151
|
Franzini E, De Gioia L, Fantucci P, Zampella G, Bonačić-Koutecký V. DFT investigation of copper–peptide complexes related to the octarepeat domain of the prion protein. INORG CHEM COMMUN 2003. [DOI: 10.1016/s1387-7003(03)00065-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
152
|
Djalali R, Chen YF, Matsui H. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J Am Chem Soc 2003; 125:5873-9. [PMID: 12733928 DOI: 10.1021/ja0299598] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new biological approach to fabricate Au nanowires was examined by using sequenced peptide nanotubes as templates. The sequenced histidine-rich peptide molecules were assembled on nanotubes, and the biological recognition of the sequenced peptide selectively trapped Au ions for the nucleation of Au nanocrystals. After Au ions were reduced, highly monodisperse Au nanocrystals were grown on nanotubes. The conformations and the charge distributions of the histidine-rich peptide, determined by pH and Au ion concentration in the growth solution, control the size and the packing density of Au nanocrystals. The diameter of Au nanocrystal was limited by the spacing between the neighboring histidine-rich peptides on nanotubes. A series of TEM images of Au nanocrystals on nanotubes in the shorter Au ion incubation time periods reveal that Au nanocrystals grow inside the nanotubes first and then cover the outer surfaces of nanotubes. Therefore, multiple materials will be coated inside and outside the nanotubes respectively by controlling doping ion concentrations and their deposition sequences. It should be noted that metallic nanocrystals in diameter around 6 nm are in the size domain to observe a significant conductivity change by changing the packing density, and therefore this system may be developed into a conductivity-tunable building block.
Collapse
Affiliation(s)
- Ramin Djalali
- Department of Chemistry and Biochemistry at Hunter College and the Graduate Center, The City University of New York, New York, New York 10021, USA
| | | | | |
Collapse
|
153
|
Lorca RA, Chacón M, Barría MI, Inestrosa NC, Huidobro-Toro JP. The human prion octarepeat fragment prevents and reverses the inhibitory action of copper in the P2X4 receptor without modifying the zinc action. J Neurochem 2003; 85:709-16. [PMID: 12694397 DOI: 10.1046/j.1471-4159.2003.01705.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human prion protein fragments (PrP60-67 or PrP59-91) prevented and reversed the inhibition elicited by 5 micro m copper on the P2X4 receptor expressed in Xenopus laevis oocytes. A 60-s pre-application of 5 micro m copper caused a 69.2 +/- 2.6% inhibition of the 10 micro m adenosine triphosphate (ATP)-evoked currents, an effect that was prevented by mixing 5 micro m copper with 0.01-10 micro m of the PrP fragments 1-min prior to application. This interaction was selective, as PrP59-91 did not alter the facilitatory action of zinc. The EC50 of PrP60-67 and PrP59-91 for the reduction of the copper inhibition were 4.6 +/- 1 and 1.3 +/- 0.4 micro m, respectively. A synthetic PrP59-91 variant in which all four His were replaced by Ala was inactive. However, the replacement of Trp in each of the four putative copper-binding domains by Ala slightly decreased its potency. Furthermore, the application of 10 micro m PrP59-91 reversed the copper-evoked inhibition, restoring the ATP concentration curve to the same level as the non-inhibited state. Fragment 139-157 of betaA4 amyloid precursor protein also prevented the action of copper; its EC50 was 1.6 +/- 0.1 micro m; the metal chelator penicillamine was equipotent with PrP60-67, but carnosine was significantly less potent. Our findings highlight the role of PrP in copper homeostasis and hint at its possible role as a modulator of synapses regulated by this trace metal.
Collapse
Affiliation(s)
- Ramón A Lorca
- Centro de Regulación Celular y Patología, J. V. Luco Instituto MIFAB, Departamento de Fisiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
154
|
Baron GS, Caughey B. Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J Biol Chem 2003; 278:14883-92. [PMID: 12594216 DOI: 10.1074/jbc.m210840200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion protein (PrP) is usually bound to membranes by a glycosylphosphatidylinositol (GPI) anchor that associates with detergent-resistant membranes, or rafts. To examine the effect of membrane association on the interaction between the normal protease-sensitive PrP isoform (PrP-sen) and the protease-resistant isoform (PrP-res), a model system was employed using PrP-sen reconstituted into sphingolipid-cholesterol-rich raft-like liposomes (SCRLs). Both full-length (GPI(+)) and GPI anchor-deficient (GPI(-)) PrP-sen produced in fibroblasts stably associated with SCRLs. The latter, alternative mode of membrane association was not detectably altered by glycosylation and was markedly reduced by deletion of residues 34-94. The SCRL-associated PrP molecules were not removed by treatments with either high salt or carbonate buffer. However, only GPI(+) PrP-sen resisted extraction with cold Triton X-100. PrP-sen association with SCRLs was pH-independent. PrP-sen was also one of a small subset of phosphatidylinositol-specific phospholipase C (PI-PLC)-released proteins from fibroblast cells found to bind SCRLs. A cell-free conversion assay was used to measure the interaction of SCRL-bound PrP-sen with exogenous PrP-res as contained in microsomes. SCRL-bound GPI(+) PrP-sen was not converted to PrP-res until PI-PLC was added to the reaction or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). In contrast, SCRL-bound GPI(-) PrP-sen was converted to PrP-res without PI-PLC or PEG treatment. Thus, of the two forms of raft membrane association by PrP-sen, only the GPI anchor-directed form resists conversion induced by exogenous PrP-res.
Collapse
Affiliation(s)
- Gerald S Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
155
|
Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S. Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases. Biophys J 2003; 84:1985-97. [PMID: 12609901 PMCID: PMC1302768 DOI: 10.1016/s0006-3495(03)75007-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
All inherited forms of human prion diseases are linked with mutations in the prion protein (PrP) gene. Here we have investigated the stability and Cu(II) binding properties of three recombinant variants of murine full-length PrP(23-231)-containing destabilizing point mutations that are associated with human Gerstmann-Sträussler-Scheinker disease (F198S), Creutzfeld-Jakob disease (E200K), and fatal familial insomnia (D178N) by electron paramagnetic resonance and circular dichroism spectroscopy. Furthermore, we analyzed the variants H140S, H177S, and H187S of the isolated C-terminal domain of murine PrP, mPrP(121-231), to test a role of the histidine residues in Cu(II) binding. The F198S and E200K variants of PrP(23-231) differed in Cu(II) binding from the wild-type mPrP(23-231). However, circular dichroism spectroscopy indicated that the variants and the wild type did not undergo conformational changes in the presence of Cu(II). The D178N variant showed a high tendency to aggregate at pH 7.4 both with and without Cu(II). At lower pH values, it showed the same Cu(II) binding behavior as the wild type. The analysis allowed for a better location of the Cu(II) binding sites in the C-terminal part of the protein. Our present data indicate that hereditary forms of prion diseases cannot be rationalized on the basis of altered Cu(II) binding or mutation-induced protein destabilization alone.
Collapse
Affiliation(s)
- Grazia M Cereghetti
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
156
|
Garnett AP, Viles JH. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism. J Biol Chem 2003; 278:6795-802. [PMID: 12454014 DOI: 10.1074/jbc.m209280200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) is a Cu(2+) binding cell surface glycoprotein. There is increasing evidence that PrP functions as a copper transporter. In addition, strains of prion disease have been linked with copper binding. We present here CD spectroscopic studies of Cu(2+) binding to various fragments of the octarepeat region of the prion protein. We show that glycine and l-histidine will successfully compete for all Cu(2+) ions bound to the PrP octapeptide region, suggesting Cu(2+) coordinates with a lower affinity for PrP than the fm dissociation constant reported previously. We show that each of the octarepeats do not form an isolated Cu(2+) binding motif but fold up cooperatively within multiple repeats. In addition to the coordinating histidine side chain residues, we show that the glycine residues and the proline within each octarepeat are also necessary to maintain the coordination geometry. The highly conserved octarepeat region in mammals is a hexarepeat in birds that also binds copper but with different coordination geometry. Finally, in contrast to other reports, we show that Mn(2+) does not bind to the octarepeat region of PrP.
Collapse
Affiliation(s)
- Anthony P Garnett
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
157
|
Thackray AM, Madec JY, Wong E, Morgan-Warren R, Brown DR, Baron T, Bujdoso R. Detection of bovine spongiform encephalopathy, ovine scrapie prion-related protein (PrPSc) and normal PrPc by monoclonal antibodies raised to copper-refolded prion protein. Biochem J 2003; 370:81-90. [PMID: 12429022 PMCID: PMC1223157 DOI: 10.1042/bj20021280] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 11/07/2002] [Accepted: 11/12/2002] [Indexed: 11/17/2022]
Abstract
Prion-related protein (PrP) is a glycosylphosphatidylinositol-linked cell-surface protein expressed by a wide variety of cells, including those of the nervous system and the immune system. Several functions of normal cellular PrP (PrPc) have been proposed that may be associated with the capacity of this protein to bind copper. In the present study, we describe the generation of a panel of monoclonal antibodies raised to copper-refolded PrP, which may be used to analyse the normal and disease-associated forms of this protein. The anti-PrP monoclonal antibodies were reactive by Western blot and ELISA with recombinant murine PrPc refolded in the presence or absence of either copper or manganese, and with the disease-susceptible allelic form V136R154Q171 ('VRQ'; where single-letter amino-acid notation has been used) and disease-resistant allelic form A136R154R171 ('ARR') of recombinant ovine PrPc. FACS analysis of lymphoid cells using these monoclonal antibodies showed that wild-type non-activated mouse lymphocytes expressed little, if any, PrPc. These monoclonal antibodies were shown to react with the unglycosylated and monoglycosylated forms of PrPSc (abnormal disease-specific conformation of PrP) in prion-infected tissue samples from all of the different species tested by Western blot. In addition, this analysis allowed one to make a distinction between bovine spongiform encephalopathy ('BSE') and scrapie PrPSc) isolates from experimentally infected sheep on the basis of their different electrophoretic mobilities.
Collapse
Affiliation(s)
- Alana M Thackray
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | | | | | | | | |
Collapse
|
158
|
Leclerc E, Peretz D, Ball H, Solforosi L, Legname G, Safar J, Serban A, Prusiner SB, Burton DR, Williamson RA. Conformation of PrP(C) on the cell surface as probed by antibodies. J Mol Biol 2003; 326:475-83. [PMID: 12559915 DOI: 10.1016/s0022-2836(02)01365-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the conformation of Syrian hamster PrP(C) on the surface of transfected CHO cells by performing cross-competition experiments between a set of nine monoclonal antibody fragments (Fab) directed to defined epitopes throughout the protein. No competition was observed between antibodies recognizing epitopes located within the unstructured N-terminal portion of PrP(C) and those recognizing epitopes located within the ordered C-terminal half of the molecule. However, competition was observed between antibodies recognizing overlapping epitopes and between antibodies recognizing epitopes lying adjacent to one another in the PrP sequence. Titrating the reactivity of each Fab against cell-surface PrP(C) revealed a clear heterogeneity in the accessibility of different specific epitopes. Fab D18, recognizing sequence incorporating the first alpha-helix of PrP(C), bound the largest fraction of the cell-surface PrP population. In contrast, Fab E123, binding an epitope at the extreme N terminus of PrP, and Fab 13A5, binding an epitope in the central region of PrP, were able to recognize fewer than half the number of PrP(C) molecules bound by Fab D18. The pattern of antibody reactivity we observed may, in part, result from N-terminal truncation of a proportion of PrP(C) molecules found at the cell surface. However, truncation cannot account for the marked disparity between exposure of the Fab D18 and 13A5 epitopes, which lie adjacent in the PrP sequence. The relative inaccessibility of the 13A5 epitope likely reflects either PrP(C)-PrP(C) interaction, interaction between PrP(C) and other constituents on the cell membrane, or the existence of PrP(C) subspecies with distinct conformations.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Zeng F, Watt NT, Walmsley AR, Hooper NM. Tethering the N-terminus of the prion protein compromises the cellular response to oxidative stress. J Neurochem 2003; 84:480-90. [PMID: 12558968 DOI: 10.1046/j.1471-4159.2003.01529.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the N-terminal half of the prion protein (PrPC) in normal cellular function and pathology remains enigmatic. To investigate the biological role of the N-terminus of PrP, we examined the cellular properties of a construct of murine PrP, PrP-DA, in which the N-terminus is tethered to the membrane by an uncleaved signal peptide and which retains the glycosyl-phosphatidylinositol anchor. Human neuroblastoma SH-SY5Y cells expressing PrP-DA were more susceptible to hydrogen peroxide and copper induced toxicity than wtPrP expressing cells. The PrP-DA expressing cells had an increased level of intracellular free radicals and reduced levels of superoxide dismutase and glutathione peroxidase as compared to the wtPrP expressing cells. The membrane topology, cell surface location, lipid raft localisation, intracellular trafficking and copper-mediated endocytosis of PrP-DA were not significantly different from wtPrP. However, cells expressing PrP-DA accumulated an N-terminal fragment that was resistant to proteinase K. The data presented here are consistent with the N-terminal region of PrPC having a role in the cellular response to oxidative stress, and that tethering this region of the protein to the membrane compromises this function through the accumulation of a protease-resistant N-terminal fragment, similar to that seen in some forms of human prion disease.
Collapse
Affiliation(s)
- Fanning Zeng
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
160
|
van Rheede T, Smolenaars MMW, Madsen O, de Jong WW. Molecular evolution of the mammalian prion protein. Mol Biol Evol 2003; 20:111-21. [PMID: 12519913 DOI: 10.1093/molbev/msg014] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prion protein (PrP) sequences are until now available for only six of the 18 orders of placental mammals. A broader comparison of mammalian prions might help to understand the enigmatic functional and pathogenic properties of this protein. We therefore determined PrP coding sequences in 26 mammalian species to include all placental orders and major subordinal groups. Glycosylation sites, cysteines forming a disulfide bridge, and a hydrophobic transmembrane region are perfectly conserved. Also, the sequences responsible for secondary structure elements, for N- and C-terminal processing of the precursor protein, and for attachment of the glycosyl-phosphatidylinositol membrane anchor are well conserved. The N-terminal region of PrP generally contains five or six repeats of the sequence P(Q/H)GGG(G/-)WGQ, but alleles with two, four, and seven repeats were observed in some species. This suggests, together with the pattern of amino acid replacements in these repeats, the regular occurrence of repeat expansion and contraction. Histidines implicated in copper ion binding and a proline involved in 4-hydroxylation are lacking in some species, which questions their importance for normal functioning of cellular PrP. The finding in certain species of two or seven repeats, and of amino acid substitutions that have been related to human prion diseases, challenges the relevance of such mutations for prion pathology. The gene tree deduced from the PrP sequences largely agrees with the species tree, indicating that no major deviations occurred in the evolution of the prion gene in different placental lineages. In one species, the anteater, a prion pseudogene was present in addition to the active gene.
Collapse
Affiliation(s)
- Teun van Rheede
- Department of Biochemistry, NCMLS, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
161
|
Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS. Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 2002; 368:81-90. [PMID: 12186633 PMCID: PMC1222984 DOI: 10.1042/bj20020773] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 07/19/2002] [Accepted: 08/20/2002] [Indexed: 11/17/2022]
Abstract
We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs.
Collapse
Affiliation(s)
- Tao Pan
- Institute of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-1712, USA
| | | | | | | | | | | |
Collapse
|
162
|
UV resonance Raman and NMR spectroscopic studies on the pH dependent metal ion release from pseudoazurin. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00937-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
163
|
Ford MJ, Burton LJ, Morris RJ, Hall SM. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 2002; 113:177-92. [PMID: 12123696 DOI: 10.1016/s0306-4522(02)00155-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid organs, may be particularly important in the transmission of infection in the periphery.
Collapse
Affiliation(s)
- M J Ford
- MRC Centre for Developmental Neurobiology, Hodgkin Building, King's College London Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | |
Collapse
|
164
|
Torreggiani A, Taddei P, Tinti A, Fini G. Vibrational study on the cobalt binding mode of Carnosine. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00314-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
165
|
Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, Ferguson SSG, Gomez MV, Brentani RR, Prado MAM. Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 2002; 277:33311-8. [PMID: 12070160 DOI: 10.1074/jbc.m203661200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization.
Collapse
Affiliation(s)
- Ana C Magalhães
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-910, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Perry G, Sayre LM, Atwood CS, Castellani RJ, Cash AD, Rottkamp CA, Smith MA. The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 2002; 16:339-52. [PMID: 11994023 DOI: 10.2165/00023210-200216050-00006] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormalities in the metabolism of the transition metals iron and copper have been demonstrated to play a crucial role in the pathogenesis of various neurodegenerative diseases. Metal homeostasis as it pertains to alterations in brain function in neurodegenerative diseases is reviewed in this article in depth. While there is documented evidence for alterations in the homeostasis, redox-activity and localisation of transition metals, it is also important to realise that alterations in specific copper- and iron-containing metalloenzymes appear to play a crucial role in the neurodegenerative process. These changes provide the opportunity to identify pathways where modification of the disease process can occur, potentially offering opportunities for clinical intervention. As understanding of disease aetiology evolves, so do the tools with which diseases are treated. In this article, we examine not only the possible mechanism of disease but also how pharmaceuticals may intervene, from direct and indirect antioxidant therapy to strategies involving gene therapy.
Collapse
Affiliation(s)
- George Perry
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
González-Iglesias R, Pajares MA, Ocal C, Espinosa JC, Oesch B, Gasset M. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol 2002; 319:527-40. [PMID: 12051926 DOI: 10.1016/s0022-2836(02)00341-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of evidence have shown glycosaminoglycans (GAGs) to be physiological ligands of the prion protein (PrP), but the molecular and regulatory aspects of the interaction remain unknown. Using full-length recombinant prion protein and low molecular mass heparin and heparan sulfate as glycosaminoglycans, we have found that the interaction occurs with the formation of oligomeric complexes. Within the protein-glycosaminoglycan complexes, PrP exhibited an enhanced fluorescence emission and a reduced solvent exposure. The pH and ionic strength-dependence of the interaction reveals His residues as the main binding sites at acid pH. A synthetic peptide consisting of four octarepeats is able to reproduce the His-dependent binding of the protein, thus demonstrating the role of the octarepeats in the GAG interaction. Alternatively, PrP can bind GAGs through His-bound Cu(II). These Cu(II) bridges promote a tighter interaction, as shown by the increased resistance to ionic strength, to protease action, and to pH-induced cation release. Inspection of other cations shows that Zn(II) but not Ni(II) shares the interaction trend. Taken together, our data suggest that the octarepeat region constitutes a novel GAG-binding sequence and that His-bound Cu(II) may act as a cofactor for intermolecular recognition reactions, allowing the formation of PrP-Cu(II)-glycosaminoglycan assemblies that may be crucial entities in the PrP metabolism.
Collapse
|
168
|
Warner RG, Hundt C, Weiss S, Turnbull JE. Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 2002; 277:18421-30. [PMID: 11882649 DOI: 10.1074/jbc.m110406200] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Data from cell culture and animal models of prion disease support the separate involvement of both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though direct interactions between prion protein and heparin have been recorded, little is known of the structural features implicit in this interaction or of the involvement of copper (II) ions. Using biosensor and enzyme-linked immunosorbent assay methodology we report direct heparin and heparan sulfate-binding activity in recombinant cellular prion protein (PrP(c)). We also demonstrate that the interaction of recombinant PrP(c) with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to competition with dextran sulfate. Competitive inhibition experiments with chemically modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are essential for heparin recognition. We have also identified three regions of the prion protein capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93, and 110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif amino acids 53-93 with heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit the binding of full-length prion molecule to heparin, suggesting a direct role in heparin recognition within the intact protein. The collective data suggest a complex interaction between prion protein and heparin/heparan sulfate and has implications for the cellular and pathological functions of prion proteins.
Collapse
Affiliation(s)
- Richard G Warner
- Molecular Cell Biology Laboratories, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
169
|
Casolaro M, Chelli M, Ginanneschi M, Laschi F, Messori L, Muniz-Miranda M, Papini AM, Kowalik-Jankowska T, Kozlowski H. Spectroscopic and potentiometric study of the SOD mimic system copper(II)/acetyl-L-histidylglycyl-L-histidylglycine. J Inorg Biochem 2002; 89:181-90. [PMID: 12062121 DOI: 10.1016/s0162-0134(02)00365-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the N-acetylated tetrapeptide HisGlyHisGly were determined in aqueous solution in the pH range 2-11. The potentiometric and spectroscopic data (UV-Vis, CD, EPR and Raman scattering) show that acetylation of the amino terminal group induces drastic changes in the coordination properties of AcHGHG compared to HGHG. The N3 atoms of the histidine side chains are the first anchoring sites of the copper(II) ion. At pH 4.7 and 5.6 both the imidazole rings cooperate in the formation of a 2N equatorial set, while, at higher pH values, 3N and 4N complexes are formed through the coordination of peptide N- atoms. The logbeta values of the copper complexes of AcHGHG are by far lower than those of the corresponding species in the parent CuII-HGHG system.
Collapse
Affiliation(s)
- Mario Casolaro
- Dipartimento di Chimica and Istituto di Chimica dei Composti Organo Metallici del C.N.R., Università di Siena, Pian dei Mantellini 44, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Torreggiani A, Taddei P, Fini G. Characterization of dioxygenated cobalt(II)-carnosine complexes by Raman and IR spectroscopy. Biopolymers 2002; 67:70-81. [PMID: 11842416 DOI: 10.1002/bip.10025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is <or=1, peroxobinuclear complexes are the predominant species and two forms (monobridged and dibridged) are identified by the presence of two Raman peaks in the nuO-O region (750-850 cm(-1)). These peroxo complexes can be oxidized to yield a superoxo complex when the metal slightly exceeds the Carnos concentration, and there are consequent shifts of the nuO-O band to higher wavenumbers. In addition, the chelated species in the 2 : 1 Co(II)/Carnos system is found to bind oxygen to a lesser degree. With respect to the coordination sites, each Co(II) ion of the binuclear dioxygenated complexes is bound to one oxygen atom and four nitrogen atoms: N(pi) and N(tau) of two Carnos molecules, the peptide, and the terminal amino nitrogen atoms. Conversely, when the metal/ligand ratio is 2, in addition to the dioxygenated complexes, a complex is formed in which the imidazole moiety of Carnos binds two different cobalt ions because the N(pi) and N(tau) nitrogens are both deprotonated.
Collapse
Affiliation(s)
- A Torreggiani
- Centro di Studio Interfacoltà sulla Spettroscopia Raman, Department of Biochemistry, University of Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy
| | | | | |
Collapse
|
171
|
Abstract
Recent data demonstrate that transition metal ions such as copper not only bind the prion protein with high affinities, but also modify its biochemical properties. This has important consequences for the potential function of the protein in metal-ion transport or as an anti-oxidant molecule. In addition, this relationship between the prion protein and metal ions is likely to play a critical role in the physiopathology of prion diseases.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Institut de Génétique Humaine, CNRS U.P.R. 1142, 141, rue de la Cardonille, 34396 Cedex 5, Montpellier, France.
| |
Collapse
|
172
|
Gustiananda M, Haris PI, Milburn PJ, Gready JE. Copper-induced conformational change in a marsupial prion protein repeat peptide probed using FTIR spectroscopy. FEBS Lett 2002; 512:38-42. [PMID: 11852048 DOI: 10.1016/s0014-5793(01)03298-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the first Fourier transform infrared analysis of prion protein (PrP) repeats and the first study of PrP repeats of marsupial origin. Large changes in the secondary structure and an increase in hydrogen bonding within the peptide groups were evident from a red shift of the amide I band by >7 cm(-1) and an approximately five-fold reduction in amide hydrogen-deuterium exchange for peptide interacting with Cu(2+) ions. Changes in the tertiary structure upon copper binding were also evident from the appearance of a new band at 1564 cm(-1), which arises from the ring vibration of histidine. The copper-induced conformational change is pH dependent, and occurs at pH >7.
Collapse
Affiliation(s)
- Marsia Gustiananda
- Computational Molecular Biology and Drug Design Group, John Curtin School of Medical Research, Australian National University, Canberra
| | | | | | | |
Collapse
|
173
|
Shiraishi N, Nishikimi M. Carbonyl formation on a copper-bound prion protein fragment, PrP23-98, associated with its dopamine oxidase activity. FEBS Lett 2002; 511:118-22. [PMID: 11821060 DOI: 10.1016/s0014-5793(01)03324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The amino-terminal part of prion protein (PrP), containing a series of octapeptide repeats with the consensus sequence PHGGGWGQ, has been implicated in the binding of copper ion. This region possesses amino acid residues susceptible to oxidation, such as histidine, lysine, arginine and proline. In this study, we have investigated copper-catalyzed oxidation of an N-terminal part of human PrP, PrP23-98, that was prepared by the recombinant DNA technique. Carbonyl formations on copper-bound PrP23-98 induced by dopamine and L-ascorbate were analyzed kinetically, and it was found that the redox cycling of PrP23-98-bound copper, especially induced by dopamine, was coupled to the formation of carbonyls on the protein.
Collapse
Affiliation(s)
- Noriyuki Shiraishi
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | |
Collapse
|
174
|
Qin K, Yang Y, Mastrangelo P, Westaway D. Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 2002; 277:1981-90. [PMID: 11698407 DOI: 10.1074/jbc.m108744200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Cu(II) ions bind to the prion protein (PrP), there have been conflicting findings concerning the number and location of binding sites. We have combined diethyl pyrocarbonate (DEPC)-mediated carbethoxylation, protease digestion, and mass spectrometric analysis of apo-PrP and copper-coordinated mouse PrP23-231 to "footprint" histidine-dependent Cu(II) coordination sites within this molecule. At pH 7.4 Cu(II) protected five histidine residues from DEPC modification. No protection was afforded by Ca(II), Mn(II), or Mg(II) ions, and only one or two residues were protected by Zn(II) or Ni(II) ions. Post-source decay mapping of DEPC-modified histidines pinpointed residues 60, 68, 76, and 84 within the four PHGGG/SWGQ octarepeat units and residue 95 within the related sequence GGGTHNQ. Besides defining a copper site within the protease-resistant core of PrP, our findings suggest application of DEPC footprinting methodologies to probe copper occupancy and pathogenesis-associated conformational changes in PrP purified from tissue samples.
Collapse
Affiliation(s)
- Kefeng Qin
- Centre for Research in Neurodegenerative Diseases, the Department of Laboratory Medicine and Pathobiology, and the Mass Spectrometry Laboratory, Molecular Medicine Research Centre, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | | | | | | |
Collapse
|
175
|
Harris DA. Biosynthesis and cellular processing of the prion protein. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:203-28. [PMID: 11447691 DOI: 10.1016/s0065-3233(01)57023-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
176
|
Tagliavini F, Forloni G, D'Ursi P, Bugiani O, Salmona M. Studies on peptide fragments of prion proteins. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:171-201. [PMID: 11447690 DOI: 10.1016/s0065-3233(01)57022-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- F Tagliavini
- Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | |
Collapse
|
177
|
Niklas N, Hampel F, Liehr G, Zahl A, Alsfasser R. The reactivity of N-coordinated amides in metallopeptide frameworks: molecular events in metal-induced pathogenic pathways? Chemistry 2001; 7:5135-42. [PMID: 11775686 DOI: 10.1002/1521-3765(20011203)7:23<5135::aid-chem5135>3.0.co;2-f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The amino acid derived tertiary amide ligand tert-butoxycarbonyl-(S)-alanine-N,N-bis(picolyl)amide (Boc-(S)-Ala-bpa, 1) has been synthesized as a model for metal-coordinating peptide frameworks. Its reactions with copper(II) and cadmium(II) salts have been studied. Binding of Cu2+ results in amide bond cleavage and formation of [(bpa)(solvent)Cu]2+ complexes. In contrast, the stable, eight-coordinate complex [(Boc-(S)-Ala-bpa)Cd(NO3)2] (5) has been isolated and characterized by X-ray crystallography. An unusual tertiary amide nitrogen coordination is observed in 5; this gives rise to significantly reduced cis-trans isomerization barriers. Possible implications for metal-induced conformational changes in proteins are discussed.
Collapse
Affiliation(s)
- N Niklas
- Institute of Inorganic Chemistry, University of Erlangen Germany
| | | | | | | | | |
Collapse
|
178
|
Hasegawa K, Ono TA, Noguchi T. Ab Initio Density Functional Theory Calculations and Vibrational Analysis of Zinc-Bound 4-Methylimidazole as a Model of a Histidine Ligand in Metalloenzymes. J Phys Chem A 2001. [DOI: 10.1021/jp012251f] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koji Hasegawa
- Laboratory for Photo-Biology (I), RIKEN Photodynamics Research Center, Aoba, Sendai, Miyagi 980-0845, Japan, and Biophysical Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Taka-aki Ono
- Laboratory for Photo-Biology (I), RIKEN Photodynamics Research Center, Aoba, Sendai, Miyagi 980-0845, Japan, and Biophysical Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takumi Noguchi
- Laboratory for Photo-Biology (I), RIKEN Photodynamics Research Center, Aoba, Sendai, Miyagi 980-0845, Japan, and Biophysical Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
179
|
Zanusso G, Farinazzo A, Fiorini M, Gelati M, Castagna A, Righetti PG, Rizzuto N, Monaco S. pH-dependent prion protein conformation in classical Creutzfeldt-Jakob disease. J Biol Chem 2001; 276:40377-80. [PMID: 11682490 DOI: 10.1074/jbc.c100458200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In transmissible spongiform encephalopathies, the cellular prion protein (PrP(C)) undergoes a conformational change from a prevailing alpha-helical structure to a beta-sheet-rich, protease-resistant isoform, termed PrP(Sc). PrP(C) has two characteristics: a high affinity for Cu(2+) and a strong pH-dependent conformation. Lines of evidence indicate that PrP(Sc) conformation is dependent on copper and that acidic conditions facilitate the conversion of PrP(C) --> PrP(Sc). In each species, PrP(Sc) exists in multiple conformations, which are associated with different prion strains. In sporadic Creutzfeldt-Jakob disease (sCJD), different biochemical types of PrP(Sc) have been identified according to the size of the protease-resistant fragments, patterns of glycosylation, and the metal-ion occupancy. Based on the site of cleavage produced by proteinase K, we investigated the conformational stability of PrP(Sc) under acidic, neutral, and basic conditions in 42 sCJD subjects. Our study shows that only one type of sCJD PrP(Sc), associated with the classical form, shows a pH-dependent conformation, whereas two other biochemical PrP(Sc) types, detected in distinct sCJD phenotypes, are unaffected by pH variations. This novel approach demonstrates the presence of three types of PrP(Sc) in sCJD.
Collapse
Affiliation(s)
- G Zanusso
- Department of Neurological and Visual Sciences, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Suzuki K, Miura T, Takeuchi H. Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid beta-peptide. Biochem Biophys Res Commun 2001; 285:991-6. [PMID: 11467850 DOI: 10.1006/bbrc.2001.5263] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aggregation of amyloid beta-peptide (Abeta), a key pathological event in Alzheimer's disease, has been shown in vitro to be profoundly promoted by Zn(II). This fact suggests that some factors in the normal brain protect Abeta from the Zn(II)-induced aggregation. We demonstrate for the first time that Cu(II) effectively inhibits the Abeta aggregation by competing with Zn(II) for histidine residues. The Raman spectrum of a metal-Abeta complex in the presence of both Zn(II) and Cu(II) shows that the cross-linking of Abeta through binding of Zn(II) to the N(tau) atom of histidine is prevented by chelation of Cu(II) by the N(pi) atom of histidine and nearby amide nitrogens. The inhibitory effect is strongest at a Cu/Abeta molar ratio of around 4. Above this ratio, Cu(II) itself promotes the Abeta aggregation by binding to the phenolate oxygen of Tyr10. These results emphasize the importance of regulation of Cu(II) levels to inhibit Abeta aggregation, and are consistent with an altered metal homeostasis in Alzheimer's disease.
Collapse
Affiliation(s)
- K Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
181
|
Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Biophys J 2001; 81:516-25. [PMID: 11423433 PMCID: PMC1301530 DOI: 10.1016/s0006-3495(01)75718-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmissible spongiform encephalopathies in mammals are believed to be caused by scrapie form of prion protein (PrP(Sc)), an abnormal, oligomeric isoform of the monomeric cellular prion protein (PrP(C)). One of the proposed functions of PrP(C) in vivo is a Cu(II) binding activity. Previous studies revealed that Cu(2+) binds to the unstructured N-terminal PrP(C) segment (residues 23-120) through conserved histidine residues. Here we analyzed the Cu(II) binding properties of full-length murine PrP(C) (mPrP), of its isolated C-terminal domain mPrP(121-231) and of the N-terminal fragment mPrP(58-91) in the range of pH 3-8 with electron paramagnetic resonance spectroscopy. We find that the C-terminal domain, both in its isolated form and in the context of the full-length protein, is capable of interacting with Cu(2+). Three Cu(II) coordination types are observed for the C-terminal domain. The N-terminal segment mPrP(58-91) binds Cu(2+) only at pH values above 5.0, whereas both mPrP(121-231) and mPrP(23-231) already show identical Cu(II) coordination in the pH range 3-5. As the Cu(2+)-binding N-terminal segment 58-91 is not required for prion propagation, our results open the possibility that Cu(2+) ions bound to the C-terminal domain are involved in the replication of prions, and provide the basis for further analytical studies on the specificity of Cu(II) binding by PrP.
Collapse
Affiliation(s)
- G M Cereghetti
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
182
|
Abstract
The prion protein is a cell surface glyco-protein expressed by neurones. Its function has remained elusive until it was recently shown to be a copper binding protein. There is now strong evidence that the prion protein has a role in normal brain copper metabolism. Prion protein expression alters copper uptake into cells and enhances copper incorporation into superoxide dismutase. Furthermore the prion protein itself can act as a superoxide dismutase. One aspect of prion disease is the conversion of functional prion protein into an aggregated amyloid. This conversion may alter the function of the prion protein or abolish it. These results suggest that prion disease may involve disturbance to brain copper homeostasis.
Collapse
Affiliation(s)
- D R Brown
- Department of Biochemistry, Cambridge University, Cambridge, UK.
| |
Collapse
|
183
|
Torreggiani A, Fini G, Bottura G. Effect of transition metal binding on the tautomeric equilibrium of the carnosine imidazolic ring. J Mol Struct 2001. [DOI: 10.1016/s0022-2860(01)00461-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
184
|
Quaglio E, Chiesa R, Harris DA. Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 2001; 276:11432-8. [PMID: 11278539 DOI: 10.1074/jbc.m009666200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several lines of evidence have suggested that copper ions play a role in the biology of both PrP(C) and PrP(Sc), the normal and pathologic forms of the prion protein. To further investigate this intriguing connection, we have analyzed how copper ions affect the biochemical properties of PrP(C) extracted from the brains of transgenic mice and from transfected cells. We report that the metal rapidly and reversibly induces PrP(C) to become protease-resistant and detergent-insoluble. Although these two properties are commonly associated with PrP(Sc), we demonstrate using a conformation-dependent immunoassay that copper-treated PrP is structurally distinct from PrP(Sc). The effect of copper requires the presence of at least one of the five octapeptide repeats normally present in the N-terminal half of the protein, consistent with the idea that the metal alters the biochemical properties of PrP by directly binding to this region. These results suggest potential roles for copper in prion diseases, as well as in the physiological function of PrP(C).
Collapse
Affiliation(s)
- E Quaglio
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
185
|
Perera WS, Hooper NM. Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 2001; 11:519-23. [PMID: 11413003 DOI: 10.1016/s0960-9822(01)00147-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurodegenerative spongiform encephalopathies, or prion diseases, are characterized by the conversion of the normal cellular form of the prion protein PrP(C) to a pathogenic form, PrP(Sc) [1]. There are four copies of an octarepeat PHGG(G/S)WGQ that specifically bind Cu(2+) ions within the N-terminal half of PrP(C) [2--4]. This has led to proposals that prion diseases may, in part, be due to abrogation of the normal cellular role of PrP(C) in copper homeostasis [5]. Here, we show that murine PrP(C) is rapidly endocytosed upon exposure of neuronal cells to physiologically relevant concentrations of Cu(2+) or Zn(2+), but not Mn(2+). Deletion of the four octarepeats or mutation of the histidine residues (H68/76 dyad) in the central two repeats abolished endocytosis, indicating that the internalization of PrP(C) is governed by metal binding to the octarepeats. Furthermore, a mutant form of PrP that contains nine additional octarepeats and is associated with familial prion disease [6] failed to undergo Cu(2+)-mediated endocytosis. For the first time, these results provide evidence that metal ions can promote the endocytosis of a mammalian prion protein in neuronal cells and that neurodegeneration associated with some prion diseases may arise from the ablation of this function due to mutation of the octarepeat region.
Collapse
Affiliation(s)
- W S Perera
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
186
|
Leclerc E, Peretz D, Ball H, Sakurai H, Legname G, Serban A, Prusiner SB, Burton DR, Williamson R. Immobilized prion protein undergoes spontaneous rearrangement to a conformation having features in common with the infectious form. EMBO J 2001; 20:1547-54. [PMID: 11285219 PMCID: PMC145482 DOI: 10.1093/emboj/20.7.1547] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 02/09/2001] [Accepted: 02/09/2001] [Indexed: 11/14/2022] Open
Abstract
It is hypothesized that infectious prions are generated as the cellular form of the prion protein (PrP(C)) undergoes pronounced conformational change under the direction of an infectious PrP(Sc) template. Conversion to the infectious conformer is particularly associated with major structural rearrangement in the central portion of the protein (residues 90-120), which has an extended flexible structure in the PrP(C) isoform. Using a panel of recombinant antibodies reactive with different parts of PrP, we show that equivalent major structural rearrangements occur spontaneously in this region of PrP immobilized on a surface. In contrast, regions more towards the termini of the protein remain relatively unaltered. The rearrangements occur even under conditions where individual PrP molecules should not contact one another. The propensity of specific unstructured regions of PrP to spontaneously undergo large and potentially deleterious conformational changes may have important implications for prion biology.
Collapse
Affiliation(s)
- Estelle Leclerc
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - David Peretz
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Haydn Ball
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Hiroshi Sakurai
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Giuseppe Legname
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Ana Serban
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Stanley B. Prusiner
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - Dennis R. Burton
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| | - R.Anthony Williamson
- Departments of
Immunology and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, Institute for Neurodegenerative Diseases and Departments of Neurology and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Corresponding authors e-mail: or
| |
Collapse
|
187
|
Abstract
The zinc(II)-L-carnosine system was investigated at different pH and metal/ligand ratios by Raman and IR spectroscopy. The Raman and IR spectra present some marker bands useful to identify the sites involved in metal chelation at a specific pH value. In particular, the neutral imidazole group gives rise to some Raman bands, such as the nu C(4)===C(5) band, that change in wave number, depending on whether the imidazole ring takes the tautomeric form I or II. Even if tautomer I is predominant in the free ligand, metal coordination can upset tautomeric preference and N(tau)- and N(pi)-ligated complexes can be identified. Although weak compared to those of aromatic residues, these Raman marker bands may be useful in analyzing metal-histidine interaction in peptides and proteins. On the basis of the vibrational results, conclusions can be drawn on the species existing in the system. Depending on the available nitrogen atoms, various complexes can be formed and the prevalent form of the species depends mainly on the pH. At basic pH carnosine gives rise to two different neutral complexes: a water-insoluble polymeric species, [ZnH(-1)L](0)(n), and a dimer, [Zn(2)H(-2)L(2)](0). The first is predominant and involves the tautomeric I form of the imidazole ring in metal chelation; the second contains tautomer II and increases its percentage by going from a 2 to 0.25 metal/ligand ratio. Conversely, the dimeric species dominates at pH 7, whereas two charged species, [ZnHL](2+) and [ZnL](+), are formed under slightly acidic conditions. In the [ZnHL](2+) complex the imidazole ring takes part in the Zn(II) coordination in the tautomeric I form, whereas in [ZnL](+) the ring is protonated and not bound to the Zn(II) ion. In addition, the curve fitting analysis of the 1700-1530 cm(-1) Raman region was helpful in indicating the predominant species at each pH.
Collapse
Affiliation(s)
- A Torreggiani
- Centro di Studio Interfacoltà sulla Spettroscopia Raman, Department of Biochemistry, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy
| | | | | |
Collapse
|
188
|
Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A. Unraveling the Cu2+ Binding Sites in the C-Terminal Domain of the Murine Prion Protein: A Pulse EPR and ENDOR Study. J Phys Chem B 2001. [DOI: 10.1021/jp003115y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabine Van Doorslaer
- Laboratory of Physical Chemistry, ETH Zentrum, CH-8092 Zurich, Switzerland, and Institute of Molecular Biology and Biophysics, ETH Zurich Hönggerberg, CH-8093 Zurich, Switzerland
| | - Grazia M. Cereghetti
- Laboratory of Physical Chemistry, ETH Zentrum, CH-8092 Zurich, Switzerland, and Institute of Molecular Biology and Biophysics, ETH Zurich Hönggerberg, CH-8093 Zurich, Switzerland
| | - Rudi Glockshuber
- Laboratory of Physical Chemistry, ETH Zentrum, CH-8092 Zurich, Switzerland, and Institute of Molecular Biology and Biophysics, ETH Zurich Hönggerberg, CH-8093 Zurich, Switzerland
| | - Arthur Schweiger
- Laboratory of Physical Chemistry, ETH Zentrum, CH-8092 Zurich, Switzerland, and Institute of Molecular Biology and Biophysics, ETH Zurich Hönggerberg, CH-8093 Zurich, Switzerland
| |
Collapse
|
189
|
McMahon HE, Mangé A, Nishida N, Créminon C, Casanova D, Lehmann S. Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 2001; 276:2286-91. [PMID: 11060296 DOI: 10.1074/jbc.m007243200] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Relatively limited information is available on the processing and function of the normal cellular prion protein, PrP(C). Here it is reported for the first time that PrP(C) undergoes a site-specific cleavage of the octapeptide repeat region of the amino terminus on exposure to reactive oxygen species. This cleavage was both copper- and pH-dependent and was retarded by the presence of other divalent metal ions. The oxidative state of the cell also decreased detection of full-length PrP(C) and increased detection of amino-terminally fragmented PrP(C) within cells. Such a post-translational modification has vast implications for PrP(C), in its processing, because such cleavage could alter further proteolysis, and in the formation of the scrapie isoform of the prion protein, PrP(Sc), because abnormal cleavage of PrP(Sc) occurs into the octapeptide repeat region.
Collapse
Affiliation(s)
- H E McMahon
- Institut de Génétique Humaine, CNRS U.P.R. 1142, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
190
|
Bonomo RP, Imperllizzeri G, Pappalardo G, Rizzarelli E, Tabbì G. Copper(II) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study. Chemistry 2000; 6:4195-202. [PMID: 11128284 DOI: 10.1002/1521-3765(20001117)6:22<4195::aid-chem4195>3.0.co;2-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The N-terminal octapeptide repeat region of human prion protein (PrPc) is known to bind Cu(II). To investigate the binding modes of copper in PrPc, an octapeptide Ac-PHGGGWGQ-NH2 (1), which corresponds to an octa-repeat sequence, and a tetrapeptide Ac-HGGG-NH2 (2) have been synthesised. The copper(II) complexes formed with 1 and 2 have been studied by circular dichroism (CD) and electron spin resonance (ESR) spectroscopy. Both peptides form 1:1 complexes with Cu(II) at neutral and basic pH. CD, ESR and visible absorption spectra suggest a similar co-ordination sphere of the metal ion in both peptides, which at neutral pH consists of a square pyramidal geometry with three peptidic nitrogens and the imidazole nitrogen as donor atoms. Cyclic voltammetric measurements were used to confirm the geometrical features of these copper(II) complexes: the observation of negative redox potentials are in good agreement with the inferred geometry. All these results taken together suggest that peptide 1 provides a single metal binding site to which copper(II) binds strongly at neutral and basic pH and that the binding of the metal induces the formation of a stiffened structure in the HGGG peptide fragment.
Collapse
Affiliation(s)
- R P Bonomo
- Dipartimento di Scienze Chimiche, Università di Catania, Italy.
| | | | | | | | | |
Collapse
|
191
|
Wong BS, Vénien-Bryan C, Williamson RA, Burton DR, Gambetti P, Sy MS, Brown DR, Jones IM. Copper refolding of prion protein. Biochem Biophys Res Commun 2000; 276:1217-24. [PMID: 11027613 DOI: 10.1006/bbrc.2000.3604] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that normal mouse prion protein (MoPrP) binds copper ions during protein refolding and acquires antioxidant activity. In this report, we probe the structure of the copper refolded form of MoPrP to determine how copper binding alters the secondary and tertiary features of the protein. Circular dichroism showed that recombinant MoPrP prepared in the presence of copper (as Cu(++)) showed an increased signal in the 210-220 nm range of the spectrum. Changes in protein conformation were localised to the N-terminal region of MoPrP using a panel of antibodies to assess epitope accessibility. The copper refolded recombinant prion protein had reduced proteinase K (PK) sensitivity when compared to the non-copper liganded form. Reduced PK sensitivity was not due to aggregation however as high resolution electron microscopy showed a homogenous preparation with little aggregate when compared to the non-copper form. Finally, disruption of the single disulphide linkage in MoPrP significantly diminished the antioxidant activity of the copper refolded form suggesting that activity was not solely dependent on bound copper but also on a conformation enabled by the formation of the disulphide bond.
Collapse
Affiliation(s)
- B S Wong
- School of Animal and Microbial Sciences, Reading, RG6 6AH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Wong BS, Pan T, Liu T, Li R, Petersen RB, Jones IM, Gambetti P, Brown DR, Sy MS. Prion disease: A loss of antioxidant function? Biochem Biophys Res Commun 2000; 275:249-52. [PMID: 10964653 DOI: 10.1006/bbrc.2000.3158] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prion disease, a neurodegenerative disorder, is widely believed to arise when a cellular prion protein (PrP(C)) undergoes conformational changes to a pathogenic isoform (PrP(Sc)). Recent data have shown PrP(C) to be copper binding and that it acquires antioxidant activity as a result. This enzymatic property is dependent mainly on copper binding to the octarepeats region. In normal human brain and human prion disease, there is a population of brain-derived PrP that has been truncated at the N-terminal which encompassed the octarepeats region. Increasing evidences have suggested imbalances of metal-catalyzed reactions to be the common denominator for several neurodegenerative diseases. Therefore, we propose that one of the causative factors for prion disease could be due to the imbalances in metal-catalyzed reactions resulting in an alteration of the antioxidant function. These result in an increase level of oxidative stress and, as such, trigger the neurodegenerative cascade.
Collapse
Affiliation(s)
- B S Wong
- Division of Neuropathology, Institute of Pathology, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Hasegawa K, Ono TA, Noguchi T. Vibrational Spectra and Ab Initio DFT Calculations of 4-Methylimidazole and Its Different Protonation Forms: Infrared and Raman Markers of the Protonation State of a Histidine Side Chain. J Phys Chem B 2000. [DOI: 10.1021/jp000157d] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
194
|
Waggoner DJ, Drisaldi B, Bartnikas TB, Casareno RL, Prohaska JR, Gitlin JD, Harris DA. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem 2000; 275:7455-8. [PMID: 10713045 DOI: 10.1074/jbc.275.11.7455] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are neurodegenerative disorders that result from conformational transformation of a normal cell surface glycoprotein, PrP(C), into a pathogenic isoform, PrP(Sc). Although the normal physiological function of PrP(C) has remained enigmatic, the recent observation that the protein binds copper ions with micromolar affinity suggests a possible role in brain copper metabolism. In this study, we have used mice that express 0, 1, and 10 times the normal level of PrP to assess the effect of PrP expression level on the amount of brain copper and on the properties of two brain cuproenzymes. Using mass spectrometry, we find that the amount of ionic copper in subcellular fractions from brain is similar in all three lines of mice. In addition, the enzymatic activities of Cu-Zn superoxide dismutase and cytochrome c oxidase in brain extracts are similar in these groups of animals, as is the incorporation of (64)Cu into Cu-Zn superoxide dismutase both in cultured cerebellar neurons and in vivo. Our results differ from those of another set of published studies, and they require a re-evaluation of the role of PrP(C) in copper metabolism.
Collapse
Affiliation(s)
- D J Waggoner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, Haswell SJ. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 2000; 19:1180-6. [PMID: 10716918 PMCID: PMC305659 DOI: 10.1093/emboj/19.6.1180] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prion protein (PrP) binds copper and has antioxidant activity enhancing the survival of neurones in culture. The ability of the PrP to bind other cations was tested and it was found that only manganese could substitute for copper. Although initially manganese-loaded PrP exhibited similar structure and activity to copper-loaded PrP, after aging, manganese-loaded PrP became proteinase resistant and lost function. It was also found that manganese could be incorporated into PrP expressed by astrocytes and that this PrP was partially proteinase resistant. These results show that it is possible to generate proteinase-resistant PrP from cells and suggest a possible mechanism for the formation of the scrapie isoform of the PrP as generated in sporadic prion disease.
Collapse
Affiliation(s)
- D R Brown
- Department of Biochemistry, Tennis Court Road, Cambridge University, Cambridge CB2 1QW.
| | | | | | | | | | | | | |
Collapse
|
196
|
Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 2000; 9:332-43. [PMID: 10716185 PMCID: PMC2144551 DOI: 10.1110/ps.9.2.332] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.
Collapse
Affiliation(s)
- R M Whittal
- Department of Pharmaceutical Chemistry, University of California San Francisco, 94143-0446, USA
| | | | | | | | | | | |
Collapse
|