151
|
Woolner S, Jacinto A, Martin P. The small GTPase Rac plays multiple roles in epithelial sheet fusion—dynamic studies of Drosophila dorsal closure. Dev Biol 2005; 282:163-73. [PMID: 15936337 DOI: 10.1016/j.ydbio.2005.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 03/05/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.
Collapse
Affiliation(s)
- Sarah Woolner
- Department of Anatomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
152
|
Pappas E, Petrokokkinos L, Angelopoulos A, Maris TG, Kozicki M, Dalezios I, Kouloulias V. Relative output factor measurements of a 5 mm diameter radiosurgical photon beam using polymer gel dosimetry. Med Phys 2005; 32:1513-20. [PMID: 16013707 DOI: 10.1118/1.1916048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Besides the fine spatial resolution inherent in polymer gel-magnetic resonance imaging (MRI) dosimetry, the method also features the potential for multiple measurements of varying sensitive volume in a single experiment by integrating results in MRI voxels of finite dimensions (i.e., in plane resolution by slice thickness). This work exploits this feature of polymer gel dosimetry to propose an experimental technique for relative output factor (OF) measurements of small radiosurgical beams. Two gel vials were irradiated with a 5 and 30 mm diameter 6 MV radiosurgery beam and MR scanned with the same slice thickness and three different in plane resolutions. Using this experimental data set, 5 mm OF measurements with the PinPoint ion chamber are simulated by integrating results over a sensitive volume equal to that of the chamber. Results are found in agreement within experimental uncertainties with actual PinPoint measurements verifying the validity of the proposed experimental procedure. The polymer gel data set is subsequently utilized for OF measurements of the 5 mm beam with varying sensitive volume to discuss the magnitude of detector volume averaging effects. Seeking to correct for volume averaging, results are extrapolated to zero sensitive volume yielding a 5 mm OF measurement of (0.66+/-5%). This result compares reasonably with corresponding ionometric and radiographic film measurements of this work and corresponding, limited, data in the literature. Overall, results suggest that polymer gel dosimetry coupled with the proposed experimental procedure helps overcome not only tissue-equivalence and beam perturbation implications but also volume averaging and positioning uncertainties which constitute the main drawback in small radiosurgical beam dosimetry.
Collapse
Affiliation(s)
- E Pappas
- Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
153
|
Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. ACTA ACUST UNITED AC 2005; 168:941-53. [PMID: 15753128 PMCID: PMC2171774 DOI: 10.1083/jcb.200411179] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rho-associated kinase (ROCK) I mediates signaling from Rho to the actin cytoskeleton. To investigate the in vivo functions of ROCK-I, we generated ROCK-I–deficient mice. Loss of ROCK-I resulted in failure of eyelid closure and closure of the ventral body wall, which gave rise to the eyes open at birth and omphalocele phenotypes in neonates. Most ROCK-I−/− mice died soon after birth as a result of cannibalization of the omphalocele by the mother. Actin cables that encircle the eye in the epithelial cells of the eyelid were disorganized and accumulation of filamentous actin at the umbilical ring was impaired, with loss of phosphorylation of the myosin regulatory light chain (MLC) at both sites, in ROCK-I−/− embryos. Stress fiber formation and MLC phosphorylation induced by EGF were also attenuated in primary keratinocytes from ROCK-I−/− mice. These results suggest that ROCK-I regulates closure of the eyelids and ventral body wall through organization of actomyosin bundles.
Collapse
Affiliation(s)
- Yoshihiko Shimizu
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Horne-Badovinac S, Bilder D. Mass transit: Epithelial morphogenesis in theDrosophila egg chamber. Dev Dyn 2005; 232:559-74. [PMID: 15704134 DOI: 10.1002/dvdy.20286] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cells use a striking array of morphogenetic behaviors to sculpt organs and body plans during development. Although it is clear that epithelial morphogenesis is largely driven by cytoskeletal rearrangements and changes in cell adhesion, little is known about how these processes are coordinated to construct complex biological structures from simple sheets of cells. The follicle cell epithelium of the Drosophila egg chamber exhibits a diverse range of epithelial movements in a genetically accessible tissue, making it an outstanding system for the study of epithelial morphogenesis. In this review, we move chronologically through the process of oogenesis, highlighting the dynamic movements of the follicle cells. We discuss the cellular architecture and patterning events that set the stage for morphogenesis, detail individual cellular movements, and focus on current knowledge of the cellular processes that drive follicle cell behavior.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
155
|
Abstract
Specificity in signal transduction is essential to ensure distinct and appropriate cellular responses to extracellular cues. Determining the mechanisms that mediate specificity is key to understanding complex cell behaviors in development, when multiple pathways fire simultaneously and individual pathways are used recurrently. Jun kinase (JNK) signal transduction exemplifies a pathway that is used multiple times in animal development and homeostasis. Indeed, molecular genetic analysis of JNK signaling in Drosophila has shown that a core signaling module consisting of Hep (JNKK), Bsk (JNK), and Jun regulates various processes, including tissue morphogenesis, wound repair, stress response, innate immune response, and others. Six putative JNKK kinase (JNKKK) family members are present in the fly genome, which could activate the core module in response to distinct stimuli. The diversity of kinases at this level of the signaling hierarchy could substantially increase the number of possible signals that feed into activation of the core module. Recent studies have described the distinct phenotypic consequences of mutations in three of the genes, Slpr (dMLK), Tak1, and Mekk1. These data, together with Drosophila cell culture and genomic array analyses support the contention that the choice of JNKKK may contribute to signaling specificity in vivo. Whether this is achieved by individual JNKKKs or by means of a combinatorial mechanism will require a systematic characterization of compound mutants and a toolbox of transcriptional reporters specific for distinct JNK-dependent processes.
Collapse
Affiliation(s)
- Beth Stronach
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA.
| |
Collapse
|
156
|
|
157
|
Prpic NM, Damen WGM. Cell death during germ band inversion, dorsal closure, and nervous system development in the spiderCupiennius salei. Dev Dyn 2005; 234:222-8. [PMID: 16086320 DOI: 10.1002/dvdy.20529] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cell death is an important feature in the development of animals, because it is one possibility for the embryo to control cell number in developing tissues and thereby determine the form of a growing organ. In Drosophila, cell death has been shown to be involved in the shaping of many different organs of the embryo. We have used terminal deoxynucleotidyl transferase-mediated dUTP-digoxygenin nick end labeling (TUNEL) and an antibody against the activated form of caspase-3 to visualize cell death in the spider Cupiennius salei. We find that similar to Drosophila, massive cell death occurs during the development of the nervous system, suggesting that this is an ancestral feature in the arthropods. We also detect cell death during leg development, most probably related to the formation of tarsal sensory organs. No cell death seems to be required for germ band segmentation. Most importantly, we find that cell death has a role in germ band inversion, a morphogenetic event unique to spiders that involves epithelial fission ventrally and tissue fusion dorsally. Our data show that germ band inversion involves cell death to facilitate the ventral splitting of the germ band, as well as the epithelial fusion during dorsal closure.
Collapse
|
158
|
Farooqui R, Fenteany G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 2004; 118:51-63. [PMID: 15585576 DOI: 10.1242/jcs.01577] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which epithelial, endothelial and other strongly cell-cell adhesive cells migrate collectively as continuous sheets is not clear, even though this process is crucial for embryonic development and tissue repair in virtually all multicellular animals. Wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers involves Rac GTPase-dependent migration of cells both at and behind the wound edge. We report here for the first time that cells behind the margin of wounded MDCK cell monolayers, even hundreds of microns from the edge, extend 'cryptic' lamellipodia against the substratum beneath cells in front of them, toward the wound, as determined by confocal, two-photon and transmission electron microscopy. These so-called submarginal cells nevertheless strictly maintain their more apical cell-cell contacts when they migrate as part of a coherent cell sheet, hiding their basal protrusions from conventional microscopy. The submarginal protrusions display the hallmarks of traditional lamellipodia based on morphology and dynamics. Cells behind the margin therefore actively crawl, instead of just moving passively when cells at the margin pull on them. The rate of migration is inversely proportional to the distance from the margin, and cells move co-ordinately, yet still in part autonomously, toward the wound area. We also clarify the ancillary role played by nonprotrusive contractile actin bundles that assemble in a Rho GTPase-dependent manner at the margin after wounding. In addition, some cell proliferation occurs at a delay after wounding but does not contribute to closure. Instead, it apparently serves to replace damaged cells so that intact spread cells can revert to their normal cuboidal morphology and the original cell density of the unbroken sheet can be restored.
Collapse
Affiliation(s)
- Rizwan Farooqui
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | | |
Collapse
|
159
|
Conder R, Yu H, Ricos M, Hing H, Chia W, Lim L, Harden N. dPak is required for integrity of the leading edge cytoskeleton during Drosophila dorsal closure but does not signal through the JNK cascade. Dev Biol 2004; 276:378-90. [PMID: 15581872 DOI: 10.1016/j.ydbio.2004.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/27/2004] [Accepted: 08/30/2004] [Indexed: 12/25/2022]
Abstract
The Pak kinases are effectors for the small GTPases Rac and Cdc42 and are divided into two subfamilies. Group I Paks possess an autoinhibitory domain that can suppress their kinase activity in trans. In Drosophila, two Group I kinases have been identified, dPak and Pak3. Rac and Cdc42 participate in dorsal closure of the embryo, a process in which a hole in the dorsal epidermis is sealed through migration of the epidermal flanks over a tissue called the amnioserosa. Dorsal closure is driven in part by an actomyosin contractile apparatus at the leading edge of the epidermis, and is regulated by a Jun amino terminal kinase (JNK) cascade. Impairment of dPak function using either loss-of-function mutations or expression of a transgene encoding the autoinhibitory domain of dPak led to disruption of the leading edge cytoskeleton and defects in dorsal closure but did not affect the JNK cascade. Group I Pak kinase activity in the amnioserosa is required for correct morphogenesis of the epidermis, and may be a component of the signaling known to occur between these two tissues. We conclude that dorsal closure requires Group I Pak function in both the amnioserosa and the epidermis.
Collapse
Affiliation(s)
- Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
The powerful genetics, genomics and microscopy tools available for C. elegans make it well suited to studying how epithelial cells adhere to one another and the extracellular matrix, and how the integrated, simultaneous activities of multiple cell adhesion complexes function to shape an organism. Recent studies using forward and reverse genetics have shed light on how phylogenetically conserved cell adhesion complexes, such as the cadherin/catenin complex, claudins, the Discs large complex and hemidesmosome-like attachment structures, regulate epithelial cell adhesion, providing new insights into conserved cell adhesion mechanisms in higher eukaryotes.
Collapse
Affiliation(s)
- Jeff Hardin
- Department of Zoology, University of Wisconsin, 1117 W. Johnson St, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
161
|
Redd MJ, Cooper L, Wood W, Stramer B, Martin P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans R Soc Lond B Biol Sci 2004; 359:777-84. [PMID: 15293805 PMCID: PMC1693361 DOI: 10.1098/rstb.2004.1466] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue repair in embryos is rapid, efficient and perfect and does not leave a scar, an ability that is lost as development proceeds. Whereas adult wound keratinocytes crawl forwards over the exposed substratum to close the gap, a wound in the embryonic epidermis is closed by contraction of a rapidly assembled actin purse string. Blocking assembly of this cable in chick and mouse embryos, by drugs or by inactivation of the small GTPase Rho, severely hinders the re-epithelialization process. Live studies of epithelial repair in GFP-actin-expressing Drosophila embryos reveal actin-rich filopodia associated with the cable, and although these protrusions from leading edge cells appear to play little role in epithelial migration, they are essential for final zippering of the wound edges together-inactivation of Cdc42 prevents their assembly and blocks the final adhesion step. This wound re-epithelialization machinery appears to recapitulate that used during naturally occurring morphogenetic episodes as typified by Drosophila dorsal closure. One key difference between embryonic and adult repair, which may explain why one heals perfectly and the other scars, is the presence of an inflammatory response at sites of adult repair where there is none in the embryo. Our studies of repair in the PU. 1 null mouse, which is genetically incapable of raising an inflammatory response, show that inflammation may indeed be partly responsible for scarring, and our genetic studies of inflammation in zebrafish (Danio rerio) larvae suggest routes to identifying gene targets for therapeutically modulating the recruitment of inflammatory cells and thus improving adult healing.
Collapse
Affiliation(s)
- Michael J Redd
- Department of Anatomny and Developmental Biology, University College London, Gower Street, London WCIE 6BT, UK
| | | | | | | | | |
Collapse
|
162
|
Altan ZM, Fenteany G. c-Jun N-terminal kinase regulates lamellipodial protrusion and cell sheet migration during epithelial wound closure by a gene expression-independent mechanism. Biochem Biophys Res Commun 2004; 322:56-67. [PMID: 15313173 DOI: 10.1016/j.bbrc.2004.07.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Indexed: 02/05/2023]
Abstract
c-Jun N-terminal kinase (JNK) is emerging as an important regulator of cell migration. Perturbing the JNK signaling pathway with three structurally and mechanistically distinct inhibitors that selectively target either JNKs themselves or the upstream mixed-lineage kinases, we found dramatic inhibition of membrane protrusion and cell sheet migration during wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers. Extension of lamellipodia is blocked from the earliest times after wounding in the presence of JNK pathway inhibitors, whereas assembly of non-protrusive actin bundles at the wound margin is unaffected. Inhibitors of the other mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase and p38 MAPK pathways, only have comparatively weak or marginal inhibitory effects on wound closure. Multiple splice variants of both JNK1 and JNK2 are expressed in MDCK cells, and JNK1 and JNK2 are rapidly and transiently activated upon wounding. Phosphorylation of c-Jun does not appear relevant to MDCK wound closure, and membrane protrusion directly after wounding is not affected by inhibitors of RNA or protein synthesis. While most known substrates of JNK are transcription factors or proteins regulating apoptosis, our data indicate that JNK regulates protrusion and migration in a gene expression-independent manner and suggest an important cytoplasmic role for JNK in the control of cell motility.
Collapse
Affiliation(s)
- Z Melis Altan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
163
|
Abstract
Wound healing involves a coordinated series of tissue movements that bears a striking resemblance to various embryonic morphogenetic episodes. There are several ways in which repair recapitulates morphogenesis. We describe how almost identical cytoskeletal machinery is used to repair an embryonic epithelial wound as is involved during the morphogenetic episodes of dorsal closure in Drosophila and eyelid fusion in the mouse foetus. For both naturally occurring and wound-activated tissue movements, JNK signalling appears to be crucial, as does the tight regulation of associated cell divisions and adhesions. In the embryo, both morphogenesis and repair are achieved with a perfect end result, whereas repair of adult tissues leads to scarring. We discuss whether this may be due to the adult inflammatory response, which is absent in the embryo.
Collapse
Affiliation(s)
- Paul Martin
- Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
164
|
Lawrence N, Morel V. Dorsal closure and convergent extension: two polarised morphogenetic movements controlled by similar mechanisms? Mech Dev 2004; 120:1385-93. [PMID: 14623444 DOI: 10.1016/j.mod.2003.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coordinated cell movements contribute to the shaping of developing organisms during morphogenesis. Understanding the molecular basis of these directed movements is a crucial part of understanding the mechanisms in action during development. We present here a cellular description of two morphogenetic processes: dorsal closure of the Drosophila embryo and convergent extension in two vertebrate models, Xenopus laevis and Danio rerio. Both processes are characterised by polarised cell movements and increasing evidence suggests that they involve a common group of planar cell polarity genes. We propose that the comparison of dorsal closure and convergent extension will shed light on underlying mechanisms that are shared between the two processes.
Collapse
Affiliation(s)
- Nicola Lawrence
- Department of Genetics, University of Cambridge, Downing street, CB2 3EH Cambridge, UK.
| | | |
Collapse
|
165
|
Fernández BG. The cytoskeleton in vivo. PLoS Biol 2004; 2:E100. [PMID: 15094804 PMCID: PMC387270 DOI: 10.1371/journal.pbio.0020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A comprehensive understanding of the cytoskeleton can only be achieved by the combination of biochemical, cellular, and whole organism studies
Collapse
|
166
|
Narasimha M, Brown NH. Novel Functions for Integrins in Epithelial Morphogenesis. Curr Biol 2004; 14:381-5. [PMID: 15028212 DOI: 10.1016/j.cub.2004.02.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 01/16/2004] [Accepted: 01/19/2004] [Indexed: 10/26/2022]
Abstract
Dorsal closure during Drosophila embryogenesis provides a valuable model for epithelial morphogenesis and wound healing. Previous studies have focused on two cell populations, the dorsal epidermis and the extraembryonic amnioserosa. Here, we demonstrate that there is an additional player, the large yolk cell. We find that integrins are expressed in the amnioserosa and yolk cell membrane and that they are required for three processes: (1) assembly of an intervening extracellular matrix, (2) attachment between these two cell layers, and (3) contraction of the amnioserosa cells. We also provide evidence for integrin-extracellular matrix interactions occurring between the lateral surfaces of the amnioserosa cell and the leading edge epidermis that effectively mediate cell-cell adhesion. Thus, dorsal closure shares mechanistic similarities with vertebrate epithelial morphogenetic events, including epiboly, that also employ an underlying substrate.
Collapse
Affiliation(s)
- Maithreyi Narasimha
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
167
|
Abstract
Rho GTPases control signal transduction pathways that link cell surface receptors to a variety of intracellular responses. They are best known as regulators of the actin cytoskeleton, but in addition they control cell polarity, gene expression, microtubule dynamics and vesicular trafficking. Through these diverse functions, Rho GTPases influence many aspects of cell behavior. This review will focus specifically on their role in cell migration.
Collapse
Affiliation(s)
- Myrto Raftopoulou
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
168
|
Marco R, Husson D, Herranz R, Mateos J, Medina FJ. Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth. ACTA ACUST UNITED AC 2003; 9:41-81. [PMID: 14631629 DOI: 10.1016/s1569-2574(03)09003-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300 generations in 15 years, the useful life foreseen for ISS, will be important. Among other useful information, they will help in detecting the possible changes that a biological species may undergo in such an environment, preventing the uncontrolled occurrence of irreversible deleterious effects with catastrophic consequences on the living beings participating in this endeavour.
Collapse
Affiliation(s)
- Roberto Marco
- Departamento de Bioquímica de la UAM e Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, C/Arzobispo Morcillo, 4, Madrid 28029, Spain.
| | | | | | | | | |
Collapse
|
169
|
Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83:1325-58. [PMID: 14506307 DOI: 10.1152/physrev.00023.2003] [Citation(s) in RCA: 1542] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.
Collapse
Affiliation(s)
- Andrew P Somlyo
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, PO Box 800736, Charlottesville, VA 22908-0736.
| | | |
Collapse
|
170
|
Ting SB, Wilanowski T, Auden A, Hall M, Voss AK, Thomas T, Parekh V, Cunningham JM, Jane SM. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med 2003; 9:1513-9. [PMID: 14608380 DOI: 10.1038/nm961] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 10/27/2003] [Indexed: 11/09/2022]
Abstract
The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.
Collapse
Affiliation(s)
- Stephen B Ting
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, Victoria, Australia 3050
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Tran DH, Berg CA. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis. Development 2003; 130:6273-82. [PMID: 14602681 DOI: 10.1242/dev.00854] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.
Collapse
Affiliation(s)
- David H Tran
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
172
|
Wei HC, Sanny J, Shu H, Baillie DL, Brill JA, Price JV, Harden N. The Sac1 Lipid Phosphatase Regulates Cell Shape Change and the JNK Cascade during Dorsal Closure in Drosophila. Curr Biol 2003; 13:1882-7. [PMID: 14588244 DOI: 10.1016/j.cub.2003.09.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Sac1 lipid phosphatase dephosphorylates several phosphatidylinositol (PtdIns) phosphates and, in yeast, regulates a diverse range of cellular processes including organization of the actin cytoskeleton and secretion. We have identified mutations in the gene encoding Drosophila Sac1. sac1 mutants die as embryos with defects in dorsal closure (DC). DC involves the migration of the epidermis to close a hole in the dorsal surface of the embryo occupied by the amnioserosa. It requires cell shape change in both the epidermis and amnioserosa and activation of a Jun N-terminal kinase (JNK) MAPK cascade in the leading edge cells of the epidermis [2]. Loss of Sac1 leads to the improper activation of two key events in DC: cell shape change in the amnioserosa and JNK signaling. sac1 interacts genetically with other participants in these two events, and our data suggest that loss of Sac1 leads to upregulation of one or more signals controlling DC. This study is the first report of a role for Sac1 in the development of a multicellular organism.
Collapse
Affiliation(s)
- Ho-Chun Wei
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
173
|
Solnica-Krezel L, Eaton S. Embryo morphogenesis: getting down to cells and molecules. Development 2003; 130:4229-33. [PMID: 12900440 DOI: 10.1242/dev.00693] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
174
|
Zhang L, Wang W, Hayashi Y, Jester JV, Birk DE, Gao M, Liu CY, Kao WWY, Karin M, Xia Y. A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J 2003; 22:4443-54. [PMID: 12941696 PMCID: PMC202382 DOI: 10.1093/emboj/cdg440] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 07/15/2003] [Accepted: 07/16/2003] [Indexed: 11/14/2022] Open
Abstract
MEKK1-deficient mice show an eye open at birth phenotype caused by impairment in embryonic eyelid closure. MEK kinase 1 (MEKK1) is highly expressed in the growing tip of the eyelid epithelium, which displays loose cell-cell contacts and prominent F-actin fibers in wild-type mice, but compact cell contacts, lack of polymerized actin and a concomitant impairment in c-Jun N-terminal phosphorylation in MEKK1-deficient mice. In cultured keratinocytes, MEKK1 is essential for JNK activation by TGF-beta and activin, but not by TGF-alpha. MEKK1-driven JNK activation is required for actin stress fiber formation, c-Jun phosphorylation and cell migration. However, MEKK1 ablation does not impair other TGF-beta/activin functions, such as nuclear translocation of Smad4. These results establish a specific role for the MEKK1-JNK cascade in transmission of TGF-beta and activin signals that control epithelial cell movement, providing the mechanistic basis for the regulation of eyelid closure by MEKK1. This study also suggests that the signaling mechanisms that control eyelid closure in mammals and dorsal closure in Drosophila are evolutionarily conserved.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Jiang L, Crews ST. The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Mol Cell Biol 2003; 23:5625-37. [PMID: 12897136 PMCID: PMC166316 DOI: 10.1128/mcb.23.16.5625-5637.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the mature insect trachea requires a complex series of cellular events, including tracheal cell specification, cell migration, tubule branching, and tubule fusion. Here we describe the identification of the Drosophila melanogaster dysfusion gene, which encodes a novel basic helix-loop-helix (bHLH)-PAS protein conserved between Caenorhabditis elegans, insects, and humans, and controls tracheal fusion events. The Dysfusion protein functions as a heterodimer with the Tango bHLH-PAS protein in vivo to form a putative DNA-binding complex. The dysfusion gene is expressed in a variety of embryonic cell types, including tracheal-fusion, leading-edge, foregut atrium cells, nervous system, hindgut, and anal pad cells. RNAi experiments indicate that dysfusion is required for dorsal branch, lateral trunk, and ganglionic branch fusion but not for fusion of the dorsal trunk. The escargot gene, which is also expressed in fusion cells and is required for tracheal fusion, precedes dysfusion expression. Analysis of escargot mutants indicates a complex pattern of dysfusion regulation, such that dysfusion expression is dependent on escargot in the dorsal and ganglionic branches but not the dorsal trunk. Early in tracheal development, the Trachealess bHLH-PAS protein is present at uniformly high levels in all tracheal cells, but since the levels of Dysfusion rise in wild-type fusion cells, the levels of Trachealess in fusion cells decline. The downregulation of Trachealess is dependent on dysfusion function. These results suggest the possibility that competitive interactions between basic helix-loop-helix-PAS proteins (Dysfusion, Trachealess, and possibly Similar) may be important for the proper development of the trachea.
Collapse
Affiliation(s)
- Lan Jiang
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
176
|
Lozano E, Betson M, Braga VMM. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays 2003; 25:452-63. [PMID: 12717816 DOI: 10.1002/bies.10262] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor progression involves the transition from normal to malignant cells, through a series of cumulative alterations. During this process, invasive and migratory properties are acquired, enabling cells to metastasize (reach and grow in tissues far from their origin). Numerous cellular changes take place during epithelial malignancy, and disruption of E-cadherin based cell-cell adhesion is a major event. The small Rho GTPases (Rho, Rac and Cdc42) have been implicated in multiple steps during cellular transformation, including alterations on the adhesion status of the tumor cells. This review focuses on recent in vivo evidence that implicates RhoGTPases in epithelial tumor progression. In addition, we discuss different hypotheses to explain disruption of cadherin-mediated cell-cell adhesion, directly or indirectly, through activation of Rho GTPases. Understanding the molecular mechanism of how cadherin adhesion and RhoGTPases interplay in normal cells and how this balance is altered during cellular transformation will provide clues as to how to interfere with tumor progression.
Collapse
|
177
|
Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 2003; 300:145-9. [PMID: 12574496 DOI: 10.1126/science.1079552] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We investigated the forces that connect the genetic program of development to morphogenesis in Drosophila. We focused on dorsal closure, a powerful model system for development and wound healing. We found that the bulk of progress toward closure is driven by contractility in supracellular "purse strings" and in the amnioserosa, whereas adhesion-mediated zipping coordinates the forces produced by the purse strings and is essential only for the end stages. We applied quantitative modeling to show that these forces, generated in distinct cells, are coordinated in space and synchronized in time. Modeling of wild-type and mutant phenotypes is predictive; although closure in myospheroid mutants ultimately fails when the cell sheets rip themselves apart, our analysis indicates that beta(PS) integrin has an earlier, important role in zipping.
Collapse
Affiliation(s)
- M Shane Hutson
- Department of Physics and Free Electron Laser Laboratory, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Affiliation(s)
- Paul Martin
- Department of Anatomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
179
|
Abstract
The most fundamental type of organization of cells in metazoa is that of epithelia, which comprise sheets of adherent cells that divide the organism into topologically and physiologically distinct spaces. Some epithelial cells cover the outside of the organism; these often form multiple layers, such as in skin. Other epithelial cells form monolayers that line internal organs, and yet others form tubes that infiltrate the whole organism, carrying liquids and gases containing nutrients, waste and other materials. These tubes can form elaborate networks in the lung, kidney, reproductive passages and vasculature tree, as well as the many glands branching from the digestive system such as the liver, pancreas and salivary glands. In vitro systems can be used to study tube formation and might help to define common principles underlying the formation of diverse types of tubular organ.
Collapse
Affiliation(s)
- Mirjam M P Zegers
- Department of Anatomy, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0452, USA
| | | | | | | | | |
Collapse
|
180
|
Abstract
To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.
Collapse
Affiliation(s)
- Thomas Lecuit
- Laboratoire de Génétique et de Physiologie du Developpement, Institut de Biologie du Développement de Marseille, CNRS-Université de la Méditerrannée, Campus de Luminy, Case 907 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
181
|
Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 2002; 4:907-12. [PMID: 12402048 DOI: 10.1038/ncb875] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 08/22/2002] [Accepted: 09/30/2002] [Indexed: 01/17/2023]
Abstract
The capacity to repair a wound is a fundamental survival mechanism that is activated at any site of damage throughout embryonic and adult life. To study the cell biology and genetics of this process, we have developed a wounding model in Drosophila melanogaster embryos that allows live imaging of rearrangements and changes in cell shape, and of the cytoskeletal machinery that draws closed an in vivo wound. Using embryos expressing green fluorescent protein (GFP) fusion proteins, we show that two cytoskeletal-dependent elements -- an actin cable and dynamic filopodial/lamellipodial protrusions -- are expressed by epithelial cells at the wound edge and are pivotal for repair. Modulating the activities of the small GTPases Rho and Cdc42 demonstrates that these actin-dependent elements have differing cellular functions, but that either alone can drive wound closure. The actin cable operates as a 'purse-string' to draw the hole closed, whereas filopodia are essential for the final 'knitting' together of epithelial cells at the end of repair. Our data suggest a more complex model for epithelial repair than previously envisaged and highlight remarkable similarities with the well-characterized morphogenetic movement of dorsal closure in Drosophila.
Collapse
Affiliation(s)
- William Wood
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
182
|
Vaezi A, Bauer C, Vasioukhin V, Fuchs E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 2002; 3:367-81. [PMID: 12361600 DOI: 10.1016/s1534-5807(02)00259-9] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. These actin fibers anchor to a central actin-myosin network, creating a tension-based plane of cytoskeleton across the apical surface of the sheet. Movement of the sheet surface relative to its base expands the zone of intercellular overlap, catalyzing new sites for nascent intercellular junctions. This polarized cytoskeleton is dependent upon alpha-catenin, Rho, and Rock, and its regulation may be important for wound healing and/or stratification, where coordinated tissue movements are involved.
Collapse
Affiliation(s)
- Alec Vaezi
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|