151
|
Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 2005; 24:5775-89. [PMID: 16123810 DOI: 10.1038/sj.onc.1208924] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past three decades have seen an unremitting quest to identify and understand gastrointestinal stem cells, their plasticity in differentiating across cell types, as well as their role in normal, regenerative, and cancer cells. A fascinating hallmark of stem cells is their ability to undergo assymetric cell division, which entails replication of the DNA followed by division of the nucleus and partitioning of the cytoplasm to yield two different daughter cells: a stem cell as well as a committed progenitor cell, the latter proliferating into differentiated progeny. We are only just beginning to understand how normally quiescent, tissue-specific stem cells interpret a vast array of signals to develop into the gastrointestinal system. These signaling pathways include the transforming growth factor-beta (TGF-beta) superfamily, Wnt, FGFs, Hedgehog, Hox proteins that originate from surrounding mesodermal/stromal tissue as well as endodermal/epithelial tissue. TGF-beta and wnt proteins are key morphogens that ultimately influence cell division and cell fate, so that gut endodermal stem cells enter the cell cycle, and undergo cell division that ultimately leads to differentiated cells such as functional hepatocytes, gastric parietal cells, or gut epithelial cells. Disruptions and errors in this process usually lead to tissue-specific gastrointestinal cancers such as hepatocellular cancers, gastric adenocarcinomas, and colonic adenocarcinomas. An increasingly complex and coherent view of stem/progenitor cell signaling networks, which coordinate cell growth, proliferation, stress management, and survival, is helping to define the fragile areas where malignancies are likely to develop and shows promise for the development of better cancer therapies.
Collapse
Affiliation(s)
- Lopa Mishra
- Department of Surgery, Medicine, The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
152
|
Salman H, Abu-Arish A, Oliel S, Loyter A, Klafter J, Granek R, Elbaum M. Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 2005; 89:2134-45. [PMID: 16040740 PMCID: PMC1366715 DOI: 10.1529/biophysj.105.060160] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many essential processes in eukaryotic cells depend on regulated molecular exchange between its two major compartments, the cytoplasm and the nucleus. In general, nuclear import of macromolecular complexes is dependent on specific peptide signals and their recognition by receptors that mediate translocation through the nuclear pores. Here we address the question of how protein products bearing such nuclear localization signals arrive at the nuclear membrane before import, i.e., by simple diffusion or perhaps with assistance of cytoskeletal elements or cytoskeleton-associated motor proteins. Using direct single-particle tracking and detailed statistical analysis, we show that the presence of nuclear localization signals invokes active transport along microtubules in a cell-free Xenopus egg extract. Chemical and antibody inhibition of minus-end directed cytoplasmic dynein blocks this active movement. In the intact cell, where microtubules project radially from the centrosome, such an interaction would effectively deliver nuclear-targeted cargo to the nuclear envelope in preparation for import.
Collapse
Affiliation(s)
- Hanna Salman
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
153
|
Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 2005; 65:4228-37. [PMID: 15899814 DOI: 10.1158/0008-5472.can-04-4585] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although transforming growth factor-beta (TGF-beta) is both a suppressor and promoter of tumorigenesis, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we identified the adaptor protein ELF, a beta-spectrin from stem/progenitor cells committed to foregut lineage. ELF activates and modulates Smad4 activation of TGF-beta to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. Analysis of development of colon cancer in (adult) elf+/-/Smad4+/-, elf+/-, Smad4+/-, and gut epithelial cells from elf-/- mutant mouse embryos pinpoints the defect to hyperplasia/adenoma transition. Further analysis of the role of ELF in human colorectal cancer confirms reduced expression of ELF in Dukes' B1 stage tissues (P < 0.05) and of Smad4 in advanced colon cancers (P < 0.05). This study indicates that by modulating Smad 4, ELF has a key role in TGF-beta signaling in the suppression of early colon cancer.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of GI Developmental Biology, Department of Surgery, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Ziegler EC, Ghosh S. Regulating inducible transcription through controlled localization. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2005; 2005:re6. [PMID: 15900032 DOI: 10.1126/stke.2842005re6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many signaling pathways regulate the activity of effector transcription factors by controlling their subcellular localization. Until recently, the cytoplasmic retention of inactive transcription factors was mainly attributed to binding partners that mask the nuclear localization signals (NLSs) of target proteins. Inactive transcription factors were thought to be exclusively cytoplasmic until their activation, after which the NLSs were unmasked to allow nuclear translocation. There is now a growing body of evidence, however, that challenges this simple model. This review discusses recent reports that suggest that inducible transcription factors can constantly shuttle between the cytoplasm and the nucleus, and that their apparent cytoplasmic retention can be achieved by binding partners that mask the NLSs, tether the transcription factor to cytoplasmic structures, or mark the transcription factor for proteasomal degradation. We also discuss the possibility that this more complex model of cytoplasmic retention might be applicable to a broader range of transcription factors and their associated signaling pathways.
Collapse
Affiliation(s)
- Elizabeth C Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
155
|
Teckchandani AM, Birukova AA, Tar K, Verin AD, Tsygankov AY. The multidomain protooncogenic protein c-Cbl binds to tubulin and stabilizes microtubules. Exp Cell Res 2005; 306:114-27. [PMID: 15878338 DOI: 10.1016/j.yexcr.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/27/2005] [Accepted: 02/15/2005] [Indexed: 11/18/2022]
Abstract
The protooncogenic protein c-Cbl is known to regulate the actin cytoskeleton. In this study, we present results indicating that c-Cbl can also regulate the microtubular network. We have shown that c-Cbl binds to tubulin and microtubules through its tyrosine kinase binding (TKB) domain. However, the character of the interactions described in this report is novel, since the G306E mutation, which disrupts the ability of c-Cbl's TKB to bind to tyrosine-phosphorylated proteins, does not affect the observed interaction between c-Cbl and microtubules. Furthermore, overexpression of c-Cbl in human pulmonary artery endothelial cells and COS-7 cells leads to microtubule stabilization. We demonstrate that this effect of c-Cbl is mediated by TKB, and, like c-Cbl binding to microtubules, is independent of the ability of TKB to bind to tyrosine-phosphorylated proteins. Finally, we have shown that c-Cbl directly polymerizes microtubules in vitro, and that TKB is necessary and sufficient for this effect of c-Cbl. In this last phenomenon, as well as in the previous ones, the effect of TKB is not sensitive to the inactivating G306E mutation. Overall, the results presented in this report suggest a novel function for c-Cbl-microtubule binding and stabilization.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
156
|
Danielpour D. Functions and regulation of transforming growth factor-beta (TGF-β) in the prostate. Eur J Cancer 2005; 41:846-57. [PMID: 15808954 DOI: 10.1016/j.ejca.2004.12.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 10/24/2004] [Accepted: 12/02/2004] [Indexed: 12/15/2022]
Abstract
The prostate is a highly androgen-dependent tissue that in humans exhibits marked susceptibility to carcinogenesis. The malignant epithelium generated from this tissue ultimately loses dependence on androgens despite retention or amplification of the androgen receptor. Accumulating evidence support that transforming growth factor-beta (TGF-beta) plays key roles in the control of androgen dependence and acquisition of resistance to such hormonal control. Although TGF-beta functions as a key tumour suppressor of the prostate, it can also promote malignant progression and metastasis of the advanced disease, through undefined mechanisms. In addition to giving an overview of the TGF-beta field as related to its function in prostate cancer, this Review focuses on novel findings that support the tumour suppressor function of TGF-beta is lost or altered by changes in the activity of the androgen receptor, insulin-like growth factor-I, Akt, and mTOR during malignant progression. Understanding the mechanisms of cross-talk between TGF-beta and such growth modulators has important implications for the rational therapeutics of prostate cancer.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center and Department of Pharmacology, Case Western Reserve University, Wolstein Research Building, Room 3-532, 2103 Cornell Road, Cleveland, OH 44106, USA.
| |
Collapse
|
157
|
Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2005; 35:83-92. [PMID: 15265520 DOI: 10.1016/j.jdermsci.2003.12.006] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 02/07/2023]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are pleiotropic cytokines that have the ability to regulate numerous cell functions, including proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and production of extracellular matrix, allowing them to play an important role during embryonic development and for maintenance of tissue homeostasis. Three TGF-beta isoforms have been identified in mammals. They propagate their signal via a signal transduction network involving receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins. Upon phosphorylation and oligomerization, the latter move into the nucleus to regulate transcription of target genes. This review will summarize recent advances in the understanding of the mechanisms underlying SMAD modulation of extracellular matrix gene expression in the context of wound healing and tissue fibrosis.
Collapse
Affiliation(s)
- Meinhard Schiller
- INSERM U532, Institut de Recherche sur la Peau, Université Paris VII, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | | |
Collapse
|
158
|
Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 2005; 280:15992-6001. [PMID: 15647271 DOI: 10.1074/jbc.m411234200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad proteins are critical intracellular mediators of the transforming growth factor-beta, bone morphogenic proteins (BMPs), and activin signaling. Upon ligand binding, the receptor-associated R-Smads are phosphorylated by the active type I receptor serine/threonine kinases. The phosphorylated R-Smads then form heteromeric complexes with Smad4, translocate into the nucleus, and interact with various transcription factors to regulate the expression of downstream genes. Interaction of Smad proteins with cellular partners in the cytoplasm and nucleus is a critical mechanism by which the activities and expression of the Smad proteins are modulated. Here we report a novel step of regulation of the R-Smad function at the inner nuclear membrane through a physical interaction between the integral inner nuclear membrane protein MAN1 and R-Smads. MAN1, through the RNA recognition motif, associates with R-Smads but not Smad4 at the inner nuclear membrane in a ligand-independent manner. Overexpression of MAN1 results in inhibition of R-Smad phosphorylation, heterodimerization with Smad4 and nuclear translocation, and repression of transcriptional activation of the TGFbeta, BMP2, and activin-responsive promoters. This repression of TGFbeta, BMP2, and activin signaling is dependent on the MAN1-Smad interaction because a point mutation that disrupts this interaction abolishes the transcriptional repression by MAN1. Thus, MAN1 represents a new class of R-Smad regulators and defines a previously unrecognized regulatory step at the nuclear periphery.
Collapse
Affiliation(s)
- Deng Pan
- Department of Molecular and Cell Biology, University of California, Berkeley and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Phung-Koskas T, Pilon A, Poüs C, Betzina C, Sturm M, Bourguet-Kondracki ML, Durand G, Drechou A. STAT5B-mediated Growth Hormone Signaling Is Organized by Highly Dynamic Microtubules in Hepatic Cells. J Biol Chem 2005; 280:1123-31. [PMID: 15528207 DOI: 10.1074/jbc.m409918200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the last decade, the notion that microtubules are critical to the spatial organization of signal transduction and contribute to the transmission of signals to downstream targets has been proposed. Because the STAT5B transduction and transcription factor is the major STAT protein activated by growth hormone stimulation in hepatocytes and is a crossroads between many signaling pathways, we studied the involvement of microtubules in STAT5B-mediated growth hormone signaling pathway in the highly differentiated and polarized WIF-B hepatic cell line. We showed that depolymerization of the microtubule network impaired STAT5B translocation to the nucleus upon growth hormone treatment. A significant amount of STAT5B binds to microtubules, while STAT5A and STAT3 are exclusively compartmentalized in the cytosol. Moreover, taxol-induced stabilization of microtubules released STAT5B from its binding, and we show that STAT5B binds specifically to the highly dynamic microtubules and is absent of the stable microtubule subpopulation. The specific involvement of dynamic microtubule subpopulation in growth hormone signaling pathway was confirmed by the inhibition of growth hormone-induced STAT5B nuclear translocation after stabilization of microtubules or specific disruption of highly dynamic microtubules. Upon growth hormone treatment, MT-bound STAT5B was rapidly released from microtubules by a dynein-dependent transport to the nucleus. Altogether, our findings indicate that the labile microtubule subpopulation specifically and dynamically organizes STAT5B-mediated growth hormone signaling in hepatic cells.
Collapse
Affiliation(s)
- Thu Phung-Koskas
- Laboratoire de Biochimie et de Biologie Cellulaire, EA 1595, Faculté de Pharmacie, 5, rue JB. Clément, 92296 Chātenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Pockwinse SM, Rajgopal A, Young DW, Mujeeb KA, Nickerson J, Javed A, Redick S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Doxsey SJ. Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol 2005; 206:354-62. [PMID: 16110492 DOI: 10.1002/jcp.20469] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RUNX/AML transcription factors are critical regulators of cell growth and differentiation in multiple lineages and have been linked to human cancers including acute myelogenous leukemia (RUNX1), as well as breast (RUNX2) and gastric cancers (RUNX3). RUNX proteins are targeted to gene regulatory micro-environments within the nucleus via a specific subnuclear targeting signal. However, the dynamics of RUNX distribution and compartmentalization between the cytoplasm and nucleus is minimally understood. Here we show by immunofluorescence microscopy that RUNX2 relocates from the nucleus to the cytoplasm when microtubules are stabilized by the chemotherapeutic agent taxol. The taxol-dependent cytoplasmic accumulation of RUNX2 is inhibited by leptomycin B, which blocks CRM-1 dependent nuclear export, and is not affected by the protein synthesis inhibitor cycloheximide. Using biochemical assays, we show that endogenous RUNX2 associates with stabilized microtubules in a concentration-dependent manner and that the RUNX2 amino terminus mediates the microtubule association. In soluble fractions of cells, RUNX2 co-immunoprecipitates alpha tubulin suggesting that microtubule binding involves the alpha/beta tubulin subunits. We conclude that RUNX2 associates with microtubules and shuttles between the nucleus and the cytoplasm. We propose that nuclear-cytoplasmic shuttling of RUNX2 may modulate its transcriptional activity, as well as its ability to interface with signal transduction pathways that are integrated at RUNX2 containing subnuclear sites. It is possible that taxol-induced acute depletion of the nuclear levels of RUNX2 and/or other cell growth regulatory factors may represent an alternative pathway by which taxol exerts its biological effects during cancer chemotherapies.
Collapse
Affiliation(s)
- Shirwin M Pockwinse
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Malmström J, Larsen K, Malmström L, Tufvesson E, Parker K, Marchese J, Williamson B, Hattan S, Patterson D, Martin S, Graber A, Juhasz HP, Westergren-Thorsson G, Marko-Varga G. Proteome annotations and identifications of the human pulmonary fibroblast. J Proteome Res 2004; 3:525-37. [PMID: 15253434 DOI: 10.1021/pr034104v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We hereby report on a three year project initiative undertaken by our research team encompassing large-scale protein expression profiling and annotations of human primary lung fibroblast cells. An overview is given of proteomic studies of the fibroblast target cell involved in several diseases such as asthma, idiopatic pulmonary disease, and COPD. It has been the objective within our research team to map and identify the protein expressions occurring in both activated-, as well as resting cell states. The JGGL database www.2DDB.org has been built around these data, allowing advanced hypothesis building using the interactive query bioinformatic tools developed. Gene ontology has been applied to these annotations, classifying and correlating protein expressions to function. The localization as well as the biological processes involved for the annotations are being presented including an annotation-, and sequence-identification strategy, resulting in close to 2000 protein identities. Both gel based, high resolution 2D-gels, and liquid-phase separation (three-dimensional HPLC), as well as the combination of gel- and LC-based approaches (1D-gels and nano-capillary LC, reversed-phase) were utilized. Protein sequencing and structure identities were acquired by a combination of MALDI-, and electrospray-mass spectrometry techniques. Phenotypical and morphological characterizations were also made for this human disease target cell in both stimulated- and resting-cell states. The use of functional assays that demonstrate the key regulating role of growth factors and cytokine stimuli such as PDGF, TGF-beta, and EGF and the effect of ECM molecules such as Biglycan, are also presented and discussed.
Collapse
|
162
|
Grimsby S, Jaensson H, Dubrovska A, Lomnytska M, Hellman U, Souchelnytskyi S. Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett 2004; 577:93-100. [PMID: 15527767 DOI: 10.1016/j.febslet.2004.09.069] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/10/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022]
Abstract
Smad3 is an important component of transforming growth factor-beta (TGFbeta) intracellular signalling. To identify novel interacting proteins of Smad3, we performed pull-down assays with Smad3 constructs fused to glutathione-S-transferase. Proteins which formed complexes with these constructs were analyzed by two-dimensional gel electrophoresis, and were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. We identified 14 proteins interacting with the Smad3 construct lacking the N-terminal Mad homology domain 1 (MH1), and 12 proteins interacting with the construct lacking the C-terminal MH2 domain. Proteins involved in signalling processes, in metabolism regulation, novel proteins, and components of cytoskeleton form four groups of interacting proteins. Interactions of AGP7, sex-determining region Y protein, actin beta and sterol regulatory element binding protein-2 (SREBP-2) proteins with Smad3 constructs were confirmed by immunoblotting with specific antibodies. Interaction of Smad3 with SREBP-2 was also confirmed by co-immunoprecipitation of myc-Smad3 and Flag-SREBP-2 upon expression in mammalian cells. We found that SREBP-2 inhibited the transcriptional activity of Smad3 in luciferase reporter assays.
Collapse
Affiliation(s)
- Susanne Grimsby
- Ludwig Institute for Cancer Research, Box 595, BMC, SE-751 24, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
163
|
Haller K, Rambaldi I, Daniels E, Featherstone M. Subcellular localization of multiple PREP2 isoforms is regulated by actin, tubulin, and nuclear export. J Biol Chem 2004; 279:49384-94. [PMID: 15339927 DOI: 10.1074/jbc.m406046200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PREP, MEIS, and PBX families are mammalian members of the TALE (three amino acid loop extension) class of homeodomain-containing transcription factors. These factors have been implicated in cooperative DNA binding with the HOX class of homeoproteins, but PREP and MEIS interact with PBX in apparently non-HOX-dependent cooperative DNA binding as well. PREP, MEIS, and PBX have all been reported to reside in the cytoplasm in one or more tissues of the developing vertebrate embryo. In the case of PBX, cytoplasmic localization is due to the modulation of nuclear localization signals, nuclear export sequences, and interaction with a cytoplasmic anchoring factor, non-muscle myosin heavy chain II B. Here we report that murine PREP2 exists in multiple isoforms distinguished by interaction with affinity-purified antibodies raised to N- and C-terminal epitopes and by nuclear versus cytoplasmic localization. Alternative splicing gives rise to some of these PREP2 isoforms, including a 25-kDa variant lacking the C-terminal half of the protein and homeodomain and having the potential to act as dominant-negative. We further show that cytoplasmic localization is due to the concerted action of nuclear export, as evidenced by sensitivity to leptomycin B, and cytoplasmic retention by the actin and microtubule cytoskeletons. Cytoplasmic PREP2 colocalizes with both the actin and microtubule cytoskeletons and coimmunoprecipitates with actin and tubulin. Importantly, disruption of either cytoskeletal system redirects cytoplasmic PREP2 to the nucleus. We suggest that transcriptional regulation by PREP2 is modulated through the subcellular distribution of multiple isoforms and by interaction with two distinct cytoskeletal systems.
Collapse
MESH Headings
- Actins/chemistry
- Actins/metabolism
- Active Transport, Cell Nucleus
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- COS Cells
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Cytoskeleton/metabolism
- DNA/chemistry
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Epitopes/chemistry
- Fatty Acids, Unsaturated/pharmacology
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/chemistry
- Immunoprecipitation
- Mice
- Microscopy, Fluorescence
- Microtubules/metabolism
- Molecular Sequence Data
- NIH 3T3 Cells
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA Interference
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transfection
- Tubulin/chemistry
- Tubulin/metabolism
Collapse
Affiliation(s)
- Klaus Haller
- McGill Cancer Centre and Department of Biochemistry, Departments of Medicine, Oncology, and Anatomy and Cell Biology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
164
|
Nicolás FJ, De Bosscher K, Schmierer B, Hill CS. Analysis of Smad nucleocytoplasmic shuttling in living cells. J Cell Sci 2004; 117:4113-25. [PMID: 15280432 DOI: 10.1242/jcs.01289] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signalling leads to phosphorylation and activation of receptor-regulated Smad2 and Smad3, which form complexes with Smad4 and accumulate in the nucleus. The Smads, however, do not seem to reside statically in the cytoplasm in the absence of signalling or in the nucleus upon TGF-β stimulation, but have been suggested to shuttle continuously between these cellular compartments in both the absence and presence of TGF-β. Here we investigate this nucleocytoplasmic shuttling in detail in living cells using fusions of Smad2 and Smad4 with enhanced GFP. We first establish that the GFPSmad fusions behave like wild-type Smads in a variety of cellular assays. We go on to demonstrate directly, using photobleaching experiments, that Smad2 and Smad4 shuttle between the cytoplasm and nucleus in both TGF-β-induced cells and in uninduced cells. In uninduced cells, GFPSmad2 is less mobile in the cytoplasm than is GFPSmad4, suggesting that it may be tethered there. In addition, we show that both GFPSmad2 and GFPSmad4 undergo a substantial decrease in mobility in the nucleus upon TGF-β stimulation, suggesting that active complexes of Smads are tethered in the nucleus, whereas unactivated Smads are more freely diffusible. We propose that regulated cytoplasmic and nuclear retention may play a role in determining the distribution of Smads between the cytoplasm and the nucleus in both uninduced cells and upon TGF-β induction.
Collapse
Affiliation(s)
- Francisco J Nicolás
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
165
|
Wang G, Jiang J. Multiple Cos2/Ci interactions regulate Ci subcellular localization through microtubule dependent and independent mechanisms. Dev Biol 2004; 268:493-505. [PMID: 15063184 DOI: 10.1016/j.ydbio.2004.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/05/2004] [Accepted: 01/09/2004] [Indexed: 11/19/2022]
Abstract
The Hedgehog (Hh) family of secreted proteins governs many developmental processes in both vertebrates and invertebrates. In Drosophila, Hh acts by blocking the formation of a truncated repressor form of Cubitus interruptus (Ci) and by stimulating the nuclear translocation and activity of full-length Ci (Ci155). In the absence of Hh, Ci155 is sequestered in the cytoplasm by forming protein complexes with Costal2 (Cos2), Fused (Fu) and Suppressor of Fused [Su(fu)]. How complex formation regulates Ci155 subcellular localization is not clear. We find that Cos2 interacts with two distinct domains of Ci155, an amino (N)-terminal domain (CDN) and a carboxyl (C)-terminal domain (CORD), and Cos2 competes with Su(fu) for binding to the N-terminal region of Ci155. We provide evidence that both N- and C-terminal Cos2 binding domains are involved in the cytoplasmic retention of Ci155 in imaginal discs. Treating imaginal discs with microtubule-destabilizing reagent nocodazole promotes nuclear translocation of Ci155, suggesting that the microtubule network plays an important role in the cytoplasmic retention of Ci155. In addition, we find that adding a nuclear localization signal (NLS) to exposed regions of Ci155 greatly facilitates its nuclear translocation, suggesting that the cytoplasmic retention of Ci155 may also depend on NLS masking.
Collapse
Affiliation(s)
- Gelin Wang
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | |
Collapse
|
166
|
Morinaga H, Yanase T, Nomura M, Okabe T, Goto K, Harada N, Nawata H. A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology 2004; 145:1860-9. [PMID: 14691014 DOI: 10.1210/en.2003-1182] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine disruptor chemicals are known to cause a range of abnormalities in sexual differentiation and reproduction. One mechanism underlying such effects may be via alteration of aromatase activity, which is responsible for estrogen production. A good screening system for identifying endocrine disruptors has long been desired. We have recently established a human ovarian granulosa-like tumor cell line, KGN, which possesses a relatively high level of aromatase expression and is considered a useful mammalian model for investigating the in vitro effects of various chemicals on aromatase activity. In this study we screened 55 different candidate chemicals for endocrine disruptors by assaying aromatase activity. Only benomyl, known as both a benzimidazole fungicide and a microtubule-interfering agent, was found to induce aromatase activity in association with increased levels of aromatase mRNA in KGN cells. The effect of benomyl was presumed to be mediated by its metabolite carbendazim, because it produced an effect equivalent to that of benomyl. The mechanism underlying the benomyl-induced increase in aromatase activity appears independent of the cAMP-protein kinase A pathway. Treatment with taxol, another class of microtubule-interfering agents, also caused induction of aromatase in KGN cells. Both benomyl and taxol changed KGN cell morphology, including the development of cell roundness and a disorganized network of microtubules. These results indicate that benomyl is a potential endocrine disruptor that provides a novel estrogenicity and operates through a microtubule-interfering mechanism.
Collapse
Affiliation(s)
- Hidetaka Morinaga
- Department of Medicine and Bioregulatory Science (Third Department of Internal Medicine), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
167
|
Lutz M, Krieglstein K, Schmitt S, ten Dijke P, Sebald W, Wizenmann A, Knaus P. Nerve growth factor mediates activation of the Smad pathway in PC12 cells. ACTA ACUST UNITED AC 2004; 271:920-31. [PMID: 15009204 DOI: 10.1111/j.1432-1033.2004.03994.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ligand-induced oligomerization of receptors is a key step in initiating growth factor signaling. Nevertheless, complex biological responses often require additional trans-signaling mechanisms involving two or more signaling cascades. For cells of neuronal origin, it was shown that neurotrophic effects evoked by nerve growth factor or other neurotrophins depend highly on the cooperativity with cytokines that belong to the transforming growth factor beta (TGF-beta) superfamily. We found that rat pheochromocytoma cells, which represent a model system for neuronal differentiation, are unresponsive to TGF-beta1 due to limiting levels of its receptor, TbetaRII. However, stimulation with nerve growth factor leads to activation of the Smad pathway independent of TGF-beta. In contrast to TGF-beta signaling, activation of Smad3 by nerve growth factor does not occur via phosphorylation of the C-terminal SSXS-motif, but leads to heteromeric complex formation with Smad4, nuclear translocation of Smad3 and transcriptional activation of Smad-dependent reporter genes. This response is direct and does not require de novo protein synthesis, as shown by cycloheximide treatment. This initiation of transcription is dependent on functional tyrosine kinase receptors and can be blocked by Smad7. These data provide further evidence that the Smad proteins are not exclusively activated by the classical TGF-beta triggered mechanism. The potential of NGF to activate the Smad pathway independent of TGF-beta represents an important regulatory mechanism with special relevance for the development and function of neuronal cells or of other NGF-sensitive cells, in particular those that are TGF-beta-resistant.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
168
|
Zhu S, Goldschmidt-Clermont PJ, Dong C. Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability. Circ Res 2004; 94:617-25. [PMID: 14739161 DOI: 10.1161/01.res.0000118599.25944.d5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of muscle-specific genes associated with myogenesis is controlled by several myogenic transcription factors, including myogenin and MEF2D. Transforming growth factor-beta (TGF-beta) has been shown to inhibit myogenesis, yet the molecular mechanisms underlying such inhibition are not known. In the present study, TGF-beta was shown to inhibit myogenin and MEF2D expression and myotube formation in C2C12 myoblasts cultured in differentiation medium in a cell density-dependent manner. Transfection of C2C12 cells with Smad7, an antagonist for TGF-beta/Smad signaling, restored the capacity of these cells to differentiate in the presence of TGF-beta or when cultured in growth medium at low confluence, conditions that hinder muscle differentiation. Moreover, nocodazole, a microtubule-destabilizing agent, enhanced the inhibition of myogenesis exerted by TGF-beta, an effect that could be restored by tubulin-polymerizing agent taxol, both of which have been shown to affect Smad-microtubule interaction and regulate TGF-beta/Smad signaling. Our results indicate that TGF-beta inhibits myogenesis, at least in part, via Smad pathway, and provide evidence that low-dose pharmacological agents taxol and nocodazole can be used as a means to modulate myogenesis without affecting cell survival.
Collapse
Affiliation(s)
- Shoukang Zhu
- Division of Cardiology, Duke University Medical Center, 406 Sands Building, Research Drive, Durham, NC 27710, USA
| | | | | |
Collapse
|
169
|
Ellis LR, Warner DR, Greene RM, Pisano MM. Interaction of Smads with collagen types I, III, and V. Biochem Biophys Res Commun 2003; 310:1117-23. [PMID: 14559231 DOI: 10.1016/j.bbrc.2003.09.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ontogenesis of the mammalian orofacial region is controlled by numerous developmental signals, including those initiated by the transforming growth factors beta (TGFbetas). Targeted deletion of the genes encoding several of the TGFbetas in mice has been shown to result in clefts of the secondary palate. Members of the TGFbeta family of growth factors utilize intracellular Smads as signal transducers. Smads 2 and 3 are transcriptional regulators that bind DNA through their conserved MH1 domains and activate/inhibit transcription of TGFbeta-responsive genes through their MH2 domains. Using a yeast two-hybrid screen of a cDNA expression library constructed from fetal murine orofacial tissue, we have identified three types of collagens (types I, III, and V) that are capable of binding to the MH2 domain of Smad 3. These interactions were confirmed by glutathione S-transferase (GST) pull-down assays in which the MH2 domain of Smad 3 fused to GST interacted strongly with in vitro translated, 35S-labeled collagen types I, III, and V. Each collagen also bound to the MH2 domains of Smads 4 and 7 and, to a lesser extent, full-length Smads 1, 2, 3, and 4. Binding of Smads to collagen is a novel observation. Moreover, TGFbeta is a potent regulator of collagen synthesis and turnover during mammalian orofacial development. These data thus suggest an important means of feedback regulation of the TGFbeta signaling cascade.
Collapse
Affiliation(s)
- Leslie R Ellis
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville Birth Defects Center, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
170
|
Kuga H, Morisaki T, Nakamura K, Onishi H, Noshiro H, Uchiyama A, Tanaka M, Katano M. Interferon-gamma suppresses transforming growth factor-beta-induced invasion of gastric carcinoma cells through cross-talk of Smad pathway in a three-dimensional culture model. Oncogene 2003; 22:7838-47. [PMID: 14586410 DOI: 10.1038/sj.onc.1207046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We reconstituted a three-dimensional gastric carcinoma model similar to invasive gastric carcinoma tissue. This model consists of a human gastric carcinoma cell line, GCTM-1, a human fibroblast cell line, TIG-1-20, and transforming growth factor-beta (TGF-beta)-containing type I collagen gel. Using this model, we were able to observe the growth of the two cell types, especially carcinoma cell invasive growth, in real time for more than 30 days. TGF-beta and TIG-1-20 were essential for GCTM-1 invasive growth and proliferation, respectively. TGF-beta induced the enhanced expression of matrix metalloproteinase 9 (MMP9) and urokinase-type plasminogen activator (uPA) in GCTM-1 at both the protein and enzymatic activity levels. The TGF-beta-induced invasion of GCTM-1 was inhibited by MMP9- or uPA-antisense (AS) oligonucleotide transfection to GCTM-1. When exogenous interferon-gamma (IFN-gamma) was added to this model, TGF-beta-dependent GCTM-1 invasion was significantly inhibited, concomitant with the decreased expression of MMP9 and uPA. The intracellular signal transduction of Smad was examined to analyse the mechanism of the inhibitory effect of IFN-gamma. TGF-beta accelerated the phosphorylation of Smad2/3 and nuclear translocation of the Smad2/3-Smad4 complex in GCTM-1, but these TGF-beta-induced effects were significantly inhibited by IFN-gamma-induced Smad7 expression. When GCTM-1 was cotransfected with AS oligonucleotide of Smad2 and Smad3, the TGF-beta-induced invasion of GCTM-1 disappeared. In addition, the inhibitory effect of IFN-gamma on TGF-beta-dependent GCTM-1 invasion vanished by the AS oligonucleotide of Smad7 transfection. These results indicate that IFN-gamma inhibits TGF-beta-dependent GCTM-1 invasion through cross-talk in the Smad pathway. IFN-gamma may be a new therapeutic tool for TGF-beta-expressed invasive carcinomas.
Collapse
Affiliation(s)
- Hirotaka Kuga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Ott C, Iwanciw D, Graness A, Giehl K, Goppelt-Struebe M. Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton. J Biol Chem 2003; 278:44305-11. [PMID: 12951326 DOI: 10.1074/jbc.m309140200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of the cytoskeletal architecture was shown to regulate the expression of CTGF (connective tissue growth factor, CCN2). The microtubule disrupting agents nocodazole and colchicine strongly up-regulated CTGF expression, which was prevented upon stabilization of the microtubules by paclitaxel. As a consequence of microtubule disruption, RhoA was activated and the actin stress fibers were stabilized. Both effects were related to CTGF induction. Overexpression of constitutively active RhoA induced CTGF synthesis. Interference with RhoA signaling by simvastatin, toxinB, C3 toxin, and Y27632 prevented up-regulation of CTGF. Likewise, direct disintegration of the actin cytoskeleton by latrunculin B interfered with nocodazole-mediated up-regulation of CTGF expression. Disassembly of actin fibers by cytochalasin D, however, unexpectedly increased CTGF expression indicating that the content of F-actin per se was not the major determinant for CTGF gene expression. Given the fact that cytochalasin D sequesters G-actin, a decrease in G-actin increased CTGF, while increased levels of G-actin corresponded to reduced CTGF expression. These data link alterations in the microtubule and actin cytoskeleton to the expression of CTGF and provide a molecular basis for the observation that CTGF is up-regulated in cells exposed to mechanical stress.
Collapse
Affiliation(s)
- Christian Ott
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
172
|
Abstract
Transforming growth factor-beta (TGF-beta) proteins regulate cell function, and have key roles in development and carcinogenesis. The intracellular effectors of TGF-beta signalling, the Smad proteins, are activated by receptors and translocate into the nucleus, where they regulate transcription. Although this pathway is inherently simple, combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smad-interacting proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF-beta family responses. Other signalling pathways further regulate Smad activation and function. In addition, TGF-beta receptors activate Smad-independent pathways that not only regulate Smad signalling, but also allow Smad-independent TGF-beta responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Growth and Development, University of California at San Francisco, San Francisco, California 94143-0640, USA.
| | | |
Collapse
|
173
|
Roczniak-Ferguson A, Reynolds AB. Regulation of p120-catenin nucleocytoplasmic shuttling activity. J Cell Sci 2003; 116:4201-12. [PMID: 12953069 DOI: 10.1242/jcs.00724] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
P120-catenin is the prototypic member of a subfamily of Armadillo repeat domain (Arm domain) proteins involved in cell-cell adhesion. Interestingly, all members of the p120 subfamily have also been observed in the nucleus, suggesting that they have additional roles that have yet to be determined. Here, we have developed a novel model system for studying the nucleocytoplasmic shuttling capabilities of p120. We show that simultaneous deletion of both of the conventional nuclear localization sequences (NLSs) in p120 had little effect on its nuclear localization. Instead, the Armadillo repeat domain was essential, and deletion of Arm repeat 3 or Arm repeat 5 eliminated nuclear entry despite the presence of both NLSs. In addition, deletion of Arm repeat 8 resulted in constitutive nuclear localization of p120-3A in both E-cadherin-positive and -negative cell lines. Thus, the core shuttling functions are dependent on the Arm domain. We have also identified two regions within the N-terminus of p120 that modulate nuclear shuttling dynamics of p120. In cadherin-deficient cells, normal epithelial morphology could be restored by both WT-E-cadherin and p120 uncoupled E-cadherin mutants, but only WT-E-cadherin strongly reduced nuclear localization of p120. Moreover, structural changes in p120 that reduced its affinity for E-cadherin increased p120 nuclear localization. Thus, reduced shuttling in the presence of E-cadherin is principally due to sequestration, a condition that is probably dynamic under normal circumstances but completely lost in metastatic cells that have downregulated E-cadherin. Notably, Arm repeats 3 and 5 are necessary for both E-cadherin binding and nuclear translocation, indicating that these repeats have dual roles. Surprisingly, in the absence of E-cadherin there was significant colocalization of cytoplasmic p120 with elements of the tubulin cytoskeleton, particularly in perinuclear locations. Depolymerizing microtubules with nocodazole increased nuclear p120, whereas stabilizing tubulin with taxol reduced nuclear p120 and strongly increased p120 association with microtubules. Thus, p120 has intrinsic nucleocytoplasmic shuttling activity that is modulated, in part, by extrinsic factors such as cadherin binding and interactions with the microtubule network.
Collapse
Affiliation(s)
- Agnes Roczniak-Ferguson
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
174
|
Owens DM, Romero MR, Gardner C, Watt FM. Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J Cell Sci 2003; 116:3783-91. [PMID: 12902406 DOI: 10.1242/jcs.00725] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inappropriate alpha6beta4 integrin expression correlates with a high risk of tumour progression in stratified squamous epithelia. Targeted expression of alpha6beta4 in the suprabasal layers of transgenic mouse epidermis dramatically increased the frequency of papillomas, carcinomas and metastases induced by chemical carcinogenesis, independent of the beta4 cytoplasmic domain. Suprabasal alpha6beta4 also perturbed transforming growth factor beta (TGFbeta) signalling as demonstrated by decreased nuclear Smad2 in transgenic epidermis and tumours. In cultured keratinocytes, suprabasal alpha6beta4 relieved TGFbeta-mediated growth inhibition and blocked nuclear translocation of activated Smad2/3. Responsiveness to TGFbeta could be restored by inhibiting cadherin-mediated cell-cell adhesion or phosphoinositide 3-kinase (PI3-K) activity, but not by inhibiting mitogen-activated protein kinase (MAPK) activity. These data suggest that suprabasal alpha6beta4 promotes tumourigenesis by preventing TGFbeta from suppressing clonal expansion of initiated cells in the epidermal basal layer.
Collapse
Affiliation(s)
- David M Owens
- Keratinocyte Laboratory, CR-UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
175
|
Xiao Z, Brownawell AM, Macara IG, Lodish HF. A novel nuclear export signal in Smad1 is essential for its signaling activity. J Biol Chem 2003; 278:34245-52. [PMID: 12821673 DOI: 10.1074/jbc.m301596200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the subcellular distributions of Smad proteins, the intracellular mediators of transforming growth factor-beta family cytokines, we examined their sequences for nuclear export signals (NES). We found a leucine-rich NES-like motif (termed NES2) in the central linker region of the receptor-regulated Smads that is absent from the other two classes of Smads (Co-Smads and I-Smads). In microinjection assays, NES2 peptide caused nuclear export of a fused glutathione S-transferase protein. Mutations in NES2 converted Smad1 from an even distribution throughout the cells into an exclusive nuclear localization in both transiently and stably expressing cell lines, and this nuclear enrichment was more pronounced than that induced by mutations in NES1. Furthermore, overexpression of CRM1, the cellular export receptor, transforms Smad1 into a mostly cytoplasmic profile by enhancing its nuclear export. The Smad1 NES2 mutant but not the Smad1 NES1 mutant is mostly resistant to this cytoplasmic targeting, indicating that NES2, not NES1, is the major target for CRM1 in Smad1. We further confirmed the functionality of NES2 by a heterokaryon assay. The Smad1 NES1 mutant displays good ligand responsiveness and moderately lowered transcriptional activity compared with wild type Smad1. In contrast, the Smad1 NES2 mutant shows a severe disruption in reporter gene activation, minimal response to bone morphogenetic protein stimulation, and significantly lowered bone morphogenetic protein-induced phosphorylation, which may be the reason for its deficient transcription activity. Thus, we have defined a major NES in Smad1 that is essential for its ligand-induced coupling with cell surface receptors and hence, transcriptional activity. Our study, along with recent studies of the nucleocytoplasmic shuttling of Smad2 and Smad3 proteins, demonstrate that continued nucleocytoplasmic shuttling is a common requisite for the active signaling of R-Smads. Although conserved in other R-Smads such as Smad3, NES2 is not functional in these R-Smads because CRM1 overexpression fails to target them to cytoplasm. Possible reasons for this discrepancy are discussed.
Collapse
Affiliation(s)
- Zhan Xiao
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
176
|
Hubchak SC, Runyan CE, Kreisberg JI, Schnaper HW. Cytoskeletal rearrangement and signal transduction in TGF-beta1-stimulated mesangial cell collagen accumulation. J Am Soc Nephrol 2003; 14:1969-80. [PMID: 12874450 DOI: 10.1097/01.asn.0000076079.02452.92] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
TGF-beta1 has been implicated in glomerular extracellular matrix accumulation, although the precise cellular mechanism(s) by which this occurs is not fully understood. The authors have previously shown that the Smad signaling pathway is present and functional in human glomerular mesangial cells and plays a role in activating type I collagen gene expression. It also was determined that TGF-beta1 activates ERK mitogen-activated protein kinase in mesangial cells to enhance Smad activation and collagen expression. Here, it was shown that TGF-beta1 rapidly induces cytoskeletal rearrangement in human mesangial cells, stimulating smooth muscle alpha-actin detection in stress fibers and promoting focal adhesion complex assembly and redistribution. Disrupting the actin cytoskeleton with cytochalasin D (Cyto D) selectively decreased basal and TGF-beta1-induced cell-layer collagen I and IV accumulation. The balance of matrix metalloproteinases (MMP) and inhibitors was altered by Cyto D or TGF-beta1 alone, increasing MMP activity, increasing MMP-1 expression, and decreasing tissue inhibitor of matrix metalloproteinase-2 expression. Cyto D also decreased basal and TGF-beta1-stimulated alpha1(I) collagen mRNA but did not inhibit TGF-beta-stimulated alpha1(IV) mRNA expression. A similar decrease in alpha1(I) mRNA expression caused by the actin polymerization inhibitor latrunculin B was partially blocked by the addition of jasplakinolide, which promotes actin assembly. The Rho-family GTPase inhibitor C. difficile toxin B or the Rho-associated kinase inhibitor Y-27632 also blocked TGF-beta1-stimulated alpha1(I) mRNA expression. Cytoskeletal disruption reduced Smad2 phosphorylation but had little effect on mRNA stability, TGF-beta receptor number, or receptor affinity. Thus, TGF-beta1-mediated collagen I accumulation is associated with cytoskeletal rearrangement and Rho-GTPase signaling.
Collapse
Affiliation(s)
- Susan C Hubchak
- Department of Pediatrics, Northwestern University Medical School, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
177
|
Hayes SA, Huang X, Kambhampati S, Platanias LC, Bergan RC. p38 MAP kinase modulates Smad-dependent changes in human prostate cell adhesion. Oncogene 2003; 22:4841-50. [PMID: 12894225 DOI: 10.1038/sj.onc.1206730] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor beta (TGFbeta) regulates cell adhesion, proliferation, and differentiation in a variety of cells. Smad proteins are receptor-activated transcription factors that translocate to the nucleus in response to TGFbeta. We demonstrate here that TGFbeta increases cell adhesion in metastatic PC3-M prostate cancer cells. TGFbeta treatment of PC3-M cells leads to nuclear translocation of R-Smad proteins. We show that Smad proteins are necessary, but not sufficient, for TGFbeta-mediated cell adhesion. After showing that TGFbeta upregulated p38 MAP kinase activity in PC3-M cells, we show that inhibition of p38 MAP kinase partially blocked TGFbeta-mediated increase in cell adhesion, as well as nuclear translocation of Smad3. Finally, we show that Smad3 is phosphorylated by p38 MAP kinase in vitro. These findings implicate crosstalk between the MAP kinase and Smad signaling pathways in TGFbeta's regulation of cell adhesion in human prostate cells. This represents a mechanism by which the pleiotropic effects of TGFbeta may be channeled to modulate cell adhesion.
Collapse
Affiliation(s)
- Steven A Hayes
- Division of Hematology/Oncology, Department of Medicine Northwestern University Medical School and the Robert H Lurie Cancer Center of Northwestern University, Olson 8524, 710 N. Fairbanks, Chicago, IL 60611-3008, USA
| | | | | | | | | |
Collapse
|
178
|
Jüllig M, Stott NS. Mitochondrial localization of Smad5 in a human chondrogenic cell line. Biochem Biophys Res Commun 2003; 307:108-13. [PMID: 12849988 DOI: 10.1016/s0006-291x(03)01139-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily and regulate the formation of cartilage and bone tissues as well as other key events during development. TGF-beta superfamily signaling is mediated intracellularly by Smad proteins, some of which can translocate into the cell nucleus and influence gene expression. Although much progress has been made in understanding how TGF-beta superfamily signaling regulates expression of target genes, little formal proof has been presented regarding the intracellular distribution of the Smad proteins before their entry into the nucleus. In the literature, non-nuclear Smad proteins are generally referred to as cytoplasmic. Using confocal microscopy, we here show for the first time that immunofluorescent labeling of Smad5, one of the Smad proteins associated with BMP signaling, colocalizes with the mitochondrion-specific probe MitoTracker, demonstrating a mitochondrial distribution of Smad5 in non-stimulated chondroprogenitor cells.
Collapse
Affiliation(s)
- Mia Jüllig
- Department of Surgery, Faculty of Medicine and Health Science, University of Auckland, Room 3421, 85 Park Road, Grafton, Auckland, New Zealand
| | | |
Collapse
|
179
|
Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. ARTHRITIS AND RHEUMATISM 2003; 48:1964-78. [PMID: 12847691 DOI: 10.1002/art.11157] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Scleroderma is characterized by excessive synthesis and accumulation of matrix proteins in lesional tissues. Transforming growth factor beta (TGFbeta) plays a central role in the pathogenesis of fibrosis by inducing and sustaining activation of fibroblasts; however, the underlying mechanisms are poorly understood. We undertook this study to examine the expression and function of SMADs, recently characterized intracellular effectors of TGFbeta signaling, in scleroderma fibroblasts. METHODS Primary dermal fibroblasts obtained from 14 patients with scleroderma and from 4 healthy adult volunteers were studied. Northern analysis was used to determine the expression of endogenous SMAD messenger RNA (mRNA), and Western analysis was used to determine SMAD protein expression. Intracellular compartmentalization of cellular SMAD proteins in the presence and absence of TGFbeta was studied by antibody-mediated immunofluorescence confocal microscopy. The effect of TGFbeta blockade on SMAD subcellular distribution was determined using anti-TGFbeta antibodies as well as a dominant-negative TGFbeta receptor type II (TGFbetaRII) vector to disrupt TGFbeta responses. SMAD-regulated luciferase reporter expression was examined to investigate the potential functional significance of activation and nuclear accumulation of endogenous SMADs in scleroderma fibroblasts. RESULTS Protein and mRNA levels of SMAD3, but not of SMAD4 or SMAD7, were variably elevated in scleroderma fibroblasts compared with those from healthy controls. In sharp contrast to control fibroblasts, which displayed predominantly cytoplasmic localization of SMAD3/4 in the absence of exogenous TGFbeta, in scleroderma fibroblasts SMAD3 and SMAD4 consistently showed elevated nuclear localization. Furthermore, phosphorylated SMAD2/3 levels were elevated and nuclear localization of phosphorylated SMAD2/3 was increased, suggesting activation of the SMAD pathway in scleroderma fibroblasts. Blockade of autocrine TGFbeta signaling with antibodies or by expression of dominant-negative TGFbetaRII failed to normalize SMAD subcellular distribution, suggesting that elevated nuclear SMAD import was due to alterations downstream of the TGFbeta receptors. The activity of a SMAD-responsive minimal promoter-reporter construct was enhanced in transiently transfected scleroderma fibroblasts. CONCLUSION This study is the first to demonstrate apparently ligand-independent constitutive activation of the intracellular TGFbeta/SMAD signaling axis in scleroderma fibroblasts. SMAD signaling may be a mechanism contributing to the characteristic phenotype of scleroderma fibroblasts and playing a role in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Yasuji Mori
- University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | | | | |
Collapse
|
180
|
Osada SI, Ohmori SY, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 2003; 130:1783-94. [PMID: 12642484 DOI: 10.1242/dev.00401] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A family of inner nuclear membrane proteins is implicated in gene regulation by interacting with chromatin, nuclear lamina and intranuclear proteins; however, the physiological functions of these proteins are largely unknown. Using a Xenopus expression screening approach with an anterior neuroectoderm cDNA library, we have identified an inner nuclear membrane protein, XMAN1, as a novel neuralizing factor that is encoded by the Xenopus ortholog of human MAN1. XMAN1 mRNA is expressed maternally, and appears to be restricted to the entire ectoderm at the early gastrula stage, then to the anterior neuroectoderm at the neurula stage. XMAN1 induces anterior neural markers without mesoderm induction in ectodermal explants, and a partial secondary axis when expressed ventrally by dorsalizing the ventral mesoderm. Importantly, XMAN1 antagonizes bone morphogenetic protein (BMP) signaling downstream of its receptor Alk3, as judged by animal cap assays, in which XMAN1 blocks expression of downstream targets of BMP signaling (Xhox3 and Msx1), and by luciferase reporter assays, in which XMAN1 suppresses BMP-dependent activation of the Xvent2 promoter. Deletion mutant analyses reveal that the neuralizing and BMP-antagonizing activities of XMAN1 reside in the C-terminal region, and that the C-terminal region binds to Smad1, Smad5 and Smad8, which are intracellular mediators of the BMP pathway. Interference with endogenous XMAN1 functions with antisense morpholino oligos leads to the reduction of anterior neuroectoderm. These results provide the first evidence that the nuclear envelope protein XMAN1 acts as a Smad-interacting protein to antagonize BMP signaling during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Osada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
181
|
Huang H, Paliouras M, Rambaldi I, Lasko P, Featherstone M. Nonmuscle myosin promotes cytoplasmic localization of PBX. Mol Cell Biol 2003; 23:3636-45. [PMID: 12724421 PMCID: PMC164772 DOI: 10.1128/mcb.23.10.3636-3645.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/11/2003] [Indexed: 11/20/2022] Open
Abstract
In the absence of MEIS family proteins, two mechanisms are known to restrict the PBX family of homeodomain (HD) transcription factors to the cytoplasm. First, PBX is actively exported from the nucleus via a CRM1-dependent pathway. Second, nuclear localization signals (NLSs) within the PBX HD are masked by intramolecular contacts. In a screen to identify additional proteins directing PBX subcellular localization, we identified a fragment of murine nonmuscle myosin II heavy chain B (NMHCB). The interaction of NMHCB with PBX was verified by coimmunoprecipitation, and immunofluorescence staining revealed colocalization of NMHCB with cytoplasmic PBX in the mouse embryo distal limb bud. The interaction domain in PBX mapped to a conserved PBC-B region harboring a potential coiled-coil structure. In support of the cytoplasmic retention function, the NMHCB fragment competes with MEIS1A to redirect PBX, and the fly PBX homologue EXD, to the cytoplasm of mammalian and insect cells. Interestingly, MEIS1A also localizes to the cytoplasm in the presence of the NMHCB fragment. These activities are largely independent of nuclear export. We show further that the subcellular localization of EXD is deregulated in Drosophila zipper mutants that are depleted of nonmuscle myosin heavy chain. This study reveals a novel and evolutionarily conserved mechanism controlling the subcellular distribution of PBX and EXD proteins.
Collapse
Affiliation(s)
- He Huang
- McGill Cancer Centre, Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
182
|
Abstract
Members of the TGF-beta family of growth factors mediate their effects through activation of intracellular Smad proteins, which form transcriptionally competent complexes that accumulate in the nucleus. Recently, several reports have demonstrated that Smads actively shuttle between the cytoplasm and nucleus by distinct mechanisms. Here, we summarize what is known about the dynamics of Smad localization and suggest reasons why nucleocytoplasmic shuttling might be important for proper signal transduction.
Collapse
Affiliation(s)
- Teresa Reguly
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
183
|
Abstract
Recent work on the fragile fiber mutants of Arabidopsis has identified microtubule-associated proteins that affect the orientation of cellulose microfibrils in cell walls, a major determinant of plant elongation growth. These same proteins are implicated in responses to gibberellin, provoking fresh speculation about how this hormone affects cell elongation and growth.
Collapse
Affiliation(s)
- Randy Foster
- Molecular Biology Institute, Copenhagen University, Øster Farimagsgade 2A, 1353 Copenhagen, Denmark
| | | | | |
Collapse
|
184
|
Abstract
Transforming growth factor beta (TGF-beta) superfamily members are important regulators of many diverse developmental and homeostatic processes and disruption of their activity has been implicated in a variety of human diseases ranging from cancer to chondrodysplasias and pulmonary hypertension. TGF-beta family members signal through transmembrane Ser-Thr kinase receptors that directly regulate the intracellular Smad pathway. Smads are a unique family of signal transduction molecules that can transmit signals directly from the cell surface receptors to the nucleus, where they regulate transcription by interacting with DNA binding partners as well as transcriptional coactivators and corepressors. In addition, more recent evidence indicates that Smads can also function both as substrates and adaptors for ubiquitin protein ligases, which mediate the targeted destruction of intracellular proteins. Smads have thus emerged as multifunctional transmitters of TGF-beta family signals that play critical roles in the development and homeostasis of metazoans.
Collapse
Affiliation(s)
- Arun Mehra
- Dept. of Anatomy and Cell Biology, University of Toronto, Mount Sinai Hospital, ON, Canada
| | | |
Collapse
|
185
|
Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA, Blaser K, Schmidt-Weber CB. SARA and Hgs attenuate susceptibility to TGF-beta1-mediated T cell suppression. FASEB J 2003; 17:194-202. [PMID: 12554698 DOI: 10.1096/fj.02-0550com] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a pluripotent cytokine that controls peripheral T cell tolerance mainly in mucosal immunity. It is secreted by regulatory T cells (Tr /Th3) but also by other immununologically active cells. Smad anchor for receptor activation (SARA) and hepatic growth factor-regulated tyrosine kinase substrate (Hgs) are involved in TGF-beta1 signaling. Both molecules are known to present Smad2 and Smad3 to the TGF-beta receptor complex. The role of SARA and Hgs in TGF-beta1 susceptibility of human CD4+ T cells is unclear. We demonstrate here that TGF-beta1 up-regulates SARA mRNA expression in CD4+ T cells similar to that of Smad7. However, the increase in SARA expression was lower (6.1+/-0.3-fold vs. 25+/-4.1-fold) compared with Smad7 and delayed, with a maximum at 12 h compared with 2 h. Th1 and Th2 cell subsets expressed the same levels of SARA and Hgs. Compared with resting cells, significantly lower levels of the two molecules were found in antigen/allergen- or anti-CD3/CD28-stimulated cells. Down-regulation of SARA and Hgs mRNA in preactivated CD4+ T cells was accompanied by a twofold increase in a TGF-beta1 responsive reporter gene assay. Overexpression of SARA and Hgs in T cells yielded a dose-dependent decrease in cotransfected reporter gene expression, indicating an inhibitory function of both molecules. Thus, SARA and Hgs are regulators of TGF-beta1 susceptibility in T cells and integrate regulatory signals into the influence of TGF-beta1-mediated suppression of human T cells.
Collapse
Affiliation(s)
- S Kunzmann
- Swiss Institute of Allergy and Asthma Research (SIAF), CH-7270 Davos, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L. Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 2003; 299:574-7. [PMID: 12543979 DOI: 10.1126/science.1075994] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
187
|
Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV. Modulation of endotoxin-induced endothelial activity by microtubule depolymerization. THE JOURNAL OF TRAUMA 2003; 54:104-12; discussion 112-3. [PMID: 12544905 DOI: 10.1097/00005373-200301000-00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endotoxin not only activates the Toll-mediated signaling pathway within endothelial cells that leads to neutrophil migration but also causes the polymerization of microtubules. The potential role of this polymerization event, however, is unknown. METHODS Human umbilical vein endothelial cells stimulated with endotoxin were pretreated with or without the microtubule depolymerizing agent colchicine. Toll-mediated signaling events and protein production were in turn investigated by Western blot, gel shift, and enzyme-linked immunosorbent assay. Finally, neutrophil adhesion was assayed fluorometrically under the various conditions. RESULTS Endotoxin led to activation of the various Toll-mediated pathways, production of intercellular adhesion molecule-1 and interleukin-8, and subsequent neutrophil adhesion. Pretreatment with colchicine led to selective inhibition of anti-dual phosphorylated extracellular signal-regulated kinase-1/2, anti-dual phosphorylated c-jun N-terminal kinase, and adaptor protein-1; selective enhancement of p38; and no effect on nuclear factor-kappaB. This selective modulation of intracellular signaling resulted in attenuated intercellular adhesion molecule-1, interleukin-8 and prostaglandin E2 production, but enhanced cyclooxygenase-2 expression. As a result, microtubule disruption led to a significant reduction in neutrophil adhesion. CONCLUSION Microtubule formation is essential to optimal endotoxin-induced intracellular signaling through anti-dual phosphorylated extracellular signal-regulated kinase-1/2, anti-dual phosphorylated c-jun N-terminal kinase, and adaptor protein-1. Failure of these signaling events is associated with a marked reduction in the formation of a proadhesive phenotype that may prove to be beneficial in modulating neutrophil recruitment during sepsis.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, Division of Trauma/Critical Care, University of Cincinnati, 231 Albert Sabin Way, ML 558, Cincinnati, OH 45267-0558, USA.
| | | | | | | | | |
Collapse
|
188
|
Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM. A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13:4484-96. [PMID: 12475967 PMCID: PMC138648 DOI: 10.1091/mbc.e02-05-0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 08/23/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.
Collapse
Affiliation(s)
- Qian Tang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002; 7:1191-204. [PMID: 12485160 DOI: 10.1046/j.1365-2443.2002.00599.x] [Citation(s) in RCA: 525] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily bind to two different serine/threonine kinase receptors, i.e. type I and type II receptors. Upon ligand binding, type I receptors specifically activate intracellular Smad proteins. R-Smads are direct substrates of type I receptors; Smads 2 and 3 are specifically activated by activin/nodal and TGF-beta type I receptors, whereas Smads 1, 5 and 8 are activated by BMP type I receptors. Nearly 30 proteins have been identified as members of the TGF-beta superfamily in mammals, and can be classified based on whether they activate activin/TGF-beta-specific R-Smads (AR-Smads) or BMP-specific R-Smads (BR-Smads). R-Smads form complexes with Co-Smads and translocate into the nucleus, where they regulate the transcription of target genes. AR-Smads bind to various proteins, including transcription factors and transcriptional co-activators or co-repressors, whereas BR-Smads interact with other proteins less efficiently than AR-Smads. Id proteins are induced by BR-Smads, and play important roles in exhibiting some biological effects of BMPs. Understanding the mechanisms of TGF-beta superfamily signalling is thus important for the development of new ways to treat various clinical diseases in which TGF-beta superfamily signalling is involved.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
190
|
Stratton R, Rajkumar V, Ponticos M, Nichols B, Shiwen X, Black CM, Abraham DJ, Leask A. Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J 2002; 16:1949-51. [PMID: 12368229 DOI: 10.1096/fj.02-0204fje] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The SMAD-mediated induction of connective tissue growth factor (CTGF), a fibroproliferative cytokine, by transforming growth factor (TGF)beta is required for the development of sustained fibrosis in humans. Here, we show that in fibroblasts, activation of the Ras/MEK/ERK pathway is required for the SMAD-mediated induction of CTGF by TGFbeta2. We then show that activation of protein kinase A (PKA) in fibroblasts is able to block Ras/MEK/ERK signaling and abolish the fibrotic response. Previously, we found that prostacyclin agonists were able to prevent the induction of CTGF in fibroblasts, and in patients with the fibrotic disease scleroderma. Here, we confirm the in vitro and in vivo antifibrotic effects of prostacyclin derivatives and show that these effects are due to PKA-dependent inhibition of the Ras/MEK/ERK pathway. Ras/MEK/ERK does not directly affect SMAD signaling. The coordinate and varied biological responses to TGFbeta are in part due to the interactions of signaling pathways within target cells. Specific inhibition of fibroblast Ras/MEK/ERK signaling might prevent fibrosis while leaving other physiological effects of TGFbeta unaltered.
Collapse
Affiliation(s)
- Richard Stratton
- Centre for Rheumatology, Royal Free Hospital and University College School of Medicine, London NW3 2PF, UK
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Transforming growth factor-betas (TGF-betas) regulate pivotal cellular processes such as proliferation, differentiation and apoptosis. After ligand binding, the signals are transmitted by two types of transmembrane serine/threonine kinase receptors. The type I receptor phosphorylates Smad proteins, intracellular effectors which upon oligomerization enter the nucleus to regulate transcription following assembly with transcriptional co-factors and co-modulators. The cellular distribution of TGF-beta receptors along with their oligomerization mode and their complex formation with different cell surface receptors represent crucial steps in determining the initiation of distinct signalling cascades. In addition, the broad array of intracellular proteins that influence the TGF-beta pathway demonstrates that signal transduction does not proceed in a linear fashion but rather comprises a complex network of cascades that mutually influence each other. The present review describes the intricate control of TGF-beta signal transduction on various levels of the cascade with particular focus (i) on the assembly of different receptor subtypes and (ii) on the multitude of crosstalk with signal transducers from other pathways. Integration of the TGF-beta/Smad pathway into the signalling network has taken on added importance as it substantially contributes to elicit the plethora of cell- and tissue-specific effects of TGF-beta.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
192
|
Abramovich C, Chavez EA, Lansdorp PM, Humphries RK. Functional characterization of multiple domains involved in the subcellular localization of the hematopoietic Pbx interacting protein (HPIP). Oncogene 2002; 21:6766-71. [PMID: 12360403 DOI: 10.1038/sj.onc.1205784] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Revised: 06/12/2002] [Accepted: 06/18/2002] [Indexed: 11/08/2022]
Abstract
We have previously reported the cloning of the Hematopoietic Pbx Interacting Protein (HPIP), a novel protein discovered through its interaction with Pbx1. HPIP is expressed in early hematopoietic precursors, can bind all members of the Pbx family and can inhibit the transcriptional activation of the oncogene E2A-Pbx. To further understand the function of HPIP, we have analysed its cellular localization and characterized its functional localization domains. Using fluorescence microscopy to follow the distribution of different HPIP sequences fused to GFP, we found that HPIP localizes predominantly to cytoskeletal fibers but has the potential ability to shuttle between the nucleus and the cytosol. The cytoskeletal localization of HPIP is mediated by an N-terminal leucine rich region (between aa 190-218) and can be disrupted by the microtubule destabilizing drug vincristine. The HPIP C-terminal domain (aa 443-731) bears a nuclear export activity that is blocked by the CRM1 inhibitor Leptomycin B. In addition, we found two basic amino acid regions located between aa 485-505 and aa 695-720 that contain nuclear import activities attenuated by nuclear export. These observations support a model in which the constitutive attachment of HPIP to the cytoskeleton could be modified by changes in functional domains implicated in nuclear export, import and cytoskeleton binding sequences, allowing the molecule to shuttle between the nucleus and the cytosol.
Collapse
Affiliation(s)
- Carolina Abramovich
- Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
| | | | | | | |
Collapse
|
193
|
Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 2002; 227:724-52. [PMID: 12324653 DOI: 10.1177/153537020222700905] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.
Collapse
Affiliation(s)
- Corrine Welt
- Reproductive Endocrine Unit and Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
194
|
Qutob MS, Bhattacharjee RN, Pollari E, Yee SP, Torchia J. Microtubule-dependent subcellular redistribution of the transcriptional coactivator p/CIP. Mol Cell Biol 2002; 22:6611-26. [PMID: 12192059 PMCID: PMC135647 DOI: 10.1128/mcb.22.18.6611-6626.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional coactivator p/CIP is a member of a family of nuclear receptor coactivator/steroid receptor coactivator (NCoA/SRC) proteins that mediate the transcriptional activities of nuclear hormone receptors. We have found that p/CIP is predominantly cytoplasmic in a large proportion of cells in various tissues of the developing mouse and in a number of established cell lines. In mouse embryonic fibroblasts, serum deprivation results in the redistribution of p/CIP to the cytoplasmic compartment and stimulation with growth factors or tumor-promoting phorbol esters promotes p/CIP shuttling into the nucleus. Cytoplasmic accumulation of p/CIP is also cell cycle dependent, occurring predominantly during the S and late M phases. Leptomycin B (LMB) treatment results in a marked nuclear accumulation, suggesting that p/CIP undergoes dynamic nuclear export as well as import. We have identified a strong nuclear import signal in the N terminus of p/CIP and two leucine-rich motifs in the C terminus that resemble CRM-1-dependent nuclear export sequences. When fused to green fluorescent protein, the nuclear export sequence region is cytoplasmic and is retained in the nucleus in an LMB-dependent manner. Disruption of the leucine-rich motifs prevents cytoplasmic accumulation. Furthermore, we demonstrate that cytoplasmic p/CIP associates with tubulin and that an intact microtubule network is required for intracellular shuttling of p/CIP. Immunoaffinity purification of p/CIP from nuclear and cytosolic extracts revealed that only nuclear p/CIP complexes possess histone acetyltransferase activity. Collectively, these results suggest that cellular compartmentalization of NCoA/SRC proteins could potentially regulate nuclear hormone receptor-mediated events as well as integrating signals in response to different environmental cues.
Collapse
Affiliation(s)
- Majdi S Qutob
- Cancer Research Laboratories, London Regional Cancer Centre, Ontario, Canada
| | | | | | | | | |
Collapse
|
195
|
Inman GJ, Nicolás FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 2002; 10:283-94. [PMID: 12191474 DOI: 10.1016/s1097-2765(02)00585-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transforming growth factor (TGF)-beta stimulation leads to phosphorylation and activation of Smad2 and Smad3, which form complexes with Smad4 that accumulate in the nucleus and regulate transcription of target genes. Here we demonstrate that, following TGF-beta stimulation of epithelial cells, receptors remain active for at least 3-4 hr, and continuous receptor activity is required to maintain active Smads in the nucleus and for TGF-beta-induced transcription. We show that continuous nucleocytoplasmic shuttling of the Smads during active TGF-beta signaling provides the mechanism whereby the intracellular transducers of the signal continuously monitor receptor activity. Our data therefore explain how, at all times, the concentration of active Smads in the nucleus is directly dictated by the levels of activated receptors in the cytoplasm.
Collapse
Affiliation(s)
- Gareth J Inman
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, United Kingdom
| | | | | |
Collapse
|
196
|
Varga J. Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis. ARTHRITIS AND RHEUMATISM 2002; 46:1703-13. [PMID: 12124852 DOI: 10.1002/art.10413] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John Varga
- Section of Rheumatology, University of Illinois at Chicago, College of Medicine, 60607, USA.
| |
Collapse
|
197
|
Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C, Fotsis T. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 2002; 277:18046-52. [PMID: 11877415 DOI: 10.1074/jbc.m107983200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) receptors require SARA for phosphorylation of the downstream transducing Smad proteins. SARA, a FYVE finger protein, binds to membrane lipids suggesting that activated receptors may interact with downstream signaling molecules at discrete endocytic locations. In the present study, we reveal a critical role for the early endocytic compartment in regulating Smad-dependent signaling. Not only is SARA localized on early endosomes, but also its minimal FYVE finger sequence is sufficient for early endosomal targeting. Expression of a SARA mutant protein lacking the FYVE finger inhibits downstream activin A signaling in endothelial cells. Moreover, a dominant-negative mutant of Rab5, a crucial protein for early endosome dynamics, causes phosphorylation and nuclear translocation of Smads leading to constitutive (i.e. ligand independent) transcriptional activation of a Smad-dependent promoter in endothelial cells. As inhibition of endocytosis using the K44A negative mutant of dynamin and RN-tre did not lead to activation of Smad-dependent transcription, the effects of the dominant-negative Rab5 are likely to be a consequence of altered membrane trafficking of constitutively formed TGFbeta/activin type I/II receptor complexes at the level of early endosomes. The results suggest an important interconnection between early endosomal dynamics and TGFbeta/activin signal transduction pathways.
Collapse
Affiliation(s)
- Ekaterini Panopoulou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
198
|
Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol 2002; 191:1-16. [PMID: 11920677 DOI: 10.1002/jcp.10066] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-beta (TGF-beta) family members which include TGF-betas, activins, and bone morphogenetic proteins (BMPs) regulate a broad spectrum of biological responses on a large variety of cell types. TGF-beta family members initiate their cellular responses by binding to distinct receptors with intrinsic serine/threonine kinase activity and activation of specific downstream intracellular effectors termed Smad proteins. Smads relay the signal from the cell membrane to the nucleus, where they affect the transcription of target genes. Smad activation, subcellular distribution, and stability have been found to be intricately regulated and a broad array of transcription factors have been identified as Smad partners. Important activities of TGF-beta are its potent anti-mitogenic and pro-apoptotic effects that, at least in part, are mediated via Smad proteins. Escape from TGF-beta/Smad-induced growth inhibition and apoptosis is frequently observed in tumors. Certain Smads have been found to be mutated in specific types of cancer and gene ablation of particular Smads in mice has revealed increased rate of tumorigenesis. In late stage tumors, TGF-beta has been shown to function as a tumor promoter. TGF-beta can stimulate the de-differentiation of epithelial cells to malignant invasive and metastatic fibroblastic cells. Interestingly, TGF-beta may mediate these effects directly on tumor cells via subverted Smad-dependent and/or Smad-independent pathways.
Collapse
Affiliation(s)
- Peter Ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
199
|
Edlund S, Landström M, Heldin CH, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002; 13:902-14. [PMID: 11907271 PMCID: PMC99608 DOI: 10.1091/mbc.01-08-0398] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta 1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta 1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is p38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta 1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.
Collapse
Affiliation(s)
- Sofia Edlund
- Ludwig Institute for Cancer Research, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
200
|
Abstract
Smad proteins transduce signals from transforming growth factor-β (TGF-β) superfamily ligands that regulate cell proliferation, differentiation and death through activation of receptor serine/threonine kinases. Phosphorylation of receptor-activated Smads (R-Smads) leads to formation of complexes with the common mediator Smad (Co-Smad), which are imported to the nucleus. Nuclear Smad oligomers bind to DNA and associate with transcription factors to regulate expression of target genes. Alternatively, nuclear R-Smads associate with ubiquitin ligases and promote degradation of transcriptional repressors, thus facilitating target gene regulation by TGF-β. Smads themselves can also become ubiquitinated and are degraded by proteasomes. Finally, the inhibitory Smads (I-Smads) block phosphorylation of R-Smads by the receptors and promote ubiquitination and degradation of receptor complexes, thus inhibiting signalling.
Collapse
Affiliation(s)
- A Moustakas
- Ludwig Institute for Cancer Research, Box 595, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|