151
|
Mobile healthcare applications: system design review, critical issues and challenges. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 38:23-38. [DOI: 10.1007/s13246-014-0315-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
|
152
|
Chen A, Wang R, Bever CRS, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. BIOMICROFLUIDICS 2014; 8:064101. [PMID: 25553178 PMCID: PMC4241779 DOI: 10.1063/1.4901348] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/30/2014] [Indexed: 05/09/2023]
Abstract
The emerging technologies on mobile-based diagnosis and bioanalytical detection have enabled powerful laboratory assays such as enzyme-linked immunosorbent assay (ELISA) to be conducted in field-use lab-on-a-chip devices. In this paper, we present a low-cost universal serial bus (USB)-interfaced mobile platform to perform microfluidic ELISA operations in detecting the presence and concentrations of BDE-47 (2,2',4,4'-tetrabromodiphenyl ether), an environmental contaminant found in our food supply with adverse health impact. Our point-of-care diagnostic device utilizes flexible interdigitated carbon black electrodes to convert electric current into a microfluidic pump via gas bubble expansion during electrolytic reaction. The micropump receives power from a mobile phone and transports BDE-47 analytes through the microfluidic device conducting competitive ELISA. Using variable domain of heavy chain antibodies (commonly referred to as single domain antibodies or Nanobodies), the proposed device is sensitive for a BDE-47 concentration range of 10(-3)-10(4 ) μg/l, with a comparable performance to that uses a standard competitive ELISA protocol. It is anticipated that the potential impact in mobile detection of health and environmental contaminants will prove beneficial to our community and low-resource environments.
Collapse
Affiliation(s)
- Arnold Chen
- Department of Biomedical Engineering, University of California , Davis, California 95616, USA
| | - Royal Wang
- Department of Biomedical Engineering, University of California , Davis, California 95616, USA
| | - Candace R S Bever
- Department of Entomology and Nematology, University of California , Davis, California 95616, USA
| | - Siyuan Xing
- Department of Biomedical Engineering, University of California , Davis, California 95616, USA
| | | | - Tingrui Pan
- Department of Biomedical Engineering, University of California , Davis, California 95616, USA
| |
Collapse
|
153
|
Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 2014; 4:6789. [PMID: 25346102 DOI: 10.1038/lsa.2014.3] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/21/2013] [Accepted: 10/06/2014] [Indexed: 05/28/2023] Open
Abstract
We demonstrate a high-throughput biosensing device that utilizes microfluidics based plasmonic microarrays incorporated with dual-color on-chip imaging toward real-time and label-free monitoring of biomolecular interactions over a wide field-of-view of >20 mm(2). Weighing 40 grams with 8.8 cm in height, this biosensor utilizes an opto-electronic imager chip to record the diffraction patterns of plasmonic nanoapertures embedded within microfluidic channels, enabling real-time analyte exchange. This plasmonic chip is simultaneously illuminated by two different light-emitting-diodes that are spectrally located at the right and left sides of the plasmonic resonance mode, yielding two different diffraction patterns for each nanoaperture array. Refractive index changes of the medium surrounding the near-field of the nanostructures, e.g., due to molecular binding events, induce a frequency shift in the plasmonic modes of the nanoaperture array, causing a signal enhancement in one of the diffraction patterns while suppressing the other. Based on ratiometric analysis of these diffraction images acquired at the detector-array, we demonstrate the proof-of-concept of this biosensor by monitoring in real-time biomolecular interactions of protein A/G with immunoglobulin G (IgG) antibody. For high-throughput on-chip fabrication of these biosensors, we also introduce a deep ultra-violet lithography technique to simultaneously pattern thousands of plasmonic arrays in a cost-effective manner.
Collapse
Affiliation(s)
- Ahmet F Coskun
- 1] Departments of Electrical Engineering and Bioengineering, University of California, Los Angeles (UCLA), CA 90095, USA [2] Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - Arif E Cetin
- 1] Department of Electrical and Computer Engineering, Boston University, MA 02215, USA [2] Bioengineering Department, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Betty C Galarreta
- 1] Department of Electrical and Computer Engineering, Boston University, MA 02215, USA [2] Pontificia Universidad Catolica del Peru, Departamento de Ciencias-Quimica, Avenida Universitaria 1801, Lima 32, Peru
| | | | - Hatice Altug
- 1] Department of Electrical and Computer Engineering, Boston University, MA 02215, USA [2] Bioengineering Department, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Aydogan Ozcan
- 1] Departments of Electrical Engineering and Bioengineering, University of California, Los Angeles (UCLA), CA 90095, USA [2] California NanoSystems Institute, University of California, Los Angeles (UCLA), CA 90095, USA
| |
Collapse
|
154
|
Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem 2014; 86:9236-41. [PMID: 25223929 PMCID: PMC4165218 DOI: 10.1021/ac5022419] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
Abstract
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite.
Collapse
Affiliation(s)
- Faye M. Walker
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Kareem M. Ahmad
- Interdepartmental
Program in Biomolecular Science and Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Michael Eisenstein
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Department
of Mechanical Engineering, University of
California, Santa Barbara, California 93106, United States
| | - H. Tom Soh
- Interdepartmental
Program in Biomolecular Science and Engineering, University of California, Santa
Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Department
of Mechanical Engineering, University of
California, Santa Barbara, California 93106, United States
| |
Collapse
|
155
|
Boppart SA, Richards-Kortum R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci Transl Med 2014; 6:253rv2. [PMID: 25210062 PMCID: PMC4370289 DOI: 10.1126/scitranslmed.3009725] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world.
Collapse
Affiliation(s)
- Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rebecca Richards-Kortum
- Department of Bioengineering, Rice University, Houston, TX 77030, USA. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
156
|
Wu TF, Yen TM, Han Y, Chiu YJ, Lin EYS, Lo YH. A light-sheet microscope compatible with mobile devices for label-free intracellular imaging and biosensing. LAB ON A CHIP 2014; 14:3341-8. [PMID: 24989638 DOI: 10.1039/c4lc00257a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inner structure, especially the nuclear structure, of cells carries valuable information about disease and health conditions of a person. Here we demonstrate a label-free technique to enable direct observations and measurements of the size, shape and morphology of the cell nucleus. With a microfabricated lens and a commercial CMOS imager, we form a scanning light-sheet microscope to produce a dark-field optical scattering image of the cell nucleus that overlays with the bright-field image produced in a separate regime of the same CMOS sensor. We have used the device to detect nuclear features that characterize the life cycle of cells and have used the nucleus volume as a new parameter for cell classification. The device can be developed into a portable, low-cost, point-of-care device leveraging the capabilities of the CMOS imagers to be pervasive in mobile electronics.
Collapse
Affiliation(s)
- Tsung-Feng Wu
- Materials Science Program, University of California at San Diego, La Jolla, California 92093-0418, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. LAB ON A CHIP 2014; 14:3187-94. [PMID: 24647550 PMCID: PMC4117730 DOI: 10.1039/c4lc00010b] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this article, I discuss some of the emerging applications and the future opportunities and challenges created by the use of mobile phones and their embedded components for the development of next-generation imaging, sensing, diagnostics and measurement tools. The massive volume of mobile phone users, which has now reached ~7 billion, drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run, e.g., biomedical tests, and perform scientific measurements that would normally require advanced laboratory instruments. This rapidly evolving and continuing trend will help us transform how medicine, engineering and sciences are practiced and taught globally.
Collapse
Affiliation(s)
- Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
158
|
Arata H, Hosokawa K, Maeda M. Rapid sub-attomole microRNA detection on a portable microfluidic chip. ANAL SCI 2014; 30:129-35. [PMID: 24420254 DOI: 10.2116/analsci.30.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microfluidic devices are an attractive choice for meeting the requirements of point-of-care microRNA detection. A method using a microfluidic device can drastically shorten the incubation time because the device conveys sample molecules right straight to the surface-immobilized probe DNAs by hydrodynamic force. In this review, we present an overview of a new method for rapid and sensitive microRNA detection from a small sample volume using a power-free microfluidic device driven by degassed poly-dimethylsiloxane (PDMS). Two key technologies for this detection method are summarized. One of the methods relies on the coaxial stacking effect of nucleic acids during sandwich hybridization. This effect is also efficient for stabilizing sandwich hybridization consisting of small DNA and microRNA. The other is the laminar flow-assisted dendritic amplification, which increases the fluorescent signal by supplying two amplification reagents from laminar streams to surface-bound molecules. Utilizing both technologies, microRNA detection is possible with a 0.5 pM detection limit from a 0.5 μL sample corresponding to 0.25 attomoles, with a detection time of 20 min. Since microRNAs are associated with various human diseases, future studies of these technologies might contribute to improved healthcare and may have both industrial and societal impacts.
Collapse
|
159
|
Azzazy HME, Elbehery AHA. Clinical laboratory data: acquire, analyze, communicate, liberate. Clin Chim Acta 2014; 438:186-94. [PMID: 25172035 DOI: 10.1016/j.cca.2014.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
The availability of portable healthcare devices, which can acquire and transmit medical data to remote experts would dramatically affect healthcare in areas with poor infrastructure. Smartphones, which feature touchscreen computer capabilities and sophisticated cameras, have become widely available with over billion units shipped in 2013. In the clinical laboratory, smartphones have recently brought the capabilities of key instruments such as spectrophotometers, fluorescence analyzers and microscopes into the palm of the hand. Several research groups have developed sensitive and low-cost smartphone-based diagnostic assay prototypes for testing cholesterol, albumin, vitamin D, tumor markers, and the detection of infectious agents. This review covers the use of smartphones to acquire, analyze, communicate, and liberate clinical laboratory data. Smartphones promise to dramatically improve the quality and quantity of healthcare offered in resource-limited areas.
Collapse
Affiliation(s)
- Hassan M E Azzazy
- Novel Diagnostics and Therapeutics, Yousef Jameel Science & Technology Research Centre, and Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| | - Ali H A Elbehery
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
160
|
Smith ZJ, Gao T, Chu K, Lane SM, Matthews DL, Dwyre DM, Hood J, Tatsukawa K, Heifetz L, Wachsmann-Hogiu S. Single-step preparation and image-based counting of minute volumes of human blood. LAB ON A CHIP 2014; 14:3029-36. [PMID: 24955810 DOI: 10.1039/c4lc00567h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Current flow-based blood counting devices require significant medical infrastructure and are not appropriate for field use. In this article we report on the development of a sample preparation, measurement, and analysis method that permits automated and accurate counting of red blood cells (RBCs), white blood cells (WBCs), and platelets, as well as allowing a 3-part differential of the WBCs to be performed on extremely small volumes of whole blood. This method is compatible with portable instrumentation that can be deployed in the field. The method consists of serially diluting blood samples first with sodium dodecyl sulfate dissolved in phosphate buffered saline, then in acridine orange dissolved in phosphate buffered saline, followed by fluorescence and dark field imaging with low magnification objectives. Image analysis is performed to extract cell counts and differentials. We performed a paired analysis of 20 volunteers with complete blood count values both within and beyond the normal reference range using a commercial automated hematology analyzer and the image-based method, with the new method achieving accuracies comparable to that of the commercial system. Because the sample preparation and imaging are simple and inexpensive to implement, this method has applications for pediatrics, clinician offices, and global health in regions that do not have access to central hematology laboratories.
Collapse
Affiliation(s)
- Zachary J Smith
- Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd. Suite 1400, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Vashist SK, Schneider EM, Luong JHT. Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management. Diagnostics (Basel) 2014; 4:104-28. [PMID: 26852680 PMCID: PMC4665560 DOI: 10.3390/diagnostics4030104] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 12/01/2022] Open
Abstract
Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.
Collapse
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT-Institut für Mikro-und Informationstechnik, Georges-Koehler-Allee 103, 79100 Freiburg, Germany.
- Laboratory for MicroElectroMechanical Systems (MEMS) Applications, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - E Marion Schneider
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23,89081 Ulm, Germany.
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland.
| |
Collapse
|
162
|
A fast and simple label-free immunoassay based on a smartphone. Biosens Bioelectron 2014; 58:395-402. [DOI: 10.1016/j.bios.2014.02.077] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 11/24/2022]
|
163
|
Ludwig SKJ, Zhu H, Phillips S, Shiledar A, Feng S, Tseng D, van Ginkel LA, Nielen MWF, Ozcan A. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal Bioanal Chem 2014; 406:6857-66. [DOI: 10.1007/s00216-014-7984-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
164
|
Collins AM, Jones HD, McBride RC, Behnke C, Timlin JA. Host cell pigmentation inScenedesmus dimorphusas a beacon for nascent parasite infection. Biotechnol Bioeng 2014; 111:1748-57. [DOI: 10.1002/bit.25235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Aaron M. Collins
- Bioenergy and Defense Technologies Department; Sandia National Laboratories; Albuquerque New Mexico 87185
| | - Howland D.T. Jones
- Bioenergy and Defense Technologies Department; Sandia National Laboratories; Albuquerque New Mexico 87185
| | | | | | - Jerilyn A. Timlin
- Bioenergy and Defense Technologies Department; Sandia National Laboratories; Albuquerque New Mexico 87185
| |
Collapse
|
165
|
Smartphones for Cell and Biomolecular Detection. Ann Biomed Eng 2014; 42:2205-17. [DOI: 10.1007/s10439-014-1055-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
166
|
Preechaburana P, Suska A, Filippini D. Biosensing with cell phones. Trends Biotechnol 2014; 32:351-5. [PMID: 24702730 DOI: 10.1016/j.tibtech.2014.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 01/26/2023]
Abstract
Continued progress in cell-phone devices has made them powerful mobile computers, equipped with sophisticated, permanent physical sensors embedded as the default configuration. By contrast, the incorporation of permanent biosensors in cell-phone units has been prevented by the multivocal nature of the stimuli and the reactions involved in biosensing and chemical sensing. Biosensing with cell phones entails the complementation of biosensing devices with the physical sensors and communication and processing capabilities of modern cell phones. Biosensing, chemical-sensing, environmental-sensing, and diagnostic capabilities would thus be supported and run on the residual capacity of existing cell-phone infrastructure. The technologies necessary to materialize such a scenario have emerged in different fields and applications. This article addresses the progress on cell-phone biosensing, the specific compromises, and the blend of technologies required to craft biosensing on cell phones.
Collapse
Affiliation(s)
- Pakorn Preechaburana
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
| | - Anke Suska
- Optical Devices Laboratory, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Daniel Filippini
- Optical Devices Laboratory, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183, Sweden.
| |
Collapse
|
167
|
Zhu Q, Qiu L, Yu B, Xu Y, Gao Y, Pan T, Tian Q, Song Q, Jin W, Jin Q, Mu Y. Digital PCR on an integrated self-priming compartmentalization chip. LAB ON A CHIP 2014; 14:1176-85. [PMID: 24481046 DOI: 10.1039/c3lc51327k] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform. The SPC chip contains 5120 independent 5 nL microchambers, allowing the samples to be compartmentalized completely. Using this platform, three different abundances of lung cancer related genes are detected to demonstrate the feasibility and flexibility of the microchip for amplifying a single nucleic acid molecule. For maximal accuracy, within less than 5% of the measurement deviation, the optimal number of positive chambers is between 400 and 1250 evaluated by the Poisson distribution, which means one panel can detect an average of 480 to 4804 template molecules. This device without world-to-chip connections eliminates the constraint of the complex pipeline control, and is an integrated on-chip platform, which would be a significant improvement to digital PCR automation and more user-friendly.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Wang H, Li YJ, Wei JF, Xu JR, Wang YH, Zheng GX. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem 2014; 406:2799-807. [PMID: 24618990 DOI: 10.1007/s00216-014-7715-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/08/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
Abstract
A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Hu Wang
- Environmental and Chemical Engineering College, Dalian University, No.10 Xufu Road, Economic Development Zone, Dalian, China
| | | | | | | | | | | |
Collapse
|
169
|
Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MCE, Akram MS, Lowe CR. The regulation of mobile medical applications. LAB ON A CHIP 2014; 14:833-840. [PMID: 24425070 DOI: 10.1039/c3lc51235e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The rapidly expanding number of mobile medical applications have the potential to transform the patient-healthcare provider relationship by improving the turnaround time and reducing costs. In September 2013, the U.S. Food and Drug Administration (FDA) issued guidance to regulate these applications and protect consumers by minimising the risks associated with their unintended use. This guidance distinguishes between the subset of mobile medical apps which may be subject to regulation and those that are not. The marketing claims of the application determine the intent. Areas of concern include compliance with regular updates of the operating systems and of the mobile medical apps themselves. In this article, we explain the essence of this FDA guidance by providing examples and evaluating the impact on academia, industry and other key stakeholders, such as patients and clinicians. Our assessment indicates that awareness and incorporation of the guidelines into product development can hasten the commercialisation and market entry process. Furthermore, potential obstacles have been discussed and directions for future development suggested.
Collapse
Affiliation(s)
- Ali Kemal Yetisen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK.
| | | | | | | | | | | |
Collapse
|
170
|
Chen Y, Nawaz AA, Zhao Y, Huang PH, McCoy JP, Levine SJ, Wang L, Huang TJ. Standing surface acoustic wave (SSAW)-based microfluidic cytometer. LAB ON A CHIP 2014; 14:916-23. [PMID: 24406848 PMCID: PMC3956078 DOI: 10.1039/c3lc51139a] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Quantitative evaluation of radiation dose by γ-H2AX on a microfluidic chip in a miniature fluorescence cytometer. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
172
|
Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, Caire R, Tseng D, Ozcan A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS NANO 2014; 8:1121-9. [PMID: 24437470 PMCID: PMC3949663 DOI: 10.1021/nn406571t] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/19/2014] [Indexed: 05/19/2023]
Abstract
Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs <40 g, we quantified mercury(II) ion concentration in water samples by using a two-color ratiometric method employing light-emitting diodes (LEDs) at 523 and 625 nm, where a custom-developed smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼ 3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time.
Collapse
Affiliation(s)
- Qingshan Wei
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Richie Nagi
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Kayvon Sadeghi
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Steve Feng
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Eddie Yan
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - So Jung Ki
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Romain Caire
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Derek Tseng
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical Engineering Department, Bioengineering Department, California NanoSystems Institute (CNSI), Department of Physics & Astronomy, and Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Address correspondence to
| |
Collapse
|
173
|
Doeven EH, Barbante GJ, Kerr E, Hogan CF, Endler JA, Francis PS. Red-green-blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal Chem 2014; 86:2727-32. [PMID: 24512565 DOI: 10.1021/ac404135f] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploiting the distinct excitation and emission properties of concomitant electrochemiluminophores in conjunction with the inherent color selectivity of a conventional digital camera, we create a new strategy for multiplexed electrogenerated chemiluminescence detection, suitable for the development of low-cost, portable clinical diagnostic devices. Red, green and blue emitters can be efficiently resolved over the three-dimensional space of ECL intensity versus applied potential and emission wavelength. As the relative contribution ratio of each emitter to the photographic RGB channels is constant, the RGB ECL intensity versus applied-potential curves could be effectively isolated to a single emitter at each potential.
Collapse
Affiliation(s)
- Egan H Doeven
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University , Waurn Ponds, Victoria 3216, Australia
| | | | | | | | | | | |
Collapse
|
174
|
Stemple CC, Angus SV, Park TS, Yoon JY. Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood. ACTA ACUST UNITED AC 2014; 19:35-41. [DOI: 10.1177/2211068213498241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
175
|
Baek D, Cho S, Yun K, Youn K, Bang H. Time-lapse microscopy using smartphone with augmented reality markers. Microsc Res Tech 2014; 77:243-9. [DOI: 10.1002/jemt.22335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/01/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Dongyoub Baek
- Department of Mechanical and Aerospace Engineering; Seoul National University; Daehak-dong Gwanak-gu Seoul 151-742 Republic of Korea
| | - Sungmin Cho
- Department of Mechanical and Aerospace Engineering; Seoul National University; Daehak-dong Gwanak-gu Seoul 151-742 Republic of Korea
| | - Kyungwon Yun
- Department of Mechanical and Aerospace Engineering; Seoul National University; Daehak-dong Gwanak-gu Seoul 151-742 Republic of Korea
| | - Keehong Youn
- Department of Mechanical and Aerospace Engineering; Seoul National University; Daehak-dong Gwanak-gu Seoul 151-742 Republic of Korea
| | - Hyunwoo Bang
- Department of Mechanical and Aerospace Engineering; Seoul National University; Daehak-dong Gwanak-gu Seoul 151-742 Republic of Korea
| |
Collapse
|
176
|
Balsam J, Rasooly R, Bruck HA, Rasooly A. Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 2014; 51:1-7. [PMID: 23928092 PMCID: PMC3795847 DOI: 10.1016/j.bios.2013.06.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 01/27/2023]
Abstract
The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals without the need of dedicated laboratories. It has the potential to be used to increase sensitivity of other optically based mHealth technologies, and may increase mHealth's clinical utility, especially for telemedicine and for resource-poor settings and global health applications.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; University of Maryland, College Park, MD 20742, United States
| | | | | | | |
Collapse
|
177
|
Cao T, Thompson JE. Remote sensing of atmospheric optical depth using a smartphone sun photometer. PLoS One 2014; 9:e84119. [PMID: 24416199 PMCID: PMC3885532 DOI: 10.1371/journal.pone.0084119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12–0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Jonathan E. Thompson
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
178
|
Song P, Hu R, Tng DJH, Yong KT. Moving towards individualized medicine with microfluidics technology. RSC Adv 2014. [DOI: 10.1039/c3ra45629c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
179
|
Thom NK, Lewis GG, Yeung K, Phillips ST. Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone. RSC Adv 2014; 4:1334-1340. [PMID: 24490035 PMCID: PMC3904390 DOI: 10.1039/c3ra44717k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-D-galactosidase was measured quantitatively down to 700 pM levels. This Communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique.
Collapse
Affiliation(s)
- Nicole K. Thom
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Fax: 814 865 5235; Tel: 814 867 2502
| | - Gregory G. Lewis
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Fax: 814 865 5235; Tel: 814 867 2502
| | - Kimy Yeung
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Fax: 814 865 5235; Tel: 814 867 2502
| | - Scott T. Phillips
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Fax: 814 865 5235; Tel: 814 867 2502
| |
Collapse
|
180
|
Esfandyarpour R, Javanmard M, Koochak Z, Harris JS, Davis RW. Nanoelectronic impedance detection of target cells. Biotechnol Bioeng 2013; 111:1161-9. [PMID: 24338648 DOI: 10.1002/bit.25171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 11/07/2022]
Abstract
Detection of cells is typically performed using optical fluorescence based techniques such as flow cytometry. Here we present the impedance detection of target cells using a nanoelectronic probe we have developed, which we refer to as the nanoneedle biosensor. The nanoneedle consists of a thin film conducting electrode layer at the bottom, an insulative oxide layer above, another conductive electrode layer above, and a protective oxide above. The electrical impedance is measured between the two electrode layers. Cells captured on the surface of the nanoneedle tip results in a decrease in the impedance across the sensing electrodes. The basic mechanisms behind the electrical response of cells in solution under an applied alternating electrical field stems from modulation of the relative permittivity at the interface. In this paper we discuss, the circuit model, the nanofabrication, and the testing and characterization of the sensor. We demonstrate proof of concept for detection of yeast cells with specificity. We envision the sensor presented in this paper to be combined with microfluidic pre-concentration technologies to develop low cost point-of-care diagnostic assays for the clinical setting.
Collapse
Affiliation(s)
- Rahim Esfandyarpour
- Center for Integrated Systems, Department of Electrical Engineering, Stanford University, Stanford, California; Stanford Genome Technology Center, 855 California Ave., Palo Alto, California, 94304.
| | | | | | | | | |
Collapse
|
181
|
Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 2013; 406:3263-77. [PMID: 24287630 DOI: 10.1007/s00216-013-7473-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/09/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
During the last decade, there has been a rapidly growing trend toward the use of cellphone-based devices (CBDs) in bioanalytical sciences. For example, they have been used for digital microscopy, cytometry, read-out of immunoassays and lateral flow tests, electrochemical and surface plasmon resonance based bio-sensing, colorimetric detection and healthcare monitoring, among others. Cellphone can be considered as one of the most prospective devices for the development of next-generation point-of-care (POC) diagnostics platforms, enabling mobile healthcare delivery and personalized medicine. With more than 6.5 billion cellphone subscribers worldwide and approximately 1.6 billion new devices being sold each year, cellphone technology is also creating new business and research opportunities. Many cellphone-based devices, such as those targeted for diabetic management, weight management, monitoring of blood pressure and pulse rate, have already become commercially-available in recent years. In addition to such monitoring platforms, several other CBDs are also being introduced, targeting e.g., microscopic imaging and sensing applications for medical diagnostics using novel computational algorithms and components already embedded on cellphones. This report aims to review these recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities.
Collapse
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | | | | | | | | |
Collapse
|
182
|
Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. LAB ON A CHIP 2013; 13:4231-8. [PMID: 23995895 PMCID: PMC3810448 DOI: 10.1039/c3lc50785h] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate a digital sensing platform, termed Albumin Tester, running on a smart-phone that images and automatically analyses fluorescent assays confined within disposable test tubes for sensitive and specific detection of albumin in urine. This light-weight and compact Albumin Tester attachment, weighing approximately 148 grams, is mechanically installed on the existing camera unit of a smart-phone, where test and control tubes are inserted from the side and are excited by a battery powered laser diode. This excitation beam, after probing the sample of interest located within the test tube, interacts with the control tube, and the resulting fluorescent emission is collected perpendicular to the direction of the excitation, where the cellphone camera captures the images of the fluorescent tubes through the use of an external plastic lens that is inserted between the sample and the camera lens. The acquired fluorescent images of the sample and control tubes are digitally processed within one second through an Android application running on the same cellphone for quantification of albumin concentration in the urine specimen of interest. Using a simple sample preparation approach which takes ~5 min per test (including the incubation time), we experimentally confirmed the detection limit of our sensing platform as 5-10 μg mL(-1) (which is more than 3 times lower than the clinically accepted normal range) in buffer as well as urine samples. This automated albumin testing tool running on a smart-phone could be useful for early diagnosis of kidney disease or for monitoring of chronic patients, especially those suffering from diabetes, hypertension, and/or cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmet F Coskun
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
183
|
Delaney JL, Doeven EH, Harsant AJ, Hogan CF. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 2013; 803:123-7. [DOI: 10.1016/j.aca.2013.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
Kirleis MA, Mathews SA, Verbarg J, Erickson JS, Piqué A. Reconfigurable acquisition system with integrated optics for a portable flow cytometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:115109. [PMID: 24289439 DOI: 10.1063/1.4831835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Portable and inexpensive scientific instruments that are capable of performing point of care diagnostics are needed for applications such as disease detection and diagnosis in resource-poor settings, for water quality and food supply monitoring, and for biosurveillance activities in autonomous vehicles. In this paper, we describe the development of a compact flow cytometer built from three separate, customizable, and interchangeable modules. The instrument as configured in this work is being developed specifically for the detection of selected Centers for Disease Control (CDC) category B biothreat agents through a bead-based assay: E. coli O157:H7, Salmonella, Listeria, and Shigella. It has two-color excitation, three-color fluorescence and light scattering detection, embedded electronics, and capillary based flow. However, these attributes can be easily modified for other applications such as cluster of differentiation 4 (CD4) counting. Proof of concept is demonstrated through a 6-plex bead assay with the results compared to a commercially available benchtop-sized instrument.
Collapse
Affiliation(s)
- Matthew A Kirleis
- Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | | | | | | | | |
Collapse
|
185
|
Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, Göröcs Z, Bentolila LA, Wu TT, Sun R, Ozcan A. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS NANO 2013; 7:9147-55. [PMID: 24016065 PMCID: PMC3951925 DOI: 10.1021/nn4037706] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical imaging of nanoscale objects, whether it is based on scattering or fluorescence, is a challenging task due to reduced detection signal-to-noise ratio and contrast at subwavelength dimensions. Here, we report a field-portable fluorescence microscopy platform installed on a smart phone for imaging of individual nanoparticles as well as viruses using a lightweight and compact opto-mechanical attachment to the existing camera module of the cell phone. This hand-held fluorescent imaging device utilizes (i) a compact 450 nm laser diode that creates oblique excitation on the sample plane with an incidence angle of ~75°, (ii) a long-pass thin-film interference filter to reject the scattered excitation light, (iii) an external lens creating 2× optical magnification, and (iv) a translation stage for focus adjustment. We tested the imaging performance of this smart-phone-enabled microscopy platform by detecting isolated 100 nm fluorescent particles as well as individual human cytomegaloviruses that are fluorescently labeled. The size of each detected nano-object on the cell phone platform was validated using scanning electron microscopy images of the same samples. This field-portable fluorescence microscopy attachment to the cell phone, weighing only ~186 g, could be used for specific and sensitive imaging of subwavelength objects including various bacteria and viruses and, therefore, could provide a valuable platform for the practice of nanotechnology in field settings and for conducting viral load measurements and other biomedical tests even in remote and resource-limited environments.
Collapse
Affiliation(s)
- Qingshan Wei
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
- Bioengineering Department, University of California, Los Angeles (UCLA), California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), California 90095, United States
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), California 90095, United States
| | - Wei Luo
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
| | - Derek Tseng
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
| | - So Jung Ki
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California 90095, United States
| | - Zhe Wan
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
| | - Zoltán Göröcs
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
- Bioengineering Department, University of California, Los Angeles (UCLA), California 90095, United States
| | - Laurent A. Bentolila
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), California 90095, United States
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), California 90095, United States
| | - Ren Sun
- California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), California 90095, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), California 90095, United States
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles (UCLA), California 90095, United States
- Bioengineering Department, University of California, Los Angeles (UCLA), California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), California 90095, United States
- Address correspondence to:
| |
Collapse
|
186
|
Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, Phillips S, Ozcan A. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. LAB ON A CHIP 2013; 13:4015-23. [PMID: 23939637 PMCID: PMC3804724 DOI: 10.1039/c3lc50589h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Collapse
Affiliation(s)
- Isa Navruz
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Lee LG, Nordman ES, Johnson MD, Oldham MF. A low-cost, high-performance system for fluorescence lateral flow assays. BIOSENSORS-BASEL 2013; 3:360-73. [PMID: 25586412 PMCID: PMC4263565 DOI: 10.3390/bios3040360] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022]
Abstract
We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.
Collapse
Affiliation(s)
- Linda G Lee
- Song Diagnostic Research LLC, 1 Megans Lane, Woodside, CA 94062, USA.
| | - Eric S Nordman
- Song Diagnostic Research LLC, 1 Megans Lane, Woodside, CA 94062, USA.
| | - Martin D Johnson
- Song Diagnostic Research LLC, 1 Megans Lane, Woodside, CA 94062, USA.
| | - Mark F Oldham
- Song Diagnostic Research LLC, 1 Megans Lane, Woodside, CA 94062, USA.
| |
Collapse
|
188
|
Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat Commun 2013; 4:2567. [DOI: 10.1038/ncomms3567] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
|
189
|
Balsam J, Bruck HA, Rasooly A. Orthographic projection capillary array fluorescent sensor for mHealth. Methods 2013; 63:276-81. [PMID: 24018203 PMCID: PMC3902889 DOI: 10.1016/j.ymeth.2013.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022] Open
Abstract
To overcome the limited sensitivity of phone cameras for mobile health (mHealth) fluorescent detection, we have previously developed a capillary array which enables a ∼100 × increase in detection sensitivity. However, for an effective detection platform, the optical configuration must allow for uniform measurement sensitivity between channels when using such a capillary array sensor. This is a challenge due to the parallax inherent in imaging long parallel capillary tubes with typical lens configurations. To enable effective detection, we have developed an orthographic projection system in this work which forms parallel light projection images from the capillaries using an object-space telecentric lens configuration. This optical configuration results in a significantly higher degree of uniformity in measurement between channels, as well as a significantly reduced focal distance, which enables a more compact sensor. A plano-convex lens (f=150 mm) was shown to produce a uniform orthographic projection when properly combined with the phone camera's built in lens (f=4mm), enabling measurements of long capillaries (125 mm) to be made from a distance of 160 mm. The number of parallel measurements which can be made is determined by the size of the secondary lens. Based on these results, a more compact configuration with shorter 32 mm capillaries and a plano-convex lens with a shorter focal length (f=10mm) was constructed. This optical system was used to measure serial dilutions of fluorescein with a limit of detection (LOD) of 10nM, similar to the LOD of a commercial plate reader. However, many plate readers based on standard 96 well plate requires sample volumes of 100 μl for measurement, while the capillary array requires a sample volume of less than 10 μl. This optical configuration allows for a device to make use of the ∼100 × increase in fluorescent detection sensitivity produced by capillary amplification while maintaining a compact size and capability to analyze extremely small sample volumes. Such a device based on a phone or other optical mHealth technology will have the sensitivity of a conventional plate reader but have greater mHealth clinical utility, especially for telemedicine and for resource-poor settings and global health applications.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, USA; University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
190
|
Greenbaum A, Akbari N, Feizi A, Luo W, Ozcan A. Field-portable pixel super-resolution colour microscope. PLoS One 2013; 8:e76475. [PMID: 24086742 PMCID: PMC3785454 DOI: 10.1371/journal.pone.0076475] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.
Collapse
Affiliation(s)
- Alon Greenbaum
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Najva Akbari
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alborz Feizi
- Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wei Luo
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
- Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
191
|
Coskun AF, Ozcan A. Computational imaging, sensing and diagnostics for global health applications. Curr Opin Biotechnol 2013; 25:8-16. [PMID: 24484875 DOI: 10.1016/j.copbio.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022]
Abstract
In this review, we summarize some of the recent work in emerging computational imaging, sensing and diagnostics techniques, along with some of the complementary non-computational modalities that can potentially transform the delivery of health care globally. As computational resources are becoming more and more powerful, while also getting cheaper and more widely available, traditional imaging, sensing and diagnostic tools will continue to experience a revolution through simplification of their designs, making them compact, light-weight, cost-effective, and yet quite powerful in terms of their performance when compared to their bench-top counterparts.
Collapse
Affiliation(s)
- Ahmet F Coskun
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, United States; Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Aydogan Ozcan
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, United States; Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
192
|
Balsam J, Bruck HA, Rasooly A. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 186:711-717. [PMID: 24039345 PMCID: PMC3769705 DOI: 10.1016/j.snb.2013.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993 ; University of Maryland, College Park, MD 20742
| | | | | |
Collapse
|
193
|
Delaney JL, Doeven EH, Harsant AJ, Hogan CF. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 2013; 790:56-60. [DOI: 10.1016/j.aca.2013.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/28/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
194
|
Glynn MT, Kinahan DJ, Ducrée J. CD4 counting technologies for HIV therapy monitoring in resource-poor settings--state-of-the-art and emerging microtechnologies. LAB ON A CHIP 2013; 13:2731-2748. [PMID: 23670110 DOI: 10.1039/c3lc50213a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern advancements in pharmaceuticals have provided individuals who have been infected with the human immunodeficiency virus (HIV) with the possibility of significantly extending their survival rates. When administered sufficiently soon after infection, antiretroviral therapy (ART) allows medical practitioners to control onset of the symptoms of the associated acquired immune deficiency syndrome (AIDS). Active monitoring of the immune system in both HIV patients and individuals who are regarded as "at-risk" is critical in the decision making process for when to start a patient on ART. A reliable and common method for such monitoring is to observe any decline in the number of CD4 expressing T-helper cells in the blood of a patient. However, the technology, expertise, infrastructure and costs to carry out such a diagnostic cannot be handled by medical services in resource-poor regions where HIV is endemic. Addressing this shortfall, commercialized point-of-care (POC) CD4 cell count systems are now available in such regions. A number of newer devices will also soon be on the market, some the result of recent maturing of charity-funded initiatives. Many of the current and imminent devices are enabled by microfluidic solutions, and this review will critically survey and analyze these POC technologies for CD4 counting, both on-market and near-to-market deployment. Additionally, promising technologies under development that may usher in a new generation of devices will be presented.
Collapse
Affiliation(s)
- Macdara T Glynn
- Biomedical Diagnostic Institute, National Centre for Sensor Research, School of Physical Sciences, Dublin City University, Dublin, Ireland.
| | | | | |
Collapse
|
195
|
Wen JT, Ho CM, Lillehoj PB. Coffee ring aptasensor for rapid protein detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8440-6. [PMID: 23540796 PMCID: PMC4131697 DOI: 10.1021/la400224a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We introduce a new biosensing platform for rapid protein detection that combines one of the simplest methods for biomolecular concentration, coffee ring formation, with a sensitive aptamer-based optical detection scheme. In this approach, aptamer beacons are utilized for signal transduction where a fluorescence signal is emitted in the presence of the target molecule. Signal amplification is achieved by concentrating aptamer-target complexes within liquid droplets, resulting in the formation of coffee ring "spots". Surfaces with various chemical coatings were utilized to investigate the correlation among surface hydrophobicity, concentration efficiency, and signal amplification. On the basis of our results, we found that the increase in the coffee ring diameter with larger droplet volumes is independent of surface hydrophobicity. Furthermore, we show that highly hydrophobic surfaces produce enhanced particle concentration via coffee ring formation, resulting in signal intensities 6-fold greater than those on hydrophilic surfaces. To validate this biosensing platform for the detection of clinical samples, we detected α-thrombin in human serum and 4-fold-diluted whole blood. Coffee ring spots from serum and blood produced detection signals up to 40 times larger than those from samples in liquid droplets. Additionally, this biosensor exhibits a lower limit of detection of 2 ng/mL (54 pM) in serum, and 4 ng/mL (105 pM) in blood. On the basis of its simplicity and high performance, this platform demonstrates immense potential as an inexpensive diagnostic tool for the detection of disease biomarkers, particularly for use in developing countries that lack the resources and facilities required for conventional biodetection practices.
Collapse
Affiliation(s)
- Jessica T. Wen
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Chih-Ming Ho
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author: ; Phone: (517) 432-2976; Fax: (517) 353-1750
| |
Collapse
|
196
|
Gallegos D, Long KD, Yu H, Clark PP, Lin Y, George S, Nath P, Cunningham BT. Label-free biodetection using a smartphone. LAB ON A CHIP 2013; 13:2124-32. [PMID: 23609514 DOI: 10.1039/c3lc40991k] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Utilizing its integrated camera as a spectrometer, we demonstrate the use of a smartphone as the detection instrument for a label-free photonic crystal biosensor. A custom-designed cradle holds the smartphone in fixed alignment with optical components, allowing for accurate and repeatable measurements of shifts in the resonant wavelength of the sensor. Externally provided broadband light incident upon an entrance pinhole is subsequently collimated and linearly polarized before passing through the biosensor, which resonantly reflects only a narrow band of wavelengths. A diffraction grating spreads the remaining wavelengths over the camera's pixels to display a high resolution transmission spectrum. The photonic crystal biosensor is fabricated on a plastic substrate and attached to a standard glass microscope slide that can easily be removed and replaced within the optical path. A custom software app was developed to convert the camera images into the photonic crystal transmission spectrum in the visible wavelength range, including curve-fitting analysis that computes the photonic crystal resonant wavelength with 0.009 nm accuracy. We demonstrate the functionality of the system through detection of an immobilized protein monolayer, and selective detection of concentration-dependent antibody binding to a functionalized photonic crystal. We envision the capability for an inexpensive, handheld biosensor instrument with web connectivity to enable point-of-care sensing in environments that have not been practical previously.
Collapse
Affiliation(s)
- Dustin Gallegos
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Zhu H, Ozcan A. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone. J Vis Exp 2013. [PMID: 23603893 DOI: 10.3791/50451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.
Collapse
Affiliation(s)
- Hongying Zhu
- Electrical Engineering Department, University of California, Los Angeles, USA
| | | |
Collapse
|
198
|
Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, Ozcan A. Cost-effective and rapid blood analysis on a cell-phone. LAB ON A CHIP 2013; 13:1282-8. [PMID: 23392286 PMCID: PMC3594636 DOI: 10.1039/c3lc41408f] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.
Collapse
Affiliation(s)
- Hongying Zhu
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A. Low-cost technologies for medical diagnostics in low-resource settings. ACTA ACUST UNITED AC 2013; 7:243-55. [DOI: 10.1517/17530059.2013.767796] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
200
|
Beikmann BS, Tomlinson ID, Rosenthal SJ, Andrews AM. Serotonin uptake is largely mediated by platelets versus lymphocytes in peripheral blood cells. ACS Chem Neurosci 2013; 4:161-70. [PMID: 23336055 DOI: 10.1021/cn300146w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/22/2012] [Indexed: 12/12/2022] Open
Abstract
The serotonin transporter (SERT), a primary target for many antidepressants, is expressed in the brain and also in peripheral blood cells. Although platelet SERT function is well accepted, lymphocyte SERT function has not been definitively characterized. Due to their small size, platelets often are found in peripheral blood mononuclear cell preparations aimed at isolating lymphocytes, monocytes, and macrophages. The presence of different cells makes it difficult to assign SERT expression and function to specific cell types. Here, we use flow cytometry and IDT307, a monoamine transporter substrate that fluoresces after uptake into cells, to investigate SERT function in lymphocyte and platelet populations independently, as well as simultaneously without prior isolation. We find that murine lymphocytes exhibit temperature-dependent IDT307 transport but uptake is independent of SERT. Lack of measurable SERT function in lymphocytes was corroborated by chronoamperometry using serotonin as a substrate. When we examined rhesus and human mixed blood cell populations, we found that platelets, and not lymphocytes, were primary contributors to SERT function. Overall, these findings indicate that lymphocyte SERT function is minimal. Moreover, flow cytometry, in conjunction with the fluorescent transporter substrate IDT307, can be widely applied to investigate SERT in platelets from populations of clinical significance.
Collapse
Affiliation(s)
- Brendan S. Beikmann
- Semel Institute for Neuroscience & Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | | | | | - Anne Milasincic Andrews
- Semel Institute for Neuroscience & Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|