151
|
Gan X, Zhang W, Lan S, Hu D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1369-1380. [PMID: 36626162 DOI: 10.1021/acs.jafc.2c06422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further develop new antiviral agents, several novel cyclized derivatives of ferulic acid were designed and synthesized. Their antiviral activities were evaluated against the cucumber mosaic virus (CMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV). The results showed that some ferulic acid derivatives exhibited desirable antiviral activities. Particularly, compound 5e exhibited excellent protective activities against CMV, PMMoV, and TSWV, with EC50 values of 167.2, 102.5, and 145.8 μg mL-1, respectively, which were superior to those obtained for trans-ferulic acid (581.7, 611.2, and 615.4 μg mL-1), dufulin (312.6, 302.5, and 298.2 μg mL-1), and ningnanmycin (264.3, 282.5, and 276.5 μg mL-1). Thereafter, the protective mechanisms of 5e were evaluated through photosynthesis evaluation, transcriptome profiling, and proteomic analysis. The results indicated that 5e significantly activated the expression levels of photosynthesis-related regulatory genes and proteins in tobacco plants and promoted the accumulation of defense molecules to resist viral infection. Thus, the findings of this study indicated that novel cyclized ferulic acid derivatives are potential antiviral agents that act via regulating photosynthesis in the host.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
152
|
Perrella F, Li X, Petrone A, Rega N. Nature of the Ultrafast Interligands Electron Transfers in Dye-Sensitized Solar Cells. JACS AU 2023; 3:70-79. [PMID: 36711100 PMCID: PMC9875239 DOI: 10.1021/jacsau.2c00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Charge-transfer dynamics and interligand electron transfer (ILET) phenomena play a pivotal role in dye-sensitizers, mostly represented by the Ru-based polypyridyl complexes, for TiO2 and ZnO-based solar cells. Starting from metal-to-ligand charge-transfer (MLCT) excited states, charge dynamics and ILET can influence the overall device efficiency. In this letter, we focus on N34- dye ( [Ru(dcbpy)2(NCS)2]4-, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) to provide a first direct observation with high time resolution (<20 fs) of the ultrafast electron exchange between bpy-like ligands. ILET is observed in water solution after photoexcitation in the ∼400 nm MLCT band, and assessment of its ultrafast time-scale is here given through a real-time electronic dynamics simulation on the basis of state-of-the-art electronic structure methods. Indirect effects of water at finite temperature are also disentangled by investigating the system in a symmetric gas-phase structure. As main result, remarkably, the ILET mechanism appears to be based upon a purely electronic evolution among the dense, experimentally accessible, MLCT excited states manifold at ∼400 nm, which rules out nuclear-electronic couplings and proves further the importance of the dense electronic manifold in improving the efficiency of dye sensitizers in solar cell devices.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed.
6, via Cintia, 80126 Napoli, Italy
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
153
|
Feighan O, Manby FR, Bourne-Worster S. An efficient protocol for excited states of large biochromophores. J Chem Phys 2023; 158:024107. [PMID: 36641400 DOI: 10.1063/5.0132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Efficient energy transport in photosynthetic antenna is a long-standing source of inspiration for artificial light harvesting materials. However, characterizing the excited states of the constituent chromophores poses a considerable challenge to mainstream quantum chemical and semiempirical excited state methods due to their size and complexity and the accuracy required to describe small but functionally important changes in their properties. In this paper, we explore an alternative approach to calculating the excited states of large biochromophores, exemplified by a specific method for calculating the Qy transition of bacteriochlorophyll a, which we name Chl-xTB. Using a diagonally dominant approximation to the Casida equation and a bespoke parameterization scheme, Chl-xTB can match time-dependent density functional theory's accuracy and semiempirical speed for calculating the potential energy surfaces and absorption spectra of chlorophylls. We demonstrate that Chl-xTB (and other prospective realizations of our protocol) can be integrated into multiscale models, including concurrent excitonic and point-charge embedding frameworks, enabling the analysis of biochromophore networks in a native environment. We exploit this capability to probe the low-frequency spectral densities of excitonic energies and interchromophore interactions in the light harvesting antenna protein LH2 (light harvesting complex 2). The impact of low-frequency protein motion on interchromophore coupling and exciton transport has routinely been ignored due to the prohibitive costs of including it in simulations. Our results provide a more rigorous basis for continued use of this approximation by demonstrating that exciton transition energies are unaffected by low-frequency vibrational coupling to exciton interaction energies.
Collapse
Affiliation(s)
- Oliver Feighan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Susannah Bourne-Worster
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
154
|
Zhang J, Guan B, Wu X, Chen Y, Guo J, Ma Z, Bao S, Jiang X, Chen L, Shu K, Dang H, Guo Z, Li Z, Huang Z. Research on photocatalytic CO 2 conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Due to its desirable optoelectronic properties, localized surface plasmon resonance (LSPR) can hopefully play a promising role in photocatalytic CO2 reduction reaction (CO2RR). In this review, mechanisms and applications of LSPR effect in this field are introduced in detail.
Collapse
Affiliation(s)
- Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xingze Wu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Jiangfeng Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Shibo Bao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xing Jiang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Lei Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Kaiyou Shu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Hongtao Dang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zelong Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zekai Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| |
Collapse
|
155
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
156
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
157
|
Wu H, Yang P, Li A, Jin X, Zhang Z, Lv H. Chlorella sp.-ameliorated undesirable microenvironment promotes diabetic wound healing. Acta Pharm Sin B 2023; 13:410-424. [PMID: 36815029 PMCID: PMC9939294 DOI: 10.1016/j.apsb.2022.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/01/2022] Open
Abstract
Chronic diabetic wound remains a critical challenge suffering from the complicated negative microenvironments, such as high-glucose, excessive reactive oxygen species (ROS), hypoxia and malnutrition. Unfortunately, few strategies have been developed to ameliorate the multiple microenvironments simultaneously. In this study, Chlorella sp. (Chlorella) hydrogels were prepared against diabetic wounds. In vitro experiments demonstrated that living Chlorella could produce dissolved oxygen by photosynthesis, actively consume glucose and deplete ROS with the inherent antioxidants, during the daytime. At night, Chlorella was inactivated in situ by chlorine dioxide with human-body harmless concentration to utilize its abundant contents. It was verified in vitro that the inactivated-Chlorella could supply nutrition, relieve inflammation and terminate the oxygen-consumption of Chlorella-respiration. The advantages of living Chlorella and its contents were integrated ingeniously. The abovementioned functions were proven to accelerate cell proliferation, migration and angiogenesis in vitro. Then, streptozotocin-induced diabetic mice were employed for further validation. The in vivo outcomes confirmed that Chlorella could ameliorate the undesirable microenvironments, including hypoxia, high-glucose, excessive-ROS and chronic inflammation, thereby synergistically promoting tissue regeneration. Given the results above, Chlorella is considered as a tailor-made therapeutic strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Hangyi Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Pei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Aiqin Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Jin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China,The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China,Corresponding authors. Tel./Fax.: +86 13912965842; +86 18913823932.
| | - HuiXia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China,Corresponding authors. Tel./Fax.: +86 13912965842; +86 18913823932.
| |
Collapse
|
158
|
Wang Y, Zhu R, Hang Y, Wang R, Dong R, Yu S, Xing LB. Artificial supramolecular light-harvesting systems based on a pyrene derivative for photochemical catalysis. Polym Chem 2023. [DOI: 10.1039/d2py01344d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A supramolecular polymer based on NPyP and CB[8] was constructed via host–guest interactions with the AIE effect for artificial light-harvesting energy transfer and photocatalysis.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rongxin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yu Hang
- Weifang Inspection and Certification Co., Ltd, Weifang 261021, P. R. China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ruizhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
159
|
Tian Y, Yin D, Yan L. J-aggregation strategy of organic dyes for near-infrared bioimaging and fluorescent image-guided phototherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1831. [PMID: 35817462 DOI: 10.1002/wnan.1831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
With the continuous development of organic materials for optoelectronic devices and biological applications, J-aggregation has attracted a great deal of interest in both dye chemistry and supramolecular chemistry. Except for the characteristic red-shifted absorption and emission, such ordered head-to-tail stacked structures may be accompanied by special properties such as enhanced absorption, narrowed spectral bandwidth, improved photothermal and photodynamic properties, aggregation-induced emission enhancement (AIEE) phenomenon, and so forth. These excellent properties add great potential to J-aggregates for optical imaging and phototherapy in the near-infrared (NIR) region. Despite decades of development, the challenge of rationally designing the molecular structure to adjust intermolecular forces to induce J-aggregation of organic dyes remains significant. In this review, we discuss the formation of J-aggregates in terms of intermolecular interactions and summarize some recent studies on J-aggregation dyes for NIR imaging and phototherapy, to provide a clear direction and reference for designing J-aggregates of near-infrared organic dyes to better enable biological applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
160
|
Hyuk Lim S, La SW, Thuy Hang Hoang T, Trung Le Q, Jang S, Choo J, Vasseghian Y, Jun Son S, Joo SW. Carbon capture and biocatalytic oxygen production of photosystem II from thylakoids and microalgae on nanobiomaterials. BIORESOURCE TECHNOLOGY 2023; 368:128279. [PMID: 36351532 DOI: 10.1016/j.biortech.2022.128279] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Enhanced carbon capture and oxygen production via water splitting was observed by controlling the plasmon-induced resonance energy transfer (PIRET) for photosystem II (PSII) in thylakoid extracts and spirulina assembled on gold nanoparticle (AuNP) dimer arrays. The two types of vertical (V) and horizontal (H) AuNP dimer arrays were uniformly inserted inside pore diameter-controlled templates. Based on the theoretical calculations, the longitudinal mode of the H AuNP dimer array was found to be sensitive to the nanogap distances between the two AuNPs in resonance with the absorption at P680 of the PSII. The longitudinal modes that interacted with P680 of PSII increased from the V to the H conformer. The optical properties from the H AuNP dimer array caused overlapping absorbance and photoluminescence with PSII, and the H AuNP dimer arrays exhibited a significant increase in carbon capture and oxygen generation rates in comparison with those of the bare PSII protein complex under light irradiation via the controlled PIRET process.
Collapse
Affiliation(s)
- Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea
| | - Se-Woong La
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | | | - Quang Trung Le
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 05006, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea.
| |
Collapse
|
161
|
Kokin E, An HJ, Koo D, Han S, Whang K, Kang T, Choi I, Lee LP. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. NANO LETTERS 2022; 22:9861-9868. [PMID: 36484527 DOI: 10.1021/acs.nanolett.2c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmonic nanocavities have been used as a novel platform for studying strong light-matter coupling, opening access to quantum chemistry, material science, and enhanced sensing. However, the biomolecular study of cavity quantum electrodynamics (QED) is lacking. Here, we report the quantum electrodynamic behavior of chlorophyll-a in a plasmonic nanocavity. We construct an extreme plasmonic nanocavity using Au nanocages with various linker molecules and Au mirrors to obtain a strong coupling regime. Plasmon resonance energy transfer (PRET)-based hyperspectral imaging is applied to study the electrodynamic behaviors of chlorophyll-a in the nanocavity. Furthermore, we observe the energy level splitting of chlorophyll-a, similar to the cavity QED effects due to the light-matter interactions in the cavity. Our study will provide insight for further studies in quantum biological electron or energy transfer, electrodynamics, the electron transport chain of mitochondria, and energy harvesting, sensing, and conversion in both biological and biophysical systems.
Collapse
Affiliation(s)
- Egor Kokin
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul 02504, Korea
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Donghoon Koo
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Korea
- Department of Chemistry, University of Seoul, Seoul 02504, Korea
| | - Luke P Lee
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon-si 16419, Korea
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
162
|
Takatsuka K, Arasaki Y. Real-time electronic energy current and quantum energy flux in molecules. J Chem Phys 2022; 157:244108. [PMID: 36586984 DOI: 10.1063/5.0131200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intra- and inter-molecular electronic energy current is formulated by defining the probability current of electronic energy, called the energy flux. Among vast possible applications to electronic energy transfer phenomena, including chemical reaction dynamics, here we present a first numerical example from highly excited nonadiabatic electron wavepacket dynamics of a boron cluster B12.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
163
|
Zhou X, Satyabola D, Liu H, Jiang S, Qi X, Yu L, Lin S, Liu Y, Woodbury NW, Yan H. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System. Angew Chem Int Ed Engl 2022; 61:e202211200. [PMID: 36288100 DOI: 10.1002/anie.202211200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Photosynthetic organisms organize discrete light-harvesting complexes into large-scale networks to facilitate efficient light collection and utilization. Inspired by nature, herein, synthetic DNA templates were used to direct the formation of dye aggregates with a cyanine dye, K21, into discrete branched photonic complexes, and two-dimensional (2D) excitonic networks. The DNA templates ranged from four-arm DNA tiles, ≈10 nm in each arm, to 2D wireframe DNA origami nanostructures with different geometries and varying dimensions up to 100×100 nm. These DNA-templated dye aggregates presented strongly coupled spectral features and delocalized exciton characteristics, enabling efficient photon collection and energy transfer. Compared to the discrete branched photonic systems templated on individual DNA tiles, the interconnected excitonic networks showed approximately a 2-fold increase in energy transfer efficiency. This bottom-up assembly strategy paves the way to create 2D excitonic systems with complex geometries and engineered energy pathways.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Deeksha Satyabola
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaodong Qi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Lu Yu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Neal W Woodbury
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
164
|
Transcriptome and Metabolome Analysis of a Late-Senescent Vegetable Soybean during Seed Development Provides New Insights into Degradation of Chlorophyll. Antioxidants (Basel) 2022; 11:antiox11122480. [PMID: 36552689 PMCID: PMC9774520 DOI: 10.3390/antiox11122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Senescence represents the final stage of plant growth and development, which transfers nutrients to growing seeds and directly affects the yield and quality of crops. However, little is known about chlorophyll degradation in developing and maturing seeds, in contrast to leaf senescence; (2) Methods: RNA-Seq was used to analyze the differentially expressed genes of different late-senescent germplasms. A widely untargeted metabolic analysis was used to analyze differential metabolites. In addition, qRT-PCR was conducted to detect gene expression levels; (3) Results: Transcriptome analysis revealed that ZX12 seeds have a higher expression level of the chlorophyll synthesis genes in the early stage of maturity, compared with ZX4, and have a lower expression level of chlorophyll degradation genes in the late stage of maturity. Flavonoids were the primary differential metabolites, and ZX12 contains the unique and highest expression of three types of metabolites, including farrerol-7-O-glucoside, cyanidin-3-o-(6'-o-feruloyl) glucoside, and kaempferide-3-o-(6'-malonyl) glucoside. Among them, farrerol-7-O-glucoside and cyanidin-3-o-(6'-o-feruloyl) glucoside are flavonoid derivatives containing mono and dihydroxy-B-ring chemical structures, respectively; and (4) Conclusions: It is speculated that the two metabolites can slow down the degradation process of chlorophyll by scavenging oxygen-free radicals in the chloroplast.
Collapse
|
165
|
Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 2022; 12:21139. [PMID: 36477410 PMCID: PMC9729621 DOI: 10.1038/s41598-022-25749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coriander (Coriandrum sativum L.) contains abundant antioxidants and essential oils which can provide antibacterial, antifungal, and antioxidant activities in the pharmaceutical, health and food production industry. To improve the economic values of coriander, the relationships between optimal light treatments for maximizing both plant growth and the antioxidant and essential oil content of coriander leaves need to be determined. Plants were exposed to five light-emitting diodes spectral color mixtures, high blue light (BL) intensity induced the levels of reducing power response. The light treatments were then adjusted for the analysis of secondary metabolite compounds of coriander leaves. Among 30 identified compounds, the amounts of decamethyl-cyclopentasiloxane and dodecane were significantly reduced in the R80 + G50 + B50 condition, whereas dodecamethyl-cyclohexasiloxane level was significantly reduced in R50 + G50 + B80 condition. Various light quality and intensity combinations influenced the accumulations of chlorophyll and phytochemical contents, mediated antioxidative properties, and secondary metabolites of coriander leaves, which may be useful in developing a new LED lighting apparatus optimized for coriander production in plant factories.
Collapse
|
166
|
Yakovlev AG, Taisova AS, Fetisova ZG. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2022; 154:291-302. [PMID: 36115930 DOI: 10.1007/s11120-022-00942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chlorosomes of green bacteria can be considered as a prototype of future artificial light-harvesting devices due to their unique property of self-assembly of a large number of bacteriochlorophyll (BChl) c/d/e molecules into compact aggregates. The presence of carotenoids (Cars) in chlorosomes is very important for photoprotection, light harvesting and structure stabilization. In this work, we studied for the first time the electrochromic band shift (Stark effect) in Cars of the phototrophic filamentous green bacterium Chloroflexus (Cfx.) aurantiacus induced by fs light excitation of the main pigment, BChl c. The high accuracy of the spectral measurements permitted us to extract a small wavy spectral feature, which, obviously, can be associated with the dynamic shift of the Car absorption band. A global analysis of spectroscopy data and theoretical modeling of absorption spectra showed that near 60% of Cars exhibited a red Stark shift of ~ 25 cm-1 and the remaining 40% exhibited a blue shift. We interpreted this finding as evidence of various orientations of Car in chlorosomes. We estimated the average value of the light-induced electric field strength in the place of Car molecules as ~ 106 V/cm and the average distance between Car and the neighboring BChl c as ~ 10 Å. We concluded that the dynamics of the Car electrochromic band shift mainly reflected the dynamics of exciton migration through the chlorosome toward the baseplate within ~ 1 ps. Our work has unambiguously shown that Cars are sensitive indicators of light-induced internal electric fields in chlorosomes.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| |
Collapse
|
167
|
Huang B, Qu G, He Y, Zhang J, Fan J, Tang T. Study on high-CO 2 tolerant Dunaliella salina and its mechanism via transcriptomic analysis. Front Bioeng Biotechnol 2022; 10:1086357. [PMID: 36532596 PMCID: PMC9751823 DOI: 10.3389/fbioe.2022.1086357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2023] Open
Abstract
Microalgae has been regarded as a promising method for reducing CO2 emission. High CO2 concentration generally inhibits algal growth, and previous studies have mostly focused on breeding freshwater algae with high CO2 tolerance. In this study, one marine algal strain Dunaliella salina (D. salina) was grown under 0.03%-30 % CO2 and 3% NaCl conditions, and was evaluated to determine its potential for CO2 assimilation. The results showed that D. salina could tolerate 30% CO2 , and its maximum biomass concentration could reach 1.13 g·L-1 after 8 days incubation, which was 1.85 times higher than that of incubation in air (0.03%). The phenomenon of high-CO2 tolerance in D. salina culture was discussed basing on transcriptome analysis. The results showed that D. salina was subjected to oxidative stress under 30% CO2 conditions, and the majority genes involving in antioxidant system, such as SOD, CAT, and APX genes were up-regulated to scavenge ROS. In addition, most of the key enzyme genes related to photosynthesis, carbon fixation and metabolism were up-regulated, which are consistent with the higher physiological and biochemical values for D. salina incubation under 30% CO2 .
Collapse
Affiliation(s)
- Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gaopin Qu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yulong He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinli Zhang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
168
|
Gotfredsen H, Deng JR, Van Raden JM, Righetto M, Hergenhahn J, Clarke M, Bellamy-Carter A, Hart J, O'Shea J, Claridge TDW, Duarte F, Saywell A, Herz LM, Anderson HL. Bending a photonic wire into a ring. Nat Chem 2022; 14:1436-1442. [PMID: 36253501 DOI: 10.1038/s41557-022-01032-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023]
Abstract
Natural light-harvesting systems absorb sunlight and transfer its energy to the reaction centre, where it is used for photosynthesis. Synthetic chromophore arrays provide useful models for understanding energy migration in these systems. Research has focused on mimicking rings of chlorophyll molecules found in purple bacteria, known as 'light-harvesting system 2'. Linear meso-meso linked porphyrin chains mediate rapid energy migration, but until now it has not been possible to bend them into rings. Here we show that oligo-pyridyl templates can be used to bend these rod-like photonic wires to create covalent nanorings that consist of 24 porphyrin units and a single butadiyne link. Their elliptical conformations have been probed by scanning tunnelling microscopy. This system exhibits two excited state energy transfer processes: one from a bound template to the peripheral porphyrins and one, in the template-free ring, from the exciton-coupled porphyrin array to the π-conjugated butadiyne-linked porphyrin dimer segment.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jie-Ren Deng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jeff M Van Raden
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Marcello Righetto
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK
| | - Janko Hergenhahn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Michael Clarke
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | | | - Jack Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - James O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Alex Saywell
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK.
| | - Laura M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
| |
Collapse
|
169
|
Hancock AM, Swainsbury DJK, Meredith SA, Morigaki K, Hunter CN, Adams PG. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112585. [PMID: 36334507 DOI: 10.1016/j.jphotobiol.2022.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
170
|
Pitch GM, Matsushima LN, Kraemer Y, Dailing EA, Ayzner AL. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022; 55:10302-10311. [DOI: 10.1021/acs.macromol.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory M. Pitch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Yannick Kraemer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Eric A. Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| |
Collapse
|
171
|
Son M, Armstrong ZT, Allen RT, Dhavamani A, Arnold MS, Zanni MT. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat Commun 2022; 13:7305. [PMID: 36435875 PMCID: PMC9701200 DOI: 10.1038/s41467-022-35046-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Exciton-polaritons are hybrid states formed when molecular excitons are strongly coupled to photons trapped in an optical cavity. These systems exhibit many interesting, but not fully understood, phenomena. Here, we utilize ultrafast two-dimensional white-light spectroscopy to study donor-acceptor microcavities made from two different layers of semiconducting carbon nanotubes. We observe the delayed growth of a cross peak between the upper- and lower-polariton bands that is oftentimes obscured by Rabi contraction. We simulate the spectra and use Redfield theory to learn that energy cascades down a manifold of new electronic states created by intermolecular coupling and the two distinct bandgaps of the donor and acceptor. Energy most effectively enters the manifold when light-matter coupling is commensurate with the energy distribution of the manifold, contributing to long-range energy transfer. Our results broaden the understanding of energy transfer dynamics in exciton-polariton systems and provide evidence that long-range energy transfer benefits from moderately-coupled cavities.
Collapse
Affiliation(s)
- Minjung Son
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Ryan T Allen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Abitha Dhavamani
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Ave, Madison, WI, 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Ave, Madison, WI, 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
172
|
Mass OA, Basu S, Patten LK, Terpetschnig EA, Krivoshey AI, Tatarets AL, Pensack RD, Yurke B, Knowlton WB, Lee J. Exciton Chirality Inversion in Dye Dimers Templated by DNA Holliday Junction. J Phys Chem Lett 2022; 13:10688-10696. [PMID: 36355575 PMCID: PMC9706552 DOI: 10.1021/acs.jpclett.2c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Shibani Basu
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ewald A. Terpetschnig
- SETA
BioMedicals, LLC, 2014
Silver Court East, Urbana, Illinois 61801, United
States
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
173
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
174
|
Kikuchi H. Redshifting and Blueshifting of β82 Chromophores in the Phycocyanin Hexamer of Porphyridium purpureum Phycobilisomes Due to Linker Proteins. Life (Basel) 2022; 12:1833. [PMID: 36362988 PMCID: PMC9694638 DOI: 10.3390/life12111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each β82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Department of Physics, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| |
Collapse
|
175
|
Jones JJ, Huang S, Hedrich R, Geilfus CM, Roelfsema MRG. The green light gap: a window of opportunity for optogenetic control of stomatal movement. THE NEW PHYTOLOGIST 2022; 236:1237-1244. [PMID: 36052708 DOI: 10.1111/nph.18451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| |
Collapse
|
176
|
Kundu S, Dani R, Makri N. Tight inner ring architecture and quantum motion of nuclei enable efficient energy transfer in bacterial light harvesting. SCIENCE ADVANCES 2022; 8:eadd0023. [PMID: 36288310 PMCID: PMC9604522 DOI: 10.1126/sciadv.add0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The efficient, directional transfer of absorbed solar energy between photosynthetic light-harvesting complexes continues to pose intriguing questions. In this work, we identify the pathways of energy flow between the B800 and B850 rings in the LH2 complex of Rhodopseudomonas molischianum using fully quantum mechanical path integral methods to simulate the excited-state dynamics of the 24 bacteriochlorophyll molecules and their coupling to 50 normal mode vibrations in each chromophore. While all pigments are identical, the tighter packing of the inner B850 ring is responsible for the thermodynamic stabilization of the inner ring. Molecular vibrations enable the 1-ps flow of energy to the B850 states, which would otherwise be kinetically inaccessible. A classical treatment of the vibrations leads to uniform equilibrium distribution of the excitation, with only 67% transferred to the inner ring. However, spontaneous fluctuations associated with the quantum motion of the nuclei increase the transfer efficiency to 90%.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
177
|
Trepl T, Schelter I, Kümmel S. Analyzing Excitation-Energy Transfer Based on the Time-Dependent Density Functional Theory in Real Time. J Chem Theory Comput 2022; 18:6577-6587. [PMID: 36268773 DOI: 10.1021/acs.jctc.2c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitation-energy transfer is a key step in processes such as photosynthesis that convert light into other forms of energy. Time-dependent density functional theory (DFT) in real time is ideal for the first-principles simulation of such processes due to its computational efficiency. We here demonstrate how real-time DFT can be used for analyzing excitation-energy transfer from first-principles. We discuss several measures of energy transfer that are based solely on the time-dependent density, are well founded in the DFT framework, allow for intuitive understanding and visualization, and reproduce important limiting cases of an analytical model. We demonstrate their usefulness in calculations for model systems, both with static nuclei and in the context of DFT-based Ehrenfest dynamics.
Collapse
Affiliation(s)
- T Trepl
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - I Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - S Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
178
|
Jacobi R, Hernández-Castillo D, Sinambela N, Bösking J, Pannwitz A, González L. Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes. J Phys Chem A 2022; 126:8070-8081. [PMID: 36260519 PMCID: PMC9639162 DOI: 10.1021/acs.jpca.2c04524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Calculations of Förster
Resonance Energy Transfer (FRET)
often neglect the influence of different chromophore orientations
or changes in the spectral overlap. In this work, we present two computational
approaches to estimate the energy transfer rate between chromophores
embedded in lipid bilayer membranes. In the first approach, we assess
the transition dipole moments and the spectral overlap by means of
quantum chemical calculations in implicit solvation, and we investigate
the alignment and distance between the chromophores in classical molecular
dynamics simulations. In the second, all properties are evaluated
integrally with hybrid quantum mechanical/molecular mechanics (QM/MM)
calculations. Both approaches come with advantages and drawbacks,
and despite the fact that they do not agree quantitatively, they provide
complementary insights on the different factors that influence the
FRET rate. We hope that these models can be used as a basis to optimize
energy transfers in nonisotropic media.
Collapse
Affiliation(s)
- Richard Jacobi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - David Hernández-Castillo
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090Vienna, Austria
| | - Novitasari Sinambela
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Julian Bösking
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081Ulm, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090Vienna, Austria
| |
Collapse
|
179
|
Huff J, Díaz S, Barclay MS, Chowdhury AU, Chiriboga M, Ellis GA, Mathur D, Patten LK, Roy SK, Sup A, Biaggne A, Rolczynski BS, Cunningham PD, Li L, Lee J, Davis PH, Yurke B, Knowlton WB, Medintz IL, Turner DB, Melinger JS, Pensack RD. Tunable Electronic Structure via DNA-Templated Heteroaggregates of Two Distinct Cyanine Dyes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17164-17175. [PMID: 36268205 PMCID: PMC9575151 DOI: 10.1021/acs.jpcc.2c04336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.
Collapse
Affiliation(s)
- Jonathan
S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Azhad U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K. Roy
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Austin Biaggne
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Brian S. Rolczynski
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Lan Li
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
180
|
Green JA, Gómez S, Worth G, Santoro F, Improta R. Solvent Effects on Ultrafast Charge Transfer Population: Insights from the Quantum Dynamics of Guanine-Cytosine in Chloroform. Chemistry 2022; 28:e202201731. [PMID: 35950519 PMCID: PMC9828530 DOI: 10.1002/chem.202201731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 01/12/2023]
Abstract
We study the ultrafast photoactivated dynamics of the hydrogen bonded dimer Guanine-Cytosine in chloroform solution, focusing on the population of the Guanine→Cytosine charge transfer state (GC-CT), an important elementary process for the photophysics and photochemistry of nucleic acids. We integrate a quantum dynamics propagation scheme, based on a linear vibronic model parameterized through time dependent density functional theory calculations, with four different solvation models, either implicit or explicit. On average, after 50 fs, 30∼40 % of the bright excited state population has been transferred to GC-CT. This process is thus fast and effective, especially when transferring from the Guanine bright excited states, in line with the available experimental studies. Independent of the adopted solvation model, the population of GC-CT is however disfavoured in solution with respect to the gas phase. We show that dynamical solvation effects are responsible for this puzzling result and assess the different chemical-physical effects modulating the population of CT states on the ultrafast time-scale. We also propose some simple analyses to predict how solvent can affect the population transfer between bright and CT states, showing that the effect of the solute/solvent electrostatic interactions on the energy of the CT state can provide a rather reliable indication of its possible population.
Collapse
Affiliation(s)
- James A. Green
- Istituto di Biostrutture e Bioimmagini-CNRVia De Amicis 95I-80145Napoli
| | - Sandra Gómez
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUnited Kingdom
- Departamento de Química FísicaUniversity of SalamancaSalamanca37008Spain
| | - Graham Worth
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUnited Kingdom
| | - Fabrizio Santoro
- Istituto di Chimica die Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNRVia Moruzzi 1I-56124Pisa
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNRVia De Amicis 95I-80145Napoli
| |
Collapse
|
181
|
Förster A, Visscher L. Quasiparticle Self-Consistent GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems. J Chem Theory Comput 2022; 18:6779-6793. [PMID: 36201788 PMCID: PMC9648197 DOI: 10.1021/acs.jctc.2c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GW-Bethe–Salpeter equation
(BSE) method
is promising for calculating the low-lying excitonic states of molecular
systems. However, so far it has only been applied to rather small
molecules and in the commonly implemented diagonal approximations
to the electronic self-energy, it depends on a mean-field starting
point. We describe here an implementation of the self-consistent and
starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on
large molecules. We herein show that eigenvalue-only self-consistency
can lead to an unfaithful description of some excitonic states for
chlorophyll dimers while the qsGW-BSE vertical excitation
energies (VEEs) are in excellent agreement with spectroscopic experiments
for chlorophyll monomers and dimers measured in the gas phase. Furthermore,
VEEs from time-dependent density functional theory calculations tend
to disagree with experimental values and using different range-separated
hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use
the new qsGW-BSE implementation to calculate the
lowest excitation energies of the six chromophores of the photosystem
II (PSII) reaction center (RC) with nearly 2000 correlated electrons.
Using more than 11,000 (6000) basis functions, the calculation could
be completed in less than 5 (2) days on a single modern compute node.
In agreement with previous TD-DFT calculations using RSH kernels on
models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters
in the low-energy spectrum of the hexameric complex. Earlier works
with RSH kernels have demonstrated that the protein environment facilitates
the experimentally observed interchromophoric charge transfer. Therefore,
future research will need to combine correlation effects beyond TD-DFT
with an explicit treatment of environmental electrostatics.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| |
Collapse
|
182
|
Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196612. [PMID: 36235149 PMCID: PMC9571668 DOI: 10.3390/molecules27196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.
Collapse
|
183
|
Puskar R, Du Truong C, Swain K, Chowdhury S, Chan KY, Li S, Cheng KW, Wang TY, Poh YP, Mazor Y, Liu H, Chou TF, Nannenga BL, Chiu PL. Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Nat Commun 2022; 13:5824. [PMID: 36192412 PMCID: PMC9529944 DOI: 10.1038/s41467-022-33505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The photochemical reaction center (RC) features a dimeric architecture for charge separation across the membrane. In green sulfur bacteria (GSB), the trimeric Fenna-Matthews-Olson (FMO) complex mediates the transfer of light energy from the chlorosome antenna complex to the RC. Here we determine the structure of the photosynthetic supercomplex from the GSB Chlorobaculum tepidum using single-particle cryogenic electron microscopy (cryo-EM) and identify the cytochrome c subunit (PscC), two accessory protein subunits (PscE and PscF), a second FMO trimeric complex, and a linker pigment between FMO and the RC core. The protein subunits that are assembled with the symmetric RC core generate an asymmetric photosynthetic supercomplex. One linker bacteriochlorophyll (BChl) is located in one of the two FMO-PscA interfaces, leading to differential efficiencies of the two energy transfer branches. The two FMO trimeric complexes establish two different binding interfaces with the RC cytoplasmic surface, driven by the associated accessory subunits. This structure of the GSB photosynthetic supercomplex provides mechanistic insight into the light excitation energy transfer routes and a possible evolutionary transition intermediate of the bacterial photosynthetic supercomplex from the primitive homodimeric RC.
Collapse
Affiliation(s)
- Ryan Puskar
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chloe Du Truong
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Rampart Bioscience, Monrovia, CA, 91016, USA
| | - Kyle Swain
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Saborni Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ka-Yi Chan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yu-Ping Poh
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
184
|
Šímová I, Kuznetsova V, Gardiner AT, Šebelík V, Koblížek M, Fuciman M, Polívka T. Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus. PHOTOSYNTHESIS RESEARCH 2022; 154:75-87. [PMID: 36066816 DOI: 10.1007/s11120-022-00952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Václav Šebelík
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching b. Munich, Germany
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
185
|
Chen XM, Cao KW, Bisoyi HK, Zhang S, Qian N, Guo L, Guo DS, Yang H, Li Q. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204360. [PMID: 36135778 DOI: 10.1002/smll.202204360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Dynamic sequential control of photoluminescence by supramolecular approaches has become a great issue in supramolecular chemistry. However, developing a systematic strategy to construct polychromatic photoluminescent supramolecular self-assemblies for improving the efficiency and sensitivity of artificial light-harvesting systems still remains a challenge. Here, a series of amphiphilicity-controlled supramolecular self-assemblies with polychromatic fluorescence based on lower-rim hexyl-modified sulfonatocalix[4]arene (SC4A6) and N-alkyl-modified p-phenylene divinylpyridiniums (PVPn, n = 2-7) as efficient light-harvesting platforms is reported. PVPn shows wide ranges of polychromatic fluorescence by co-assembling with SC4A6, whose emission trends significantly depend on the modified alkyl-chains of PVPn. The formed PVPn-SC4A6 co-assemblies as light-harvesting platforms are extremely sensitive for transferring the energy to two near-infrared emissive acceptors, Nile blue (NiB) and Rhodamine 800. After optimizing the amphiphilicity of PVPn-SC4A6 systems, the PVPn-SC4A6-NiB light-harvesting systems achieve an ultrasensitive working concentration for NiB (2 nm) and an ultrahigh antenna effect up to 91.0. Furthermore, the two different kinds of light-harvesting nanoparticles exhibit good performance on near-infrared imaging in the Golgi apparatus and mitochondria, respectively.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Ke-Wei Cao
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Nina Qian
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Lingxiang Guo
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
186
|
Titov E. Effect of conformational disorder on exciton states of an azobenzene aggregate. Phys Chem Chem Phys 2022; 24:24002-24006. [PMID: 36178007 DOI: 10.1039/d2cp02774g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene is a prototypical molecular photoswitch, widely used to trigger a variety of transformations at different length scales. In systems like self-assembled monolayers or micelles, azobenzene chromophores may interact with each other, which gives rise to the emergence of exciton states. Here, using first-principles calculations, we investigate how conformational disorder (induced, e.g., by thermal fluctuations) affects localization of these states, on an example of an H-type azobenzene tetramer. We find that conformational disorder leads to (partial) exciton localization on a single-geometry level, whereas ensemble-averaging results in a delocalized picture. The ππ* and nπ* excitons at high and low temperatures are discussed.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
187
|
Biaggne A, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Molecular dynamics simulations of cyanine dimers attached to DNA Holliday junctions. RSC Adv 2022; 12:28063-28078. [PMID: 36320263 PMCID: PMC9530999 DOI: 10.1039/d2ra05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Dye aggregates and their excitonic properties are of interest for their applications to organic photovoltaics, non-linear optics, and quantum information systems. DNA scaffolding has been shown to be effective at promoting the aggregation of dyes in a controllable manner. Specifically, isolated DNA Holliday junctions have been used to achieve strongly coupled cyanine dye dimers. However, the structural properties of the dimers and the DNA, as well as the role of Holliday junction isomerization are not fully understood. To study the dynamics of cyanine dimers in DNA, molecular dynamics simulations were carried out for adjacent and transverse dimers attached to Holliday junctions in two different isomers. It was found that dyes attached to adjacent strands in the junction exhibit stronger dye-DNA interactions and larger inter-dye separations compared to transversely attached dimers, as well as end-to-end arrangements. Transverse dimers exhibit lower inter-dye separations and more stacked configurations. Furthermore, differences in Holliday junction isomer are analyzed and compared to dye orientations. For transverse dyes exhibiting the smaller inter-dye separations, excitonic couplings were calculated and shown to be in agreement with experiment. Our results suggested that dye attachment locations on DNA Holliday junctions affect dye-DNA interactions, dye dynamics, and resultant dye orientations which can guide the design of DNA-templated cyanine dimers with desired properties. Molecular dynamics simulations reveal dye attachment and DNA Holliday junction isomer effects on dye dimer orientations and excitonic couplings. These simulations can guide synthesis and experiments of dye-DNA structures for excitonic applications.![]()
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - Joseph. S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Center for Advanced Energy StudiesIdaho FallsID 83401USA
| |
Collapse
|
188
|
Yoneda Y, Noji T, Mizutani N, Kato D, Kondo M, Miyasaka H, Nagasawa Y, Dewa T. Energy transfer dynamics and the mechanism of biohybrid photosynthetic antenna complexes chemically linked with artificial chromophores. Phys Chem Chem Phys 2022; 24:24714-24726. [PMID: 36128743 DOI: 10.1039/d2cp02465a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-harvesting strategy is crucial for the utilisation of solar energy. In this study, we addressed the expanding light-harvesting (LH) wavelength of photosynthetic LH complex 2 (LH2, from Rhodoblastus acidophilus strain 10050) through covalent conjugation with extrinsic chromophores. To further understand the conjugation architecture and mechanism of excitation energy transfer (EET), we examined the effects of the linker length and spectral overlap integral between the emission and absorption spectra of the energy donor and acceptor pigments. In the former case, contrary to the intuition based on the Förster resonance energy transfer (FRET) theory, the observed energy transfer rate was similar regardless of the linker length, and the energy transfer efficiency increased with longer linkers. In the latter case, despite the energy transfer rate increases at higher spectral overlaps, it was quantitatively inconsistent with the FRET theory. The mechanism of EET beyond the FRET theory was discussed in terms of the higher-lying exciton state of B850, which mediates efficient EET despite the small spectral overlap. This systematic investigation provides insights for the development of efficient artificial photosynthetic systems.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.
| | - Tomoyasu Noji
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Naoto Mizutani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Daiji Kato
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Masaharu Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Hiroshi Miyasaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yutaka Nagasawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| |
Collapse
|
189
|
Cesana PT, Page CG, Harris D, Emmanuel MA, Hyster TK, Schlau-Cohen GS. Photoenzymatic Catalysis in a New Light: Gluconobacter “Ene”-Reductase Conjugates Possessing High-Energy Reactivity with Tunable Low-Energy Excitation. J Am Chem Soc 2022; 144:17516-17521. [DOI: 10.1021/jacs.2c06344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan A. Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
190
|
Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome. Nat Commun 2022; 13:5289. [PMID: 36075935 PMCID: PMC9458709 DOI: 10.1038/s41467-022-32925-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. Here, we show that CO2 binding to the light-harvesting complex modulates EET in photosynthetic cyanobacteria. More specifically, CO2 binding to the allophycocyanin alpha subunit of the light-harvesting complex regulates EET and its fluorescence quantum yield in the cyanobacterium Synechocystis sp. PCC 6803. CO2 binding decreases the inter-chromophore distance in the allophycocyanin trimer. The result is enhanced EET in vitro and in live cells. Our work identifies a direct target for CO2 in the cyanobacterial light-harvesting apparatus and provides insights into photosynthesis regulation. The transfer of electronic energy through a photosystem can harm the photosynthetic apparatus when not balanced with CO2 fixation. Here, the authors show that CO2 modulates electronic energy transfer in cyanobacteria by binding to and enhancing the activity of the light-harvesting complex.
Collapse
|
191
|
Scholes GD. The Kuramoto–Lohe model and collective absorption of a photon. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Light absorption by molecular exciton states in disordered networks is studied. The main purpose of this paper is to look at how phases of the intermediate ground–excited state superposition interfere during the absorption process. How does this phase average enable, or suppress, absorption to a delocalized state? To address this question, a theory for phase oscillators is used to predict the purity of the collective excited state of the network. The results of the study suggest that collective absorption by molecular exciton states requires a sufficiently large electronic coupling between molecules in the network compared to the random distribution of transition energies at the sites, even when the molecular network is completely isolated from the environment degrees of freedom. The ‘dividing line’ between absorption to a mixture of, essentially, localized excited states and coherent excitation of a pure delocalized exciton state is suggested to be predicted by the threshold of phase synchronization.
Collapse
|
192
|
Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Sci Rep 2022; 12:14298. [PMID: 35995915 PMCID: PMC9395421 DOI: 10.1038/s41598-022-18399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants (cycA, cytC4 and pufC) of Rubrivivax gelatinosus and Rhodobacter sphaeroides. Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.
Collapse
|
193
|
Roy A, Diers JR, Niedzwiedzki DM, Meares A, Yu Z, Bhagavathy GV, Satraitis A, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions. J Phys Chem A 2022; 126:5107-5125. [PMID: 35901315 DOI: 10.1021/acs.jpca.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
194
|
Cervantes-Salguero K, Biaggne A, Youngsman JM, Ward BM, Kim YC, Li L, Hall JA, Knowlton WB, Graugnard E, Kuang W. Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching. Int J Mol Sci 2022; 23:7690. [PMID: 35887059 PMCID: PMC9323263 DOI: 10.3390/ijms23147690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022] Open
Abstract
Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar (θ) and in-plane azimuthal (ϕ) angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve θ control for a full revolution with dispersion as small as ±4.5°. In our second strategy, ϕ control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - John M. Youngsman
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Brett M. Ward
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA;
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - John A. Hall
- Division of Research and Economic Development, Boise State University, Boise, ID 83725, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Wan Kuang
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
195
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
196
|
Zhang Y, Lou H, Zhang W, Wang M. Mussel-Inspired Surface Coating to Stabilize and Functionalize Supramolecular J-Aggregate Nanotubes Composed of Amphiphilic Cyanine Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8160-8168. [PMID: 35732001 DOI: 10.1021/acs.langmuir.2c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a mussel-inspired strategy of polydopamine (PDA) coating to stabilize and functionalize J-aggregate nanotubes (NTs) formed by supramolecular self-assembly of an amphiphilic cyanine dye called C8S3 in aqueous media. Optimization of the coating condition by changing the incubation time in a slightly basic media of dopamine with different concentrations leads to conformal wrapping of the PDA layer with controllable thickness on the surface of the NTs. Compared to noncoated pristine C8S3 NTs, these PDA-coated NTs show enhanced stability against dilution, heating, and photobleaching. Moreover, the PDA layer wrapping around the NTs serves as an adhesive for the adsorption of a variety of metal ions and electroless deposition of the metal nanoparticles. Such stabilized and functionalized NT composites may offer a robust synthetic J-aggregate system to mimic the structure and function of light-harvesting complexes and reaction centers in photosynthetic systems.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - He Lou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - Wei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Shenzhen 518172 Guangdong, China
| |
Collapse
|
197
|
Ma J, Han N, Yu H, Li J, Shi J, Wang S, Zhang H, Wang M. Multi-Decker Emissive Supramolecular Architectures Based on Shape-Complementary Ligands Pair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202167. [PMID: 35638477 DOI: 10.1002/smll.202202167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Dye aggregates have attracted a great deal of attention due to their widespread applications in organic light-emitting devices, light-harvesting systems, etc. However, the strategies to precisely control chromophores with specific spatial arrangements still remain a great challenge. In this work, a series of double- and triple-decker supramolecular complexes are successfully constructed by coordination-driven self-assembly of carefully designed shape-complementary ligands, one claw-like tetraphenylethylene (TPE)-based host ligand and three tetratopic or ditopic guest ligands. The spatial configurations of these assemblies (one double-decker and three "S-shaped" or "X-shaped" triple-decker structures) depend on the angles of these TPE-derived ligands. Notably, the three triple-decker structures are geometric isomers. Furthermore, photophysical studies show that these complexes exhibit different ratios of radiative (kr ) and non-radiative (knr ) rate constant due to the different spatial arrangements of TPE moieties. This study provides not only a unique strategy for the construction of multi-stacks with specific spatial arrangement, but also a promising platform for investigating the aggregation behavior of fluorescent chromophores.
Collapse
Affiliation(s)
- Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shaozhi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
198
|
Mikalčiūtė A, Gelzinis A, Mačernis M, Büchel C, Robert B, Valkunas L, Chmeliov J. Structure-based model of fucoxanthin-chlorophyll protein complex: Calculations of chlorophyll electronic couplings. J Chem Phys 2022; 156:234101. [PMID: 35732526 DOI: 10.1063/5.0092154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| |
Collapse
|
199
|
Han Y, Zhang X, Ge Z, Gao Z, Liao R, Wang F. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization. Nat Commun 2022; 13:3546. [PMID: 35729110 PMCID: PMC9213434 DOI: 10.1038/s41467-022-31094-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Sequential energy transfer is ubiquitous in natural light harvesting systems to make full use of solar energy. Although various artificial systems have been developed with the biomimetic sequential energy transfer character, most of them exhibit the overall energy transfer efficiency lower than 70% due to the disordered organization of donor/acceptor chromophores. Herein a sequential energy transfer system is constructed via supramolecular copolymerization of σ-platinated (hetero)acenes, by taking inspiration from the natural light harvesting of green photosynthetic bacteria. The absorption and emission transitions of the three designed σ-platinated (hetero)acenes range from visible to NIR region through structural variation. Structural similarity of these monomers faciliates supramolecular copolymerization in apolar media via the nucleation-elongation mechanism. The resulting supramolecular copolymers display long diffusion length of excitation energy (> 200 donor units) and high exciton migration rates (~1014 L mol−1 s−1), leading to an overall sequential energy transfer efficiency of 87.4% for the ternary copolymers. The superior properties originate from the dense packing of σ-platinated (hetero)acene monomers in supramolecular copolymers, mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria. Overall, directional supramolecular copolymerization of donor/acceptor chromophores with high energy transfer efficiency would provide new avenues toward artificial photosynthesis applications. Sequential energy transfer is ubiquitous in natural light harvesting systems, but most artificial mimics have unsatisfactory energy transfer efficiency. Here, authors synthesize a sequential energy transfer system with overall efficiency of 87.4% via supramolecular copolymerization mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiqing Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Rui Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
200
|
Higgins JS, Dardia AR, Ndife CJ, Lloyd LT, Bain EM, Engel GS. Leveraging Dynamical Symmetries in Two-Dimensional Electronic Spectra to Extract Population Transfer Pathways. J Phys Chem A 2022; 126:3594-3603. [PMID: 35621698 DOI: 10.1021/acs.jpca.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present a method to deterministically isolate population transfer kinetics from two-dimensional electronic spectroscopic signals. Central to this analysis is the characterization of how all possible subensembles of excited state systems evolve through the population time. When these dynamics are diagrammatically mapped by using double-sided Feynman pathways where population time dynamics are included, a useful symmetry emerges between excited state absorption and ground state bleach recovery dynamics of diagonal and below diagonal cross-peak signals. This symmetry allows removal of pathways from the spectra to isolate signals that evolve according to energy transfer kinetics. We describe a regression procedure to fit to energy transfer time constants and characterize the accuracy of the method in a variety of complex excited state systems using simulated two-dimensional spectra. Our results show that the method is robust for extracting ultrafast energy transfer in multistate excitonic systems, systems containing dark states that affect the signal kinetics, and systems with interfering vibrational relaxation pathways. This procedure can be used to accurately extract energy transfer kinetics from a wide variety of condensed phase systems.
Collapse
Affiliation(s)
- Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna R Dardia
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chidera J Ndife
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elizabeth M Bain
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|