifespan.
Collapse
Affiliation(s)
- Benjamin Hamilton
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJM, Marra MA, Brooks-Wilson AR, Riddle DL. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 2005; 15:603-15. [PMID: 15837805 PMCID: PMC1088289 DOI: 10.1101/gr.3274805] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified longevity-associated genes in a long-lived Caenorhabditis elegans daf-2 (insulin/IGF receptor) mutant using serial analysis of gene expression (SAGE), a method that efficiently quantifies large numbers of mRNA transcripts by sequencing short tags. Reduction of daf-2 signaling in these mutant worms leads to a doubling in mean lifespan. We prepared C. elegans SAGE libraries from 1, 6, and 10-d-old adult daf-2 and from 1 and 6-d-old control adults. Differences in gene expression between daf-2 libraries representing different ages and between daf-2 versus control libraries identified not only single genes, but whole gene families that were differentially regulated. These gene families are part of major metabolic pathways including lipid, protein, and energy metabolism, stress response, and cell structure. Similar expression patterns of closely related family members emphasize the importance of these genes in aging-related processes. Global analysis of metabolism-associated genes showed hypometabolic features in mid-life daf-2 mutants that diminish with advanced age. Comparison of our results to recent microarray studies highlights sets of overlapping genes that are highly conserved throughout evolution and thus represent strong candidate genes that control aging and longevity.
Collapse
Affiliation(s)
- Julius Halaschek-Wiener
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Elemento O, Tavazoie S. Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 2005; 6:R18. [PMID: 15693947 PMCID: PMC551538 DOI: 10.1186/gb-2005-6-2-r18] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/29/2004] [Accepted: 12/03/2004] [Indexed: 11/10/2022] Open
Abstract
We describe a powerful new approach for discovering globally conserved regulatory elements between two genomes. The method is fast, simple and comprehensive, without requiring alignments. Its application to pairs of yeasts, worms, flies and mammals yields a large number of known and novel putative regulatory elements. Many of these are validated by independent biological observations, have spatial and/or orientation biases, are co-conserved with other elements and show surprising conservation across large phylogenetic distances.
Collapse
Affiliation(s)
- Olivier Elemento
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Saeed Tavazoie
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
185
|
Rodwell GEJ, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, Xiao W, Mindrinos M, Crane E, Segal E, Myers BD, Brooks JD, Davis RW, Higgins J, Owen AB, Kim SK. A transcriptional profile of aging in the human kidney. PLoS Biol 2004; 2:e427. [PMID: 15562319 PMCID: PMC532391 DOI: 10.1371/journal.pbio.0020427] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Accepted: 10/07/2004] [Indexed: 11/19/2022] Open
Abstract
In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age. A study of human aging in the kidney reveals similar changes in the transcriptional profile in cortex and medulla, suggesting that a common underlying aging process is taking place
Collapse
Affiliation(s)
- Graham E. J Rodwell
- 1Division of Nephrology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Rebecca Sonu
- 2Department of Developmental Biology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Jacob M Zahn
- 2Department of Developmental Biology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - James Lund
- 2Department of Developmental Biology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Julie Wilhelmy
- 3Department of Biochemistry, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Lingli Wang
- 4Department of Pathology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Wenzhong Xiao
- 3Department of Biochemistry, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Michael Mindrinos
- 3Department of Biochemistry, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Emily Crane
- 2Department of Developmental Biology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Eran Segal
- 5Department of Computer Science, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Bryan D Myers
- 1Division of Nephrology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - James D Brooks
- 6Department of Urology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Ronald W Davis
- 3Department of Biochemistry, Stanford University Medical CenterStanford, CaliforniaUnited States of America
- 7Department of Genetics, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - John Higgins
- 4Department of Pathology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Art B Owen
- 8Department of Statistics, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| | - Stuart K Kim
- 2Department of Developmental Biology, Stanford University Medical CenterStanford, CaliforniaUnited States of America
- 7Department of Genetics, Stanford University Medical CenterStanford, CaliforniaUnited States of America
| |
Collapse
|
186
|
Melov S, Hubbard A. Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. ACTA ACUST UNITED AC 2004; 2004:re7. [PMID: 15498758 DOI: 10.1126/sageke.2004.42.re7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of microarrays as a tool to investigate fundamental biological questions has become ubiquitous over the past several years. Microarrays are becoming as common as the polymerase chain reaction or any of the other tools in the molecular biologist's armory. Unlike experiments involving other tools, however, the design and analysis of microarray experiments present some unique problems to molecular biologists, problems with which statisticians have long been familiar. In this overview of microarrays and aging-related research, we will review selected highlights of microarray studies that have been carried out to study aging to date, as well as discuss some of the potential problems that routinely arise during these types of experiments, especially in the context of aging.
Collapse
Affiliation(s)
- Simon Melov
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | |
Collapse
|
187
|
Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2004; 4:11. [PMID: 15380030 PMCID: PMC524168 DOI: 10.1186/1471-213x-4-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 09/20/2004] [Indexed: 11/18/2022]
Abstract
Background When resources are scant, C. elegans larvae arrest as long-lived dauers under the control of insulin/IGF- and TGFβ-related signaling pathways. However, critical questions remain regarding the regulation of this developmental event. How do three dozen insulin-like proteins regulate one tyrosine kinase receptor to control complex events in dauer, metabolism and aging? How are signals from the TGFβ and insulin/IGF pathways integrated? What gene expression programs do these pathways regulate, and how do they control complex downstream events? Results We have identified genes that show different levels of expression in a comparison of wild-type L2 or L3 larvae (non-dauer) to TGFβ mutants at similar developmental stages undergoing dauer formation. Many insulin/IGF pathway and other known dauer regulatory genes have changes in expression that suggest strong positive feedback by the TGFβ pathway. In addition, many insulin-like ligand and novel genes with similarity to the extracellular domain of insulin/IGF receptors have altered expression. We have identified a large group of regulated genes with putative binding sites for the FOXO transcription factor, DAF-16. Genes with DAF-16 sites upstream of the transcription start site tend to be upregulated, whereas genes with DAF-16 sites downstream of the coding region tend to be downregulated. Finally, we also see strong regulation of many novel hedgehog- and patched-related genes, hormone biosynthetic genes, cell cycle genes, and other regulatory genes. Conclusions The feedback regulation of insulin/IGF pathway and other dauer genes that we observe would be predicted to amplify signals from the TGFβ pathway; this amplification may serve to ensure a decisive choice between "dauer" and "non-dauer", even if environmental cues are ambiguous. Up and down regulation of insulin-like ligands and novel genes with similarity to the extracellular domain of insulin/IGF receptors suggests opposing roles for several members of these large gene families. Unlike in adults, most genes with putative DAF-16 binding sites are upregulated during dauer entry, suggesting that DAF-16 has different activity in dauer versus adult metabolism and aging. However, our observation that the position of putative DAF-16 binding sites is correlated with the direction of regulation suggests a novel method of achieving gene-specific regulation from a single pathway. We see evidence of TGFβ-mediated regulation of several other classes of regulatory genes, and we discuss possible functions of these genes in dauer formation.
Collapse
|
188
|
Cutter AD, Ward S. Sexual and Temporal Dynamics of Molecular Evolution in C. elegans Development. Mol Biol Evol 2004; 22:178-88. [PMID: 15371532 DOI: 10.1093/molbev/msh267] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dissection of the phenotypic and molecular details of development and differentiation is a centuries-old topic in evolutionary biology. However, an adequate understanding is missing for the molecular evolution of genes that are expressed differentially throughout development-across time, tissues, and the sexes. In this study, we investigate the dynamics of gene evolution across Caenorhabditis elegans ontogeny and among genes expressed differentially between each sex and gamete type. Using gene classes identified by genome-wide gene expression developmental time series and comparative sequence analysis with the congener C. briggsae, we demonstrate that genes expressed predominantly after reproductive maturity evolve more rapidly than genes expressed earlier in development and that genes expressed transiently during embryogenesis evolve faster than other embryonic transcripts. These results are indicative of relaxed selection on genes expressed after maturity, in accord with the mutation-accumulation model of aging. Furthermore, genes involved in spermatogenesis reveal more rapid evolution than other phenotypic classes of genes. Average rates of evolution among male soma-related genes indicates that selection acts to maintain males in these androdioecious species, despite their rarity, and the rapid evolution of sperm genes suggests that sexual selection acts on sperm development and function.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA.
| | | |
Collapse
|
189
|
Abstract
We compare the aging of wild-type and long-lived C. elegans by gene expression profiling of individual nematodes. Using a custom cDNA array, we have characterized the gene expression of 4-5 individuals at 4 distinct ages throughout the adult lifespan of wild-type N2 nematodes, and at the same ages for individuals of the long-lived strain daf-2(e1370). Using statistical tools developed for microarray data analysis, we identify genes that differentiate aging N2 from aging daf-2, as well as classes of genes that change with age in a similar way in both genotypes. Our novel approach of studying individual nematodes provides practical advantages, since it obviates the use of mutants or drugs to block reproduction, as well as the use of stressful mass-culturing procedures, that have been required for previous microarray studies of C. elegans. In addition, this approach has the potential to uncover the molecular variability between individuals of a population, variation that is missed when studying pools of thousands of individuals.
Collapse
Affiliation(s)
- Tamara R Golden
- The Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | |
Collapse
|
190
|
Abstract
The nematode Caenorhabditis elegans has been the organism of choice for most aging research, especially genetic approaches to aging. More than 70 longevity genes have been identified, with more to come, and these genes have been the subjects of intense study. I identify the major reasons for this and discuss limitations of this organism for future progress in research on aging.
Collapse
Affiliation(s)
- Thomas E Johnson
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Str., Box 447, Boulder, CO 80309, USA.
| |
Collapse
|
191
|
Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavaré S, Tower J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 2004; 101:7663-8. [PMID: 15136717 PMCID: PMC419663 DOI: 10.1073/pnas.0307605101] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 03/30/2004] [Indexed: 12/24/2022] Open
Abstract
Affymetrix GeneChips were used to measure RNA abundance for approximately 13,500 Drosophila genes in young, old, and 100% oxygen-stressed flies. Data were analyzed by using a recently developed background correction algorithm and a robust multichip model-based statistical analysis that dramatically increased the ability to identify changes in gene expression. Aging and oxidative stress responses shared the up-regulation of purine biosynthesis, heat shock protein, antioxidant, and innate immune response genes. Results were confirmed by using Northerns and transgenic reporters. Immune response gene promoters linked to GFP allowed longitudinal assay of gene expression during aging in individual flies. Immune reporter expression in young flies was partially predictive of remaining life span, suggesting their potential as biomonitors of aging.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Lee SS. Come one, come all. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2004; 2004:pe18. [PMID: 15129005 DOI: 10.1126/sageke.2004.18.pe18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aging is a complex process that involves the gradual functional decline of many different tissues and cells. Gene expression microarray analysis provides a comprehensive view of the gene expression signature associated with age and is particularly valuable for understanding the molecular mechanisms that contribute to the aging process. However, because of the stochastic nature of the aging process, animals of the same chronological age often manifest great physiological differences. Therefore, profiling the gene expression pattern of a large population of aging animals risks either exaggerating or masking the changes in gene expression that correspond to physiological aging. In a recent paper, Golden and Melov surveyed the gene expression profiles of individual aging Caenorhabditis elegans, hoping to circumvent the problem of variability among worms of the same chronological age. This initial analysis of age-dependent gene expression in individual aging worms is an important step toward deciphering the molecular basis of physiological aging.
Collapse
Affiliation(s)
- Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
193
|
Abstract
The results of studies on the effect of pineal indole hormone melatonin on the life span of mice, rats, fruit flies, and worms are critically reviewed. In mice, long-term administration of melatonin was followed by an increase in their life span in 12 experiments and had no effect in 8 of 20 different experiments. In D. melanogaster, the supplementation of melatonin to the nutrient medium during developmental stages gave contradictory results, but when melatonin was added to food throughout the life span, an increase in the longevity of fruit flies has been observed. Melatonin decreased the survival of C. elegans but increased the clonal life span of planaria Paramecium tertaurelia. Available data suggest antioxidant and atherogenic effects of melatonin. Melatonin alone turned out to be neither toxic nor mutagenic in the Ames test and revealed clastogenic activity in high concentration in the COMET assay. Melatonin inhibits mutagenesis induced by irradiation and by indirect chemical mutagens and inhibits the development of spontaneous and chemical-induced tumors in mice and rats. Further studies and clinical trials are needed to verify that melatonin is both safe and has geroprotector efficacy for humans.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, NN Petrov Research Institute of Oncology, St. Petersburg 197758, Russia.
| |
Collapse
|
194
|
Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D. Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 2004; 15:2361-74. [PMID: 15004229 PMCID: PMC404029 DOI: 10.1091/mbc.e03-11-0799] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We used cDNA microarrays in a systematic study of the gene expression responses of HeLa cells and primary human lung fibroblasts to heat shock, endoplasmic reticulum stress, oxidative stress, and crowding. Hierarchical clustering of the data revealed groups of genes with coherent biological themes, including genes that responded to specific stresses and others that responded to multiple types of stress. Fewer genes increased in expression after multiple stresses than in free-living yeasts, which have a large general stress response program. Most of the genes induced by multiple diverse stresses are involved in cell-cell communication and other processes specific to higher organisms. We found substantial differences between the stress responses of HeLa cells and primary fibroblasts. For example, many genes were induced by oxidative stress and dithiothreitol in fibroblasts but not HeLa cells; conversely, a group of transcription factors, including c-fos and c-jun, were induced by heat shock in HeLa cells but not in fibroblasts. The dataset is freely available for search and download at http://microarray-pubs.stanford.edu/human_stress/Home.shtml.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
195
|
McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 2004; 36:197-204. [PMID: 14730301 DOI: 10.1038/ng1291] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 12/15/2003] [Indexed: 12/22/2022]
Abstract
We developed a method for systematically comparing gene expression patterns across organisms using genome-wide comparative analysis of DNA microarray experiments. We identified analogous gene expression programs comprising shared patterns of regulation across orthologous genes. Biological features of these patterns could be identified as highly conserved subpatterns that correspond to Gene Ontology categories. Here, we demonstrate these methods by analyzing a specific biological process, aging, and show that similar analysis can be applied to a range of biological processes. We found that two highly diverged animals, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, implement a shared adult-onset expression program of genes involved in mitochondrial metabolism, DNA repair, catabolism, peptidolysis and cellular transport. Most of these changes were implemented early in adulthood. Using this approach to search databases of gene expression data, we found conserved transcriptional signatures in larval development, embryogenesis, gametogenesis and mRNA degradation.
Collapse
Affiliation(s)
- Steven A McCarroll
- Program in Neuroscience, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2003; 131:311-23. [PMID: 14668411 DOI: 10.1242/dev.00914] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We performed a genome-wide analysis of gene expression in C. elegans to identify germline- and sex-regulated genes. Using mutants that cause defects in germ cell proliferation or gametogenesis, we identified sets of genes with germline-enriched expression in either hermaphrodites or males, or in both sexes. Additionally, we compared gene expression profiles between males and hermaphrodites lacking germline tissue to define genes with sex-biased expression in terminally differentiated somatic tissues. Cross-referencing hermaphrodite germline and somatic gene sets with in situ hybridization data demonstrates that the vast majority of these genes have appropriate spatial expression patterns. Additionally, we examined gene expression at multiple times during wild-type germline development to define temporal expression profiles for these genes. Sex- and germline-regulated genes have a non-random distribution in the genome, with especially strong biases for and against the X chromosome. Comparison with data from large-scale RNAi screens demonstrates that genes expressed in the oogenic germline display visible phenotypes more frequently than expected.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
197
|
Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 2003; 15:657-64. [PMID: 14668486 PMCID: PMC329286 DOI: 10.1091/mbc.e03-07-0532] [Citation(s) in RCA: 545] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The correlation between longevity and stress resistance observed in long-lived mutant animals suggests that the ability to sense and respond to environmental challenges could be important for the regulation of life span. We therefore examined the role of heat shock factor (HSF-1), a master transcriptional regulator of stress-inducible gene expression and protein folding homeostasis, in the regulation of longevity. Down-regulation of hsf-1 by RNA interference suppressed longevity of mutants in an insulin-like signaling (ILS) pathway that functions in the nervous system of Caenorhabditis elegans to influence aging. hsf-1 was also required for temperature-induced dauer larvae formation in an ILS mutant. Using tissue-specific expression of wild-type or dominant negative HSF-1, we demonstrated that HSF-1 acts in multiple tissues to regulate longevity. Down-regulation of individual molecular chaperones, transcriptional targets of HSF-1, also decreased longevity of long-lived mutant but not wild-type animals. However, suppression by individual chaperones was to a lesser extent, suggesting an important role for networks of chaperones. The interaction of ILS with HSF-1 could represent an important molecular strategy to couple the regulation of longevity with an ancient genetic switch that governs the ability of cells to sense and respond to stress.
Collapse
Affiliation(s)
- James F Morley
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
198
|
Abstract
The zebrafish has emerged over the past decade as a major model system for the study of development due to its invertebrate-like advantages coupled with its vertebrate biology. These features also make it a potentially valuable organism for gerontological research. The main advantages of zebrafish include its economical husbandry, small yet accessible size, high reproductive capacity, genetic tractability, and a large and growing biological database. Although zebrafish life span is longer than rodents, it shares the feasibility of large-scale mutational analysis with the extremely short-lived invertebrate models. This review compares zebrafish with the more widely used model organisms used for aging research, including yeast, worms, flies, mice, and humans.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA.
| |
Collapse
|
199
|
Owen AB, Stuart J, Mach K, Villeneuve AM, Kim S. A gene recommender algorithm to identify coexpressed genes in C. elegans. Genome Res 2003; 13:1828-37. [PMID: 12902378 PMCID: PMC403774 DOI: 10.1101/gr.1125403] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most important uses of whole-genome expression data is for the discovery of new genes with similar function to a given list of genes (the query) already known to have closely related function. We have developed an algorithm, called the gene recommender, that ranks genes according to how strongly they correlate with a set of query genes in those experiments for which the query genes are most strongly coregulated. We used the gene recommender to find other genes coexpressed with several sets of query genes, including genes known to function in the retinoblastoma complex. Genetic experiments confirmed that one gene (JC8.6) identified by the gene recommender acts with lin-35 Rb to regulate vulval cell fates, and that another gene (wrm-1) acts antagonistically. We find that the gene recommender returns lists of genes with better precision, for fixed levels of recall, than lists generated using the C. elegans expression topomap.
Collapse
Affiliation(s)
- Art B Owen
- Department of Statistics, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
200
|
McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2003; 2:111-21. [PMID: 12882324 DOI: 10.1046/j.1474-9728.2003.00043.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Caenorhabditis elegans, the forkhead protein DAF-16 transduces insulin-like signals that regulate larval development and adult lifespan. To identify DAF-16-dependent transcriptional alterations that occur in a long-lived C. elegans strain, we used cDNA microarrays and genomic analysis to identify putative direct and indirect DAF-16 transcriptional target genes. Our analysis suggests that DAF-16 action regulates a wide range of physiological responses by altering the expression of genes involved in metabolism, energy generation and cellular stress responses. Furthermore, we observed a large overlap between DAF-16-dependent transcription and genes normally expressed in the long-lived dauer larval stage. Finally, we examined the in vivo role of 35 of these target genes by RNA-mediated interference and identified one gene encoding a putative protease that is necessary for the daf-2 Age phenotype.
Collapse
Affiliation(s)
- Joshua McElwee
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | | | | |
Collapse
|