151
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Swalaha FM. A review on disinfection methods for inactivation of waterborne viruses. Front Microbiol 2022; 13:991856. [PMID: 36212890 PMCID: PMC9539188 DOI: 10.3389/fmicb.2022.991856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination is a global health problem, and the need for safe water is ever-growing due to the public health implications of unsafe water. Contaminated water could contain pathogenic bacteria, protozoa, and viruses that are implicated in several debilitating human diseases. The prevalence and survival of waterborne viruses differ from bacteria and other waterborne microorganisms. In addition, viruses are responsible for more severe waterborne diseases such as gastroenteritis, myocarditis, and encephalitis among others, hence the need for dedicated attention to viral inactivation. Disinfection is vital to water treatment because it removes pathogens, including viruses. The commonly used methods and techniques of disinfection for viral inactivation in water comprise physical disinfection such as membrane filtration, ultraviolet (UV) irradiation, and conventional chemical processes such as chlorine, monochloramine, chlorine dioxide, and ozone among others. However, the production of disinfection by-products (DBPs) that accompanies chemical methods of disinfection is an issue of great concern due to the increase in the risks of harm to humans, for example, the development of cancer of the bladder and adverse reproductive outcomes. Therefore, this review examines the conventional disinfection approaches alongside emerging disinfection technologies, such as photocatalytic disinfection, cavitation, and electrochemical disinfection. Moreover, the merits, limitations, and log reduction values (LRVs) of the different disinfection methods discussed were compared concerning virus removal efficiency. Future research needs to merge single disinfection techniques into one to achieve improved viral disinfection, and the development of medicinal plant-based materials as disinfectants due to their antimicrobial and safety benefits to avoid toxicity is also highlighted.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
152
|
Tian Z, Zhang Q, Thomsen L, Gao N, Pan J, Daiyan R, Yun J, Brandt J, López‐Salas N, Lai F, Li Q, Liu T, Amal R, Lu X, Antonietti M. Constructing Interfacial Boron-Nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2022; 61:e202206915. [PMID: 35894267 PMCID: PMC9542833 DOI: 10.1002/anie.202206915] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Abstract
The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Qingran Zhang
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation800 Blackburn RoadClaytonVIC 3168Australia
| | - Nana Gao
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
| | - Jian Pan
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Rahman Daiyan
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Jimmy Yun
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Jessica Brandt
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Nieves López‐Salas
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Feili Lai
- Department of ChemistryKU LeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Qiuye Li
- Engineering Research Center for NanomaterialsHenan UniversityKaifeng475004P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxi214122P. R. China
| | - Rose Amal
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Xunyu Lu
- Particles and Catalysis Research GroupSchool of Chemical EngineeringUniversity of New South WalesSydneyNew South Wales 2052Australia
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
153
|
Tong Y, Wang L, Hou F, Dou SX, Liang J. Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. ELECTROCHEM ENERGY R 2022; 5:7. [PMID: 37522152 PMCID: PMC9437407 DOI: 10.1007/s41918-022-00163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 09/25/2021] [Indexed: 10/26/2022]
Abstract
Electrocatalytic production of hydrogen peroxide (H2O2) via the 2e- transfer route of the oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone process, which dominates current industrial-scale production of H2O2. The availability of cost-effective electrocatalysts exhibiting high activity, selectivity, and stability is imperative for the practical deployment of this process. Single-atom catalysts (SACs) featuring the characteristics of both homogeneous and heterogeneous catalysts are particularly well suited for H2O2 synthesis and thus, have been intensively investigated in the last few years. Herein, we present an in-depth review of the current trends for designing SACs for H2O2 production via the 2e- ORR route. We start from the electronic and geometric structures of SACs. Then, strategies for regulating these isolated metal sites and their coordination environments are presented in detail, since these fundamentally determine electrocatalytic performance. Subsequently, correlations between electronic structures and electrocatalytic performance of the materials are discussed. Furthermore, the factors that potentially impact the performance of SACs in H2O2 production are summarized. Finally, the challenges and opportunities for rational design of more targeted H2O2-producing SACs are highlighted. We hope this review will present the latest developments in this area and shed light on the design of advanced materials for electrochemical energy conversion. Graphical abstract
Collapse
Affiliation(s)
- Yueyu Tong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
154
|
Hu Q, Dong Y, Ma K, Meng X, Ding Y. Amidation crosslinking of polymeric carbon nitride for boosting photocatalytic hydrogen peroxide production. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
155
|
Fu H, Zhang N, Lai F, Zhang L, Wu Z, Li H, Zhu H, Liu T. Lattice Strained B-Doped Ni Nanoparticles for Efficient Electrochemical H 2 O 2 Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203510. [PMID: 35983928 DOI: 10.1002/smll.202203510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Surface strains are necessary to optimize the oxygen adsorption energy during the oxygen reduction reaction (ORR) in the four-electron process, but the surface strains regulation for ORR in the two-electron process to produce hydrogen peroxide (H2 O2 ) is rarely studied. Herein, it is reported that the tensile strained B-doped Ni nanoparticles on carbon support (Ni-B@BNC) could enhance the adsorption of O2 , stabilize OO bond, and boost the electrocatalytic ORR to H2 O2 . Moreover, the Ni-B@BNC catalysts exhibit volcano-type activity for electrocatalytic ORR to H2 O2 as a function of the strain intensity, which is controlled by B content. Among them, Ni4 -B1 @BNC exhibits the highest H2 O2 selectivity of over 86%, H2 O2 yield of 128.5 mmol h-1 g-1 , and Faraday efficiency of 94.9% at 0.6 V vs reversible hydrogen electrode as well as durable stability after successive cycling, being one of the state-of-the-art electrocatalysts for two-electron ORR. The density functional theory calculations reveal that tensile strain introduced by doping B into Ni nanoparticles could decrease the state density of Ni-3d orbital and optimize the binding energy of OOH* during ORR. A new direction is provided here for the design of highly active and stable catalysts for potential H2 O2 production and beyond.
Collapse
Affiliation(s)
- Hui Fu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Nan Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Longsheng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Zhenzhong Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Hanjun Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
156
|
Treu P, Sarma BB, Grunwaldt JD, Saraçi E. Oxidative cleavage of vicinal diols catalyzed by monomeric Fe‐sites inside MFI zeolite. ChemCatChem 2022. [DOI: 10.1002/cctc.202200993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philipp Treu
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Bidyut Bikash Sarma
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Jan-Dierk Grunwaldt
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Chemical Technology and Polymer Chemistry GERMANY
| | - Erisa Saraçi
- Karlsruhe Institute of Technology Institute for Catalysis Science and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen GERMANY
| |
Collapse
|
157
|
Hou J, Zhang X, Wang K, Ma P, Hu H, Zhou X, Zheng K. Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules 2022; 27:molecules27175535. [PMID: 36080302 PMCID: PMC9457636 DOI: 10.3390/molecules27175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
As a promising metal-free photocatalyst, graphitic carbon nitride (g-C3N4) is still limited by insufficient visible light absorption and rapid recombination of photogenerated carriers, resulting in low photocatalytic activity. Here, we adjusted the microstructure of the pristine bulk-g-C3N4 (PCN) and further loaded silver (Ag) nanoparticles. Abundant Ag nanoparticles were grown on the thin-layer g-C3N4 nanosheets (CNNS), and the Ag nanoparticles decorated g-C3N4 nanosheets (Ag@CNNS) were successfully synthesized. The thin-layer nanosheet-like structure was not only beneficial for the loading of Ag nanoparticles but also for the adsorption and activation of reactants via exposing more active sites. Moreover, the surface plasmon resonance (SPR) effect induced by Ag nanoparticles enhanced the absorption of visible light by narrowing the band gap of the substrate. Meanwhile, the composite band structure effectively promoted the separation and transfer of carriers. Benefiting from these merits, the Ag@CNNS reached a superior hydrogen peroxide (H2O2) yield of 120.53 μmol/g/h under visible light irradiation in pure water (about 8.0 times higher than that of PCN), significantly surpassing most previous reports. The design method of manipulating the microstructure of the catalyst combined with the modification of metal nanoparticles provides a new idea for the rational development and application of efficient photocatalysts.
Collapse
|
158
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical Reactors for Continuous Decentralized H 2 O 2 Production. Angew Chem Int Ed Engl 2022; 61:e202205972. [PMID: 35698896 DOI: 10.1002/anie.202205972] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 12/21/2022]
Abstract
The global utilization of H2 O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2 O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid-liquid extraction of H2 O2 . The energy-intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low-carbon development. The electrocatalytic two-electron (2 e- ) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low-carbon, and greener route to produce H2 O2 . However, continuous and decentralized H2 O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2 O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Collapse
Affiliation(s)
- Yichan Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhelun Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
159
|
Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat Catal 2022. [DOI: 10.1038/s41929-022-00826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
160
|
Ross RD, Sheng H, Ding Y, Janes AN, Feng D, Schmidt JR, Segre CU, Jin S. Operando Elucidation of Electrocatalytic and Redox Mechanisms on a 2D Metal Organic Framework Catalyst for Efficient Electrosynthesis of Hydrogen Peroxide in Neutral Media. J Am Chem Soc 2022; 144:15845-15854. [PMID: 35985015 DOI: 10.1021/jacs.2c06810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The practical electrosynthesis of hydrogen peroxide (H2O2) is hindered by the lack of inexpensive and efficient catalysts for the two-electron oxygen reduction reaction (2e- ORR) in neutral electrolytes. Here, we show that Ni3HAB2 (HAB = hexaaminobenzene), a two-dimensional metal organic framework (MOF), is a selective and active 2e- ORR catalyst in buffered neutral electrolytes with a linker-based redox feature that dynamically affects the ORR behaviors. Rotating ring-disk electrode measurements reveal that Ni3HAB2 has high selectivity for 2e- ORR (>80% at 0.6 V vs RHE) but lower Faradaic efficiency due to this linker redox process. Operando X-ray absorption spectroscopy measurements reveal that under argon gas the charging of the organic linkers causes a dynamic Ni oxidation state, but in O2-saturated conditions, the electronic and physical structures of Ni3HAB2 change little and oxygen-containing species strongly adsorb at potentials more cathodic than the reduction potential of the organic linker (Eredox ∼ 0.3 V vs RHE). We hypothesize that a primary 2e- ORR mechanism occurs directly on the organic linkers (rather than the Ni) when E > Eredox, but when E < Eredox, H2O2 production can also occur through Ni-mediated linker discharge. By operating the bulk electrosynthesis at a low overpotential (0.4 V vs RHE), up to 662 ppm of H2O2 can be produced in a buffered neutral solution in an H-cell due to minimized strong adsorption of oxygenates. This work demonstrates the potential of conductive MOF catalysts for 2e- ORR and the importance of understanding catalytic active sites under electrochemical operation.
Collapse
Affiliation(s)
- R Dominic Ross
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yujia Ding
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Aurora N Janes
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dawei Feng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Carlo U Segre
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
161
|
Tian Z, Zhang Q, Thomsen L, Gao N, Pan J, Daiyan R, Yun J, Brandt J, López-Salas N, Lai F, Li Q, Liu T, Amal R, Lu X, Antonietti M. Constructing Interfacial Boron‐nitrogen Moieties in Turbostratic Carbon for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhihong Tian
- Henan University Engineering Research Center for Nanomaterials 475001 CHINA
| | - Qingran Zhang
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Lars Thomsen
- Australian Nuclear Science and Technology Organisation Australian Synchrotron AUSTRALIA
| | - Nana Gao
- Henan University Engineering Research Center for Nanomaterials CHINA
| | - Jian Pan
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Rahman Daiyan
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Jimmy Yun
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Jessica Brandt
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry GERMANY
| | - Nieves López-Salas
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Colloid Chemistry GERMANY
| | - Feili Lai
- KU Leuven University: Katholieke Universiteit Leuven Chemistry BELGIUM
| | - Qiuye Li
- Henan University Engineering Research Center for Nanomaterials CHINA
| | - Tianxi Liu
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Rose Amal
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Xunyu Lu
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Department of Kolloidchemie, Department of Kolloidchemie Am Mühlenberg 1 14476 Potsdam-Golm GERMANY
| |
Collapse
|
162
|
Silica Bifunctional Supports for the Direct Synthesis of H2O2: Optimization of Br/Acid Sites and Pd/Br Ratio. Catalysts 2022. [DOI: 10.3390/catal12070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the direct synthesis of hydrogen peroxide using a catalytic system consisting of palladium supported on silica bifunctionalized with sulfonic acid groups and bromide in the absence of acid and halide promoters in solution. Catalysts with several bromide substituents were employed in the catalyst synthesis. The prepared samples were characterized by TXRF, XPS, and hydrogen peroxide decomposition. Catalysts characterization indicated the presence of only palladium (II) species in all of the samples, with similar values for surface and bulk of Pd/Br atomic ratio. The catalysts were tested via direct synthesis, and all samples were able to produce hydrogen peroxide at 313 K and 5.0 MPa. The hydrogen peroxide yield and selectivity changed with the Pd/Br ratio. A decrease in the Pd/Br ratio increases the final hydrogen peroxide concentration, and the selectivity for H2O2 reaches a maximum at a Pd/Br ratio around 0.16 and then decreases. However, the maximum hydrogen peroxide concentration and selectivity occur at slightly different Pd/Br ratios, i.e., resp. 0.4 vs. 0.16.
Collapse
|
163
|
Zhong JQ, Yan KJ, Yang J, Yang WH, Yang XD. Microenvironment Alters the Oxygen Reduction Activity of Metal/N/C Catalysts at the Triple-Phase Boundary. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Qiang Zhong
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian 362021, People’s Republic of China
| | - Ke-Jing Yan
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian 362021, People’s Republic of China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Wei-Hua Yang
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian 362021, People’s Republic of China
| | - Xiao-Dong Yang
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian 362021, People’s Republic of China
| |
Collapse
|
164
|
Li Y, Li L, Liu F, Wang B, Gao F, Liu C, Fang J, Huang F, Lin Z, Wang M. Robust route to H 2O 2 and H 2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. NANO RESEARCH 2022; 15:7986-7993. [PMID: 35855867 PMCID: PMC9277972 DOI: 10.1007/s12274-022-4506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED H2O2 is an environmentally friendly chemical for a wide range of water treatments. The industrial production of H2O2 is an anthraquinone oxidation process, which, however, consumes extensive energy and produces pollution. Here we report a green and sustainable piezocatalytic intermediate water splitting process to simultaneously obtain H2O2 and H2 using single crystal vanadium (V)-doped NaNbO3 (V-NaNbO3) nanocubes as catalysts. The introduction of V improves the specific surface area and active sites of NaNbO3. Notably, V-NaNbO3 piezocatalysts of 10 mg exhibit 3.1-fold higher piezocatalytic efficiency than the same catalysts of 50 mg, as more piezocatalysts lead to higher probability of aggregation. The aggregation causes reducing active sites and decreased built-in electric field due to the neutralization between different nano-catalysts. Remarkably, piezocatalytic H2O2 and H2 production rates of V-NaNbO3 (10 mol%) nanocubes (102.6 and 346.2 µmol·g-1·h-1, respectively) are increased by 2.2 and 4.6 times compared to the as-prepared pristine NaNbO3 counterparts, respectively. This improved catalytic efficiency is attributed to the promoted piezo-response and more active sites of NaNbO3 catalysts after V doping, as uncovered by piezo-response force microscopy (PFM) and density functional theory (DFT) simulation. More importantly, our DFT results illustrate that inducing V could reduce the dynamic barrier of water dissociation over NaNbO3, thus enhancing the yield of H2O2 and H2. This facile yet robust piezocatalytic route using minimal amounts of catalysts to obtain H2O2 and H2 may stand out as a promising candidate for environmental applications and water splitting. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (typical Raman spectra of NaNbO3 and V-NaNbO3 with various doping concentrations (Fig. S1). XPS spectra of Na 1s (Fig. S2). PL spectra of solution obtained from the piezocatalytic system using NaNbO3 and V-NaNbO3 (10 mol%) as the catalysts after 1 h (Fig. S3). The length of NaNbO3 and V-NaNbO3 nanocubes calculated from XRD data of their (101) planes (Table S1)) is available in the online version of this article at 10.1007/s12274-022-4506-0.
Collapse
Affiliation(s)
- Yuekun Li
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Li Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006 China
| | - Fangyan Liu
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Biao Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Feng Gao
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Chuan Liu
- The Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Feng Huang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhang Lin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006 China
- School of Metallurgy and Environment, Central South University, Changsha, 410083 China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 China
| |
Collapse
|
165
|
Fang QJ, Pan JK, Zhang W, Sun FL, Chen WX, Yu YF, Hu AF, Zhuang GL. Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. J Colloid Interface Sci 2022; 617:752-763. [DOI: 10.1016/j.jcis.2022.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/26/2022]
|
166
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
167
|
Tully JJ, Zhang Z, Terrero Rodríguez IM, Butcher L, Macpherson JV. Versatile DIY Route for Incorporation of a Wide Range of Electrode Materials into Rotating Ring Disk Electrodes. Anal Chem 2022; 94:9856-9862. [PMID: 35767370 PMCID: PMC9280712 DOI: 10.1021/acs.analchem.2c01744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Rotating ring disk
electrodes (RRDEs) are a powerful and versatile
tool for mechanistically investigating electrochemical reactions at
electrode surfaces, particularly in the area of electroanalysis and
catalysis. Despite their importance, only limited electrode materials
(typically glassy carbon, platinum, and gold) and combinations thereof
are available commercially. In this work, we present a method employing
three-dimensional (3D) printing in conjunction with machined brass
components to produce housing, which can accommodate any electrode
material in, e.g., pressed powdered pellet, wafer,
rod, foil, or vapor deposited onto a conductive substrate form. In
this way, the range and usability of RRDEs is extended. This custom
do-it-yourself (DIY) approach to fabricating RRDEs also enables RRDEs
to be produced at a significant fraction of the cost of commercial
RRDEs. To illustrate the versatility of our approach, coplanar boron-doped
diamond (BDD) RRDEs are fabricated for the first time using the approach
described. Experimental collection efficiencies for the redox couple
FcTMA+/FcTMA2+ are found to be very close to
those predicted theoretically. BDD electrodes serve as an ideal electrocatalyst
support due to their low background currents, wide solvent potential
window in aqueous solution, and chemical and electrochemical stability
in acid and alkali solutions. The BDD RRDE configuration is employed
to investigate the importance of surface-incorporated nondiamond carbon
in BDD on hydrogen peroxide generation via the oxygen
reduction reaction in acid solutions.
Collapse
Affiliation(s)
- Joshua J Tully
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Zhaoyan Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Lee Butcher
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
168
|
Ma R, Zhang Z, Iyoda T, Wang F. Electrochemical grafting of a pyridinium‐conjugated assembly on graphite for H2O2 electrochemical production. ChemElectroChem 2022. [DOI: 10.1002/celc.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Ma
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Chaoyang District North Third Ring Road 15 CHINA
| | - Zhengping Zhang
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials CHINA
| | - Tomokazu Iyoda
- Doshisha university Harris Science Research Institute, Doshisha University 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 611-0394, Japan JAPAN
| | - Feng Wang
- Beijing University of Chemical Technology Chaoyang District North Third Ring Road 15 CHINA
| |
Collapse
|
169
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical reactors for continuously decentralized H2O2 production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichan Wen
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Ting Zhang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Jianying Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Zhelun Pan
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Tianfu Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Hiromi Yamashita
- Shanghai Jiao Tong University Division of Materials and Manufacturing Science, Graduate School of Engineering CHINA
| | - Xufang Qian
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Yixin Zhao
- Shanghai Jiao Tong University Environmental Science and Engineering 800 Dongchuan Road 44106 Shanghai CHINA
| |
Collapse
|
170
|
Zhang L, Jiang S, Ma W, Zhou Z. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63961-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
171
|
Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J. Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
172
|
Yang X, Zeng Y, Alnoush W, Hou Y, Higgins D, Wu G. Tuning Two-Electron Oxygen-Reduction Pathways for H 2 O 2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107954. [PMID: 35133688 DOI: 10.1002/adma.202107954] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The hydrogen peroxide (H2 O2 ) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy-intensive anthraquinone process and unsafe direct synthesis using H2 and O2 . It enables on-site and decentralized H2 O2 production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)-free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2 O2 production via the 2e- ORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2 to H2 O2 reduction are summarized. Combined with theoretical computation and advanced characterization, a structure-property correlation to guide rational catalyst design with a favorable 2e- ORR process is aimed to provide. Due to the oxidative nature of H2 O2 and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2 O2 are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wajdi Alnoush
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
173
|
Fast microwave-assisted synthesis of iron–palladium catalysts supported on graphite for the direct synthesis of H2O2. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
174
|
Zhang X, Zhao X, Zhu P, Adler Z, Wu ZY, Liu Y, Wang H. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat Commun 2022; 13:2880. [PMID: 35610199 PMCID: PMC9130276 DOI: 10.1038/s41467-022-30337-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
| | - Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Peng Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zachary Adler
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhen-Yu Wu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
175
|
Wang L, Chen Z, Zhang Y, Liu C, Yuan J, Liu Y, Ge W, Lin S, An Q, Feng Z. Synergistically active piezoelectrical H2O2 production composite film achieved from catalytically inert PVDF-HFP matrix and SiO2 fillers. Chem Asian J 2022; 17:e202200278. [PMID: 35596666 DOI: 10.1002/asia.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Indexed: 11/10/2022]
Abstract
Local and decentralized H 2 O 2 production via piezoelectrical process promise smart biological utilization as well as environmental benefits. However, stable, bio/environmental- safe, and easily applied H 2 O 2 generation materials are still lacking. Here we report a novel flexible H 2 O 2 generation polymeric film composed of catalytically inert PVDF-HFP (Poly(vinylidene fluoride-co-hexafluoropropylene)) matrix and SiO 2 nanoparticle fillers. The film is bio-/environmentally benign at resting states, but effectively produces H 2 O 2 upon ultrasonic motivation at a production rate of 492 μmol [[EQUATION]] in one hour. Experimental and simulation methods in combination indicate that the effective H 2 O 2 generation capabilities stem from the synergistic existence of piezoelectrical fields and the air-liquid-solid three-phase regions around the porous film. The chemical conversions are motivated by the adsorbed charges. The silicon hydroxyl groups properly stabilize the *OOH intermediate and facilitate the chemical conversions of 2e - ORR of ambient O 2 . We expect the report to inspire H 2 O 2 piezoelectrical generation materials and promote the novel production strategies of H 2 O 2 as well as piezoelectrical functional materials.
Collapse
Affiliation(s)
- Lingchao Wang
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Zhensheng Chen
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Yihe Zhang
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, CHINA
| | - Chao Liu
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Jinpeng Yuan
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Yulun Liu
- China University of Geosciences Beijing, School of Materials Science and Technology, 100083, Beijing, CHINA
| | - Weiyi Ge
- China University of Geosciences Beijing, School of Materials Science and Technology, 100083, Beijing, CHINA
| | - Sen Lin
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Qi An
- China University of Geosciences Beijing, School of materials sciences and engineering, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Zeguo Feng
- The First Medical Center of Chinese PLA General Hospital, Department of Pain, 100083, Beijing, CHINA
| |
Collapse
|
176
|
Zhao X, Yin Q, Mao X, Cheng C, Zhang L, Wang L, Liu TF, Li Y, Li Y. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H 2O 2 production in acid. Nat Commun 2022; 13:2721. [PMID: 35581214 PMCID: PMC9114359 DOI: 10.1038/s41467-022-30523-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
The pursuit of selective two-electron oxygen reduction reaction to H2O2 in acids is demanding and largely hampered by the lack of efficient non-precious-metal-based electrocatalysts. Metal macrocycles hold promise, but have been relatively underexplored. Efforts are called for to promote their inherent catalytic activities and/or increase the surface exposure of active sites. In this contribution, we perform the high-throughput computational screening of thirty-two different metalloporphyrins by comparing their adsorption free energies towards key reaction intermediates. Cobalt porphyrin is revealed to be the optimal candidate with a theoretical overpotential as small as 40 mV. Guided by the computational predictions, we prepare hydrogen-bonded cobaltoporphyrin frameworks in order to promote the solution accessibility of catalytically active sites for H2O2 production in acids. The product features an onset potential at ~0.68 V, H2O2 selectivity of >90%, turnover frequency of 10.9 s-1 at 0.55 V and stability of ~30 h, the combination of which clearly renders it stand out from existing competitors for this challenging reaction.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
177
|
Wu Z, Wang T, Zou JJ, Li Y, Zhang C. Amorphous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zekun Wu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Cuijuan Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
178
|
Pd Nanoparticles on SBA-15 Containing F for 2-Ethyl-Anthraquinone Hydrogenation: Effects of Hydrophobicity. Catal Letters 2022. [DOI: 10.1007/s10562-021-03746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
179
|
Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
180
|
Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
181
|
Zhang C, Liu G, Long Q, Wu C, Wang L. Tailoring surface carboxyl groups of mesoporous carbon boosts electrochemical H 2O 2 production. J Colloid Interface Sci 2022; 622:849-859. [PMID: 35561605 DOI: 10.1016/j.jcis.2022.04.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Oxygen-doped porous carbon materials have been shown promising performance for electrochemical two-electron oxygen reduction reaction (2e- ORR), an efficient approach for the safe and continuous on-site generation of H2O2. The regulation and mechanism understanding of active oxygen-containing functional groups (OFGs) remain great challenges. Here, OFGs modified porous carbon were prepared by thermal oxidation (MC-12-Air), HNO3 oxidation (MC-12-HNO3) and H2O2 solution hydrothermal treatment (MC-12-H2O2), respectively. Structural characterization showed that the oxygen doping content of three catalysts reached about 20%, with the almost completely maintained specific surface area (exception of MC-12- HNO3). Spectroscopic characterization further revealed that hydroxyl groups are mainly introduced into MC-12-Air, while carboxyl groups are mainly introduced into MC-12- HNO3 and MC-12- H2O2. Compared with the pristine catalyst, three oxygen-functionalized catalysts showed enhanced activity and H2O2 selectivity in 2e- ORR. Among them, MC-12-H2O2 exhibited the highest catalytic activity and selectivity of 94 %, as well as a considerable HO2- accumulation of 46.2 mmol L-1 and excellent stability in an extended test over 36 h in a H-cell. Electrochemical characterization demonstrated the promotion of OFGs on ORR kinetics and the greater contribution of carboxyl groups to the intrinsically catalytic activity. DFT calculations confirmed that the electrons are transferred from carboxyl groups to adjacent carbon and the enhanced adsorption strength toward *OOH intermediate, leading to a lower energy barrier for forming *OOH on carboxyl terminated carbon atoms.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Quanfu Long
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chan Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
182
|
An J, Feng Y, Wang N, Zhao Q, Wang X, Li N. Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128185. [PMID: 35032957 DOI: 10.1016/j.jhazmat.2021.128185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The advanced oxidation based on in-situ hydrogen peroxide production using carbon air cathode is very potential for wastewater treatment. However, catalyst flooding and complex assembly patterns are the bottleneck limiting the air cathode to the long-term and large-scale application. In this work, a novel anti-flooding air-breathing cathode (ABC) was prepared by a simple rolling-spraying method with relatively low price commercial materials. The novel method changed the morphology of gas diffusion layer as well as adjusted the hydrophobicity of air side of the catalyst layer. As a result, water-air distribution management was achieved and TPI disequilibrium was prevented. Compare with traditional ABC, the H2O2 yield and current efficiency (CE) of optimized anti-flooding ABC (ABC0.9) increased by 13.5% (941 ± 10 mg·L-1·h-1 with CE of 84% at 30 mA·cm-2), the material cost and fabrication time decreased by 10.1% (2.32 ¥·dm-2, ~0.36 $·dm-2) and 40%. Amplified ABC coupled with Ti/IrO2 anodes were integrated into a modular electrode used for H2O2generation. When the current density (j) increased from 10 to 30 mA·cm-2, the energy cost increased from 0.19 to 0.43 ¥·mol-1 H2O2 (from 0.03 to 0.07 $·mol-1 H2O2). The modular electrode was utilized in a 2 L pre-pilot scale reactor for antiviral drug lamivudine degradation by electro-Fenton (EF) process. 100% of lamivudine and 78.1% of total organic carbon (TOC) were removed within 60 min at 20 mA·cm-2. The susceptible sites on the lamivudine toward hydroxyl radicals were investigated and transformation products (TP) as well as degradation pathway were studied.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
183
|
Fortunato GV, Pizzutilo E, Katsounaros I, Göhl D, Lewis RJ, Mayrhofer KJJ, Hutchings GJ, Freakley SJ, Ledendecker M. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nat Commun 2022; 13:1973. [PMID: 35418132 PMCID: PMC9007970 DOI: 10.1038/s41467-022-29536-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Research in thermo- and electrocatalysis have often preceded in isolation, even for similar reactions. Here, the authors compare current trends in both fields and elaborate on the commonalities and differences with a specific focus on the production of hydrogen peroxide.
Collapse
Affiliation(s)
- Guilherme V Fortunato
- Institute of Chemistry of São Carlos, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Enrico Pizzutilo
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Ioannis Katsounaros
- Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Daniel Göhl
- Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Richard J Lewis
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Karl J J Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.,Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058, Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Simon J Freakley
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Marc Ledendecker
- Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
184
|
Yang L, Chen H, Xu Y, Qian R, Chen Q, Fang Y. Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117435] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
185
|
Zhou Z, Kong Y, Tan H, Huang Q, Wang C, Pei Z, Wang H, Liu Y, Wang Y, Li S, Liao X, Yan W, Zhao S. Cation-Vacancy-Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106541. [PMID: 35191113 DOI: 10.1002/adma.202106541] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2 O2 ) synthesis via the two-electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof-of-concept to regulate the catalyst's physicochemical properties, are introduced for efficient H2 O2 electrosynthesis. The as-fabricated Ni cationic vacancies (VNi )-enriched Ni2- x P-VNi electrocatalyst exhibits remarkable 2e ORR performance with H2 O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as-created VNi possesses superb long-term durability for over 50 h, suppassing all the recently reported catalysts for H2 O2 electrosynthesis. Operando X-ray absorption near-edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR-FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the VNi -induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored "end-on" configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Cheng Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Haozhu Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yangyang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yihan Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
186
|
Yang Y, Wu W, Wang Y, Liu J, Li N, Fan Y, Zhang S, Dong Q, Zhao J, Niu J, Liu Q, Hao Z. Enhanced Electrochemical O 2 -to-H 2 O 2 Synthesis Via Cu-Pb Synergistic Interplay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106534. [PMID: 35182023 DOI: 10.1002/smll.202106534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic reduction of oxygen (O2 ) to produce hydrogen peroxide (H2 O2 ) frequently suffers from the low activity and poor selectivity of catalysts owing to the lack of systematic strategies. The resulting enhancement to enable the further design of a new bimetallic catalyst with the synergistic interplay, as exemplified by Cu-Pb catalyst for two-electron oxygen reduction reaction (2e- ORR), is reported here. Critically, in-depth evidence, including density functional theory (DFT) calculations, electrochemical signals, in-situ Raman, and H2 O2 -proof work, allude to a catalytic favor to the 2e- ORR of Cu-Pb.
Collapse
Affiliation(s)
- Yulu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Wenjie Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Ya Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Jiao Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Ningxu Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Yulong Fan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Shiyang Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Qingsong Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| | - Qingchao Liu
- Institute of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaomin Hao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, 475000, China
| |
Collapse
|
187
|
Wang N, Zhao X, Zhang R, Yu S, Levell ZH, Wang C, Ma S, Zou P, Han L, Qin J, Ma L, Liu Y, Xin HL. Highly Selective Oxygen Reduction to Hydrogen Peroxide on a Carbon-Supported Single-Atom Pd Electrocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Wang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Xunhua Zhao
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Saerom Yu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary H. Levell
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chunyang Wang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaobo Ma
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Peichao Zou
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Lili Han
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Jiayi Qin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuanyue Liu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
188
|
Herman A, Mathias JL, Neumann R. Electrochemical Formation and Activation of Hydrogen Peroxide from Water on Fluorinated Tin Oxide for Baeyer–Villiger Oxidation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adi Herman
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jenny-Lee Mathias
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
189
|
Huang X, Liu W, Zhang J, Song M, Zhang C, Li J, Zhang J, Wang D. Coupling Co-N-C with MXenes Yields Highly Efficient Catalysts for H 2O 2 Production in Acidic Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11350-11358. [PMID: 35199988 DOI: 10.1021/acsami.1c22641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) offers a promising method to replace the anthraquinone process for hydrogen peroxide (H2O2) production. However, the efficiency of this process suffers from sluggish kinetics, particularly in an acidic environment. Therefore, employing catalysts with high electroactivity is highly desirable for H2O2 synthesis. Here, an effective strategy for preparing Co-N-C/Ti3C2Tx with high H2O2 selectivity and ORR reactivity is proposed. The acquired Co-N-C/Ti3C2Tx shows excellent H2O2 electrosynthesis performance in acidic media with H2O2 productivity of up to 3200 ppm h-1, superior to state-of-the-art catalysts. Interestingly, a H2O2 concentration of 6.0 wt % was obtained after the stability test, and the Co-N-C/Ti3C2Tx catalyst was found to effectively catalyze organic dye degradation. Further analysis reveals that the enhanced H2O2 electrosynthesis performance originates from the layered structure and the oxygen functional groups of Ti3C2Tx. The layered structure can effectively promote increased exposure of active sites, while the oxygen functional groups will fine-tune the electronic structure of Co atoms, allowing a selective ORR pathway to produce H2O2. This work provides a strategy to design and fabricate highly efficient catalysts for H2O2 production and degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chang Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
190
|
Khoram MM, Nematollahi D, Khazalpour S, Zarei M, Zolfigol MA. Electrocatalytic generation of hydrogen peroxide using carbon electrode modified with 5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraone derivative. A green and efficient method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
191
|
Zhang W, Ye B, Zhong Z, Jiang Y, Zhou R, Liu Z, Hou Z. Catalytic wet air oxidation of toxic containments over highly dispersed Cu(II)/Cu(I)-N species in the framework of g-C 3N 4. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127679. [PMID: 34763927 DOI: 10.1016/j.jhazmat.2021.127679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Catalytic wet air oxidation (CWAO) is a harmless, cheap and effective technology for the degradation of toxic containments directly to CO2 and H2O. In this work, highly dispersed Cu(II)/Cu(I)-N that embedded in the framework of g-C3N4 (Cux-g-C3N4) were synthesized in a facile thermal polymerization method and used in the CWAO of phenols, antibiotics and vitamins. Characterization results confirmed that g-C3N4 formed in the prepared catalyst and copper was chemically coordinated with N in g-C3N4, which inhibited the aggregation of copper. Meanwhile, Cu(II) or Cu(I) in the framework of g-C3N4 was more effective for the degradation of phenol than Cu(0) and CuO, and more than 23 toxic containments could be degraded under mild conditions. The prominent performance of Cu0.1-g-C3N4 for CWAO reaction was discussed on the base of these experiments and it was disclosed that in-situ formed H2O2 might be contributed to the highly activity.
Collapse
Affiliation(s)
- Wenyang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Boyong Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Zixin Zhong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Yuanyuan Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Ruru Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
192
|
Li H, Quispe-Cardenas E, Yang S, Yin L, Yang Y. Electrosynthesis of >20 g/L H 2O 2 from Air. ACS ES&T ENGINEERING 2022; 2:242-250. [PMID: 35178529 PMCID: PMC8845047 DOI: 10.1021/acsestengg.1c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/30/2023]
Abstract
Hydrogen peroxide (HP) production via electrochemical oxygen reduction reaction (ORR-HP) is a critical reaction for energy storage and environmental remediation. The onsite production of high-concentration H2O2 using gas diffusion electrodes (GDEs) fed by air is especially attractive. However, many studies indicate that the air-GDE combination could not produce concentrated H2O2, as the [H2O2] leveled off or even decreased with the increasing reaction time. This study proves that the limiting factors are not the oxygen concentration in the air but the anodic and cathodic depletion of the as-formed H2O2. We proved that the anodic depletion could be excluded by adopting a divided electrolytic cell. Furthermore, we demonstrated that applying poly(tetrafluoroethylene) (PTFE) as an overcoating rather than a catalyst binder could effectively mitigate the cathodic decomposition pathways. Beyond that, we further developed a composite electrospun PTFE (E-PTFE)/carbon black (CB)/GDE electrode featuring the electrospun PTFE (E-PTFE) nanofibrous overcoating. The E-PTFE coating provides abundant triphase active sites and excludes the cathodic depletion reaction, enabling the production of >20 g/L H2O2 at a current efficiency of 86.6%. Finally, we demonstrated the efficacy of the ORR-HP device in lake water remediation. Cyanobacteria and microcystin-LR were readily removed along with the onsite production of H2O2.
Collapse
Affiliation(s)
- Huihui Li
- State
Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe-Cardenas
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Lifeng Yin
- State
Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
193
|
Yuan Q, Zhao J, Mok DH, Zheng Z, Ye Y, Liang C, Zhou L, Back S, Jiang K. Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts. NANO LETTERS 2022; 22:1257-1264. [PMID: 34965148 DOI: 10.1021/acs.nanolett.1c04420] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Se-based nanoalloys as an emerging class of metal chalcogenide with tunable crystalline structure, component distribution, and electronic structure have attracted considerable interest in renewable energy conversion and utilization. In this Letter, we report a series of nanosized M-Se catalysts (M = Cu, Ni, Co) as prepared from laser ablation method and screen their electrocatalytic performance for onsite H2O2 generation from selective oxygen reduction reaction (ORR) in alkaline media. A flexible control on 2e-/4e- ORR pathway has been achieved by engineering the alloying component. Moreover, through a feedback loop between theory and experiment an optimized scaling relationship between oxygenated ORR intermediates has been discovered on cubic Cu7.2Se4 nanocrystals, that is, the ensemble effect of isolated Cu component destabilizes O* binding while the ligand effect of Se to Cu fine-tunes the binding strength of OOH*, leading to a superb H2O2 selectivity above 90% over a wide potential window even after 1400 potential cycles.
Collapse
Affiliation(s)
- Qinglin Yuan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajun Zhao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Hyeon Mok
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Kun Jiang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
194
|
Fortunato GV, Bezerra LS, Cardoso ESF, Kronka MS, Santos AJ, Greco AS, Júnior JLR, Lanza MRV, Maia G. Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6777-6793. [PMID: 35080174 DOI: 10.1021/acsami.1c22362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.
Collapse
Affiliation(s)
- Guilherme V Fortunato
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Leticia S Bezerra
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Eduardo S F Cardoso
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Matheus S Kronka
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Alexsandro J Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Anderson S Greco
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados, MS 79804-970, Brazil
| | - Jorge L R Júnior
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| |
Collapse
|
195
|
Zhao J, Fu C, Ye K, Liang Z, Jiang F, Shen S, Zhao X, Ma L, Shadike Z, Wang X, Zhang J, Jiang K. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat Commun 2022; 13:685. [PMID: 35115516 PMCID: PMC8813992 DOI: 10.1038/s41467-022-28346-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Electrochemical oxygen reduction could proceed via either 4e--pathway toward maximum chemical-to-electric energy conversion or 2e--pathway toward onsite H2O2 production. Bulk Pt catalysts are known as the best monometallic materials catalyzing O2-to-H2O conversion, however, controversies on the reduction product selectivity are noted for atomic dispersed Pt catalysts. Here, we prepare a series of carbon supported Pt single atom catalyst with varied neighboring dopants and Pt site densities to investigate the local coordination environment effect on branching oxygen reduction pathway. Manipulation of 2e- or 4e- reduction pathways is demonstrated through modification of the Pt coordination environment from Pt-C to Pt-N-C and Pt-S-C, giving rise to a controlled H2O2 selectivity from 23.3% to 81.4% and a turnover frequency ratio of H2O2/H2O from 0.30 to 2.67 at 0.4 V versus reversible hydrogen electrode. Energetic analysis suggests both 2e- and 4e- pathways share a common intermediate of *OOH, Pt-C motif favors its dissociative reduction while Pt-S and Pt-N motifs prefer its direct protonation into H2O2. By taking the Pt-N-C catalyst as a stereotype, we further demonstrate that the maximum H2O2 selectivity can be manipulated from 70 to 20% with increasing Pt site density, providing hints for regulating the stepwise oxygen reduction in different application scenarios.
Collapse
Affiliation(s)
- Jiajun Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke Ye
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangling Jiang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoran Zhao
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, MA, NY11973, USA
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kun Jiang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
196
|
Han C, Lyu Y, Wang S, Liu B, Zhang Y, Du H. Role of Noncovalent Interactions on the Electrocatalytic Oxidation of Ethanol in Alkali Metal Hydroxide Solutions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5318-5327. [PMID: 35049292 DOI: 10.1021/acsami.1c20964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ethanol is considered to be one of the most promising fuels for fuel cells. However, ethanol fuel cells have a sluggish Faraday efficiency due to complex interactions between the electrolyte, electrode, and ethanol. Recent studies have further suggested that noncovalent interactions originated from the hydrated alkali metal cations and the adsorbed OHad at the Pt electrode surface also played an important role in the electron transfer. In this regard, the noncovalent interactions in different alkali metal hydroxide (AMH) solutions have been systematically investigated in this study, and it was observed that the noncovalent interactions could result in the occupation of the Pt electrode surface active sites and sluggish migration of ethanol molecules in the electrical double layer, significantly affecting the electro-oxidation efficiency. Further, it was concluded that the electro-oxidation efficiency in different AMH solutions followed the order of K+ > Na+ > Rb+ > Cs+ > Li+ due to the noncovalent interactions.
Collapse
Affiliation(s)
- Chenjie Han
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeqing Lyu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaona Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Biao Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Du
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
197
|
Trinkies LL, Düll A, Zhang J, Urban S, Deschner BJ, Kraut M, Ladewig BP, Weltin A, Kieninger J, Dittmeyer R. Investigation of mass transport processes in a microstructured membrane reactor for the direct synthesis of hydrogen peroxide. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
198
|
Cornejo OM, Sirés I, Nava JL. Cathodic generation of hydrogen peroxide sustained by electrolytic O2 in a rotating cylinder electrode (RCE) reactor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
199
|
Zhang J, Ma J, Choksi TS, Zhou D, Han S, Liao YF, Yang HB, Liu D, Zeng Z, Liu W, Sun X, Zhang T, Liu B. Strong Metal–Support Interaction Boosts Activity, Selectivity, and Stability in Electrosynthesis of H2O2. J Am Chem Soc 2022; 144:2255-2263. [DOI: 10.1021/jacs.1c12157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| | - Jun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tej S. Choksi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Hong Bin Yang
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Zhiping Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Zhang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
200
|
Thundiyil S, Pandikassala A, Kurungot S, Devi RN. Tuning of Oxygen Reduction Pathways through Structural Variation in Transition Metal‐Doped Ba
2
In
2
O
5. ChemElectroChem 2022. [DOI: 10.1002/celc.202101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shibin Thundiyil
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - Ajmal Pandikassala
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - Sreekumar Kurungot
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| | - R. Nandini Devi
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Pune 411008 India
- Academy of Innovative and Scientific Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|