151
|
Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS. DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology (Reading) 2004; 150:865-875. [PMID: 15073296 DOI: 10.1099/mic.0.26218-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS201) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system ofMycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His6-tagged proteins fromEscherichia coli. DevS201underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg2+-dependent manner. Chemical stability analysis and site-directed mutagenesis implicated the highly conserved residues His395and Asp54as the sites of phosphorylation in DevS and DevR, respectively. Mutations in Asp8and Asp9residues, postulated to form the acidic Mg2+-binding pocket, and the invariant Lys104of DevR, abrogated phosphoryl transfer from DevS201to DevR. DevR–DevS was thus established as a typical two-component regulatory system based on His-to-Asp phosphoryl transfer. Expression of theRv3134c–devR–devSoperon was induced at the RNA level in hypoxic cultures ofM. tuberculosisH37Rv and was associated with an increase in the level of DevR protein. However, in adevRmutant strain expressing the N-terminal domain of DevR, induction was observed at the level of RNA expression but not at that of protein. DevS was translated independently of DevR and induction ofdevStranscripts was not associated with an increase in protein level in either wild-type or mutant strains, reflecting differential regulation of this locus during hypoxia.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepanwita Dey
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Pant
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Taposh K Das
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
152
|
Kurokawa H, Lee DS, Watanabe M, Sagami I, Mikami B, Raman CS, Shimizu T. A redox-controlled molecular switch revealed by the crystal structure of a bacterial heme PAS sensor. J Biol Chem 2004; 279:20186-93. [PMID: 14982921 DOI: 10.1074/jbc.m314199200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAS domains, which have been identified in over 1100 proteins from all three kingdoms of life, convert various input stimuli into signals that propagate to downstream components by modifying protein-protein interactions. One such protein is the Escherichia coli redox sensor, Ec DOS, a phosphodiesterase that degrades cyclic adenosine monophosphate in a redox-dependent manner. Here we report the crystal structures of the heme PAS domain of Ec DOS in both inactive Fe(3+) and active Fe(2+) forms at 1.32 and 1.9 A resolution, respectively. The protein folds into a characteristic PAS domain structure and forms a homodimer. In the Fe(3+) form, the heme iron is ligated to a His-77 side chain and a water molecule. Heme iron reduction is accompanied by heme-ligand switching from the water molecule to a side chain of Met-95 from the FG loop. Concomitantly, the flexible FG loop is significantly rigidified, along with a change in the hydrogen bonding pattern and rotation of subunits relative to each other. The present data led us to propose a novel redox-regulated molecular switch in which local heme-ligand switching may trigger a global "scissor-type" subunit movement that facilitates catalytic control.
Collapse
Affiliation(s)
- Hirofumi Kurokawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
153
|
Nakamura H, Kumita H, Imai K, Iizuka T, Shiro Y. ADP reduces the oxygen-binding affinity of a sensory histidine kinase, FixL: the possibility of an enhanced reciprocating kinase reaction. Proc Natl Acad Sci U S A 2004; 101:2742-6. [PMID: 14970341 PMCID: PMC365691 DOI: 10.1073/pnas.0305795101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rhizobial FixL/FixJ system, a paradigm of heme-based oxygen sensors, belongs to the ubiquitous two-component signal transduction system. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue by using ATP and catalyzes the concomitant phosphoryl transfer to FixJ, but oxygen binding to the FixL heme moiety inactivates the kinase activity. Here we demonstrate that ADP acts as an allosteric effector, reducing the oxygen-binding affinity of the sensor domain in FixL when it is produced from ATP in the kinase reaction. The addition of ADP to a solution of purified wild-type FixL resulted in an approximately 4- to 5-fold decrease in oxygen-binding affinity in the presence of FixJ. In contrast, phosphorylation-deficient mutants, in which the well conserved ATP-binding catalytic site of the kinase domain is impaired, showed no such allosteric effect. This discovery casts light on the significance of homodimerization of two-component histidine kinases; ADP, generated in the phosphorylation reaction in one subunit of the homodimer, enhances the histidine kinase activity of the other, analogous to a two-cylinder reciprocating engine by reducing the ligand-binding affinity.
Collapse
Affiliation(s)
- Hiro Nakamura
- RIKEN Harima Institute/SPring-8, Mikazuki, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
154
|
Taguchi S, Matsui T, Igarashi J, Sasakura Y, Araki Y, Ito O, Sugiyama S, Sagami I, Shimizu T. Binding of Oxygen and Carbon Monoxide to a Heme-regulated Phosphodiesterase from Escherichia coli. J Biol Chem 2004; 279:3340-7. [PMID: 14612459 DOI: 10.1074/jbc.m301013200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-regulated phosphodiesterase, Ec DOS, is a redox sensor that uses the heme in its PAS domain to regulate catalysis. The rate of O(2) association (k(on)) with full-length Ec DOS is extremely slow at 0.0019 microM(-1) s(-1), compared with >9.5 microM(-1) s(-1) for 6-coordinated globin-type hemoproteins, as determined by the stopped-flow method. This rate is dramatically increased (up to 16-fold) in the isolated heme-bound PAS domain. Dissociation constants (K(d)) calculated from the kinetic parameters are 340 and 20 microm for the full-length wild-type enzyme and its isolated PAS domain, respectively. Mutations at Met-95 in the isolated PAS domain, which may be a heme axial ligand in the Fe(II) complex, lead to a further increase in the k(on) value by more than 30-fold, and consequently, a decrease in the K(d) value to less than 1 microM. The k(on) value for CO binding to the full-length wild-type enzyme is also very low (0.00081 microM(-1) s(-1)). The kinetics of CO binding to the isolated PAS domain and its mutants are similar to those observed for O(2). However, the K(d) values for CO are considerably lower than those for O(2).
Collapse
Affiliation(s)
- Sue Taguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
The recently discovered globin-coupled sensors (GCSs) are heme-containing two-domain transducers distinct from the PAS domain superfamily. We have identified an additional 22 GCSs with varying multi-domain C-terminal transmitters through a search of the complete and incomplete microbial genome datasets. The GCS superfamily is composed of two major subfamilies: the aerotactic and gene regulators. We postulate the existence of protoglobin in Archaea as the predecessor to the chimeric GCS.
Collapse
Affiliation(s)
- Tracey Allen K Freitas
- Department of Microbiology, Snyder Hall 207, 2538 The Mall, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
156
|
Yoshimura T, Sagami I, Sasakura Y, Shimizu T. Relationships between heme incorporation, tetramer formation, and catalysis of a heme-regulated phosphodiesterase from Escherichia coli: a study of deletion and site-directed mutants. J Biol Chem 2003; 278:53105-11. [PMID: 14551206 DOI: 10.1074/jbc.m304408200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.
Collapse
Affiliation(s)
- Tokiko Yoshimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
157
|
Rotsaert FAJ, Hallberg BM, de Vries S, Moenne-Loccoz P, Divne C, Renganathan V, Gold MH. Biophysical and structural analysis of a novel heme B iron ligation in the flavocytochrome cellobiose dehydrogenase. J Biol Chem 2003; 278:33224-31. [PMID: 12796496 DOI: 10.1074/jbc.m302653200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fungal extracellular flavocytochrome cellobiose dehydrogenase (CDH) participates in lignocellulose degradation. The enzyme has a cytochrome domain connected to a flavin-binding domain by a peptide linker. The cytochrome domain contains a 6-coordinate low spin b-type heme with unusual iron ligands and coordination geometry. Wild type CDH is only the second example of a b-type heme with Met-His ligation, and it is the first example of a Met-His ligation of heme b where the ligands are arranged in a nearly perpendicular orientation. To investigate the ligation further, Met65 was replaced with a histidine to create a bis-histidyl ligated iron typical of b-type cytochromes. The variant is expressed as a stable 90-kDa protein that retains the flavin domain catalytic reactivity. However, the ability of the mutant to reduce external one-electron acceptors such as cytochrome c is impaired. Electrochemical measurements demonstrate a decrease in the redox midpoint potential of the heme by 210 mV. In contrast to the wild type enzyme, the ferric state of the protoheme displays a mixed low spin/high spin state at room temperature and low spin character at 90 K, as determined by resonance Raman spectroscopy. The wild type cytochrome does not bind CO, but the ferrous state of the variant forms a CO complex, although the association rate is very low. The crystal structure of the M65H cytochrome domain has been determined at 1.9 A resolution. The variant structure confirms a bis-histidyl ligation but reveals unusual features. As for the wild type enzyme, the ligands have a nearly perpendicular arrangement. Furthermore, the iron is bound by imidazole N delta 1 and N epsilon 2 nitrogen atoms, rather than the typical N epsilon 2/N epsilon 2 coordination encountered in bis-histidyl ligated heme proteins. To our knowledge, this is the first example of a bis-histidyl N delta 1/N epsilon 2-coordinated protoporphyrin IX iron.
Collapse
Affiliation(s)
- Frederik A J Rotsaert
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering at Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Igarashi J, Sato A, Kitagawa T, Sagami I, Shimizu T. CO binding study of mouse heme-regulated eIF-2alpha kinase: kinetics and resonance Raman spectra. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1650:99-104. [PMID: 12922173 DOI: 10.1016/s1570-9639(03)00205-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heme-regulated eukaryotic initiation factor (eIF)-2alpha kinase (HRI) regulates the synthesis of globin chains in reticulocytes with heme availability. In the present study, CO binding kinetics to the 6-coordinated Fe(II) heme of the amino-terminal domain of mouse HRI and resonance Raman spectra of the Fe(II)-CO complex are examined to probe the character of the heme environment. The CO association rate constant, k(on)', and CO dissociation rate constant, k(off), were 0.0029 microM(-1)s(-1) and 0.003 s(-1), respectively. These values are very slow compared with those of mouse neuroglobin and sperm whale myoglobin, while the k(off) value of HRI was close to those of the 6-coordinated hemoglobins from Chlamydomonas and barley (0.0022 and 0.0011 s(-1)). The dissociation rate constant of an endogenous ligand, which occurs prior to CO association, was 18.3 s(-1), which was lower than those (197 and 47 s(-1)) of the same 6-coordinated hemoglobins. Resonance Raman spectra suggest that the Fe-C-O adopts an almost linear and upright structure and that the bound CO interacts only weakly with nearby amino acid residues.
Collapse
Affiliation(s)
- Jotaro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
159
|
Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, Moens L. A globin in the nucleus! J Biol Chem 2003; 278:30417-20. [PMID: 12796507 DOI: 10.1074/jbc.c300203200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoglobin and neuroglobin are recently discovered members of the globin family. In situ hybridization localized neuroglobin mainly in brain and retina, while cytoglobin was expressed ubiquitously in all analyzed tissues. In the present study, polyclonal antibodies were raised against both proteins and the distribution of them was studied by immunocytochemistry at tissue and subcellular level. Cytoglobin immunoreactivity was uniformly distributed and found in all tissues studied. At the subcellular level, cytoglobin immunoreactivity was exclusively detected in the cell nucleus. In contrast, neuroglobin immunoreactivity was detected in specific brain regions with varying intensities and in the islet of Langerhans in the pancreas. The immunoreactivity was restricted to the cytoplasm of neurons and endocrine beta cells. The nuclear localization of cytoglobin opens new perspectives for possible function(s) of globin-folded proteins as transcriptional regulators.
Collapse
Affiliation(s)
- Eva Geuens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
160
|
Aldridge P, Paul R, Goymer P, Rainey P, Jenal U. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 2003; 47:1695-708. [PMID: 12622822 DOI: 10.1046/j.1365-2958.2003.03401.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several members of the two-component signal transduction family have been implicated in the control of polar development in Caulobacter crescentus: PleC and DivJ, two polarly localized histidine sensor kinases; and the response regulators DivK and PleD. The PleD protein was shown previously to be required during the swarmer-to-stalked cell transition for flagellar ejection and efficient stalk biogenesis. Here, we present data indicating that PleD also controls the onset of motility and a cell density switch immediately preceding cell division. Constitutively active alleles of pleD or wspR, an orthologue from Pseudomonas fluorescens, almost completely suppressed C. crescentus motility and inhibited the increase in swarmer cell density during cell differentiation. The observation that these alleles also had a dominant-negative effect on motility in a pleC divJ and a pleC divK mutant background indicated that PleD is located downstream of the other components in the signal transduction cascade, which controls the activity of the flagellar motor. In addition, the presence of a constitutive pleD or wspR allele resulted in a doubling of the average stalk length. Together, this is consistent with a model in which the active form of PleD, PleD approximately P, negatively controls aspects of differentiation in the late predivisional cell, whereas it acts positively on polar development during the swarmer-to-stalked cell transition. In agreement with such a model, we found that DivJ, which localizes to the stalked pole during cell differentiation, positively controlled the in vivo phosphorylation status of PleD, and the swarmer pole-specific PleC kinase modulated this status in a negative manner. Furthermore, domain switch experiments demonstrated that the WspR GGDEF output domain from P. fluorescens is active in C. crescentus, favouring a more general function for this novel signalling domain over a specific role such as DNA or protein interaction. Possible roles for PleD and its C-terminal output domain in modulating the polar cell surface of C. crescentus are discussed.
Collapse
Affiliation(s)
- Phillip Aldridge
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
161
|
Youn H, Kerby RL, Roberts GP. The role of the hydrophobic distal heme pocket of CooA in ligand sensing and response. J Biol Chem 2003; 278:2333-40. [PMID: 12433917 DOI: 10.1074/jbc.m210825200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA from Rhodospirillum rubrum is a heme-containing transcriptional activator that becomes activated only upon binding CO. The basis for this specificity has been probed in a CooA variant, termed DeltaP3R4 CooA, lacking two residues adjacent to the Pro(2) heme ligand, which weakens that ligand. DeltaP3R4 CooA can bind imidazole and CN(-), as well as CO, and form a 6-coordinate low spin adduct with each. However, in contrast to the case with CO, imidazole and CN(-) do not stimulate the DNA binding activity of DeltaP3R4 CooA. This result indicates that the CO-specific activation of CooA is not merely the result of creation of a 6-coordinate CooA adduct but that there must be another element to this response. One feature of CooA activation is modest repositioning of the C-helices upon CO binding, so we altered a portion of the C-helix (residues Ile(113) and Leu(116)) located near the heme-bound CO in wild type CooA, and we investigated the effect on CO-specific activation. Surprisingly, the sizes of Ile(113) and/or Leu(116) positions are not critical for CooA activation by CO, disproving a precise interaction between these residues and the CO-bound heme as a basis for the CO activation mechanism and CO ligand specificity. In contrast, hydrophobic residues at these positions contribute to the activation. Some CooA variants altered at these positions in the background of DeltaP3R4 were also found to show low but reproducible activation in response to imidazole binding to the heme. A model for the role of hydrophobicity in CooA activation and specificity is suggested.
Collapse
Affiliation(s)
- Hwan Youn
- Department of Bacteriology, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
162
|
Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, McKnight SL. NPAS2: a gas-responsive transcription factor. Science 2002; 298:2385-7. [PMID: 12446832 DOI: 10.1126/science.1078456] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the regulation of circadian rhythm. Here we show that both PAS domains of NPAS2 bind heme as a prosthetic group and that the heme status controls DNA binding in vitro. NPAS2-BMAL1 heterodimers, existing in either the apo (heme-free) or holo (heme-loaded) state, bound DNA avidly under favorably reducing ratios of the reduced and oxidized forms of nicotinamide adenine dinucleotide phosphate. Low micromolar concentrations of carbon monoxide inhibited the DNA binding activity of holo-NPAS2 but not that of apo-NPAS2. Upon exposure to carbon monoxide, inactive BMAL1 homodimers were formed at the expense of NPAS2-BMAL1 heterodimers. These results indicate that the heterodimerization of NPAS2, and presumably the expression of its target genes, are regulated by a gas through the heme-based sensor described here.
Collapse
Affiliation(s)
- Elhadji M Dioum
- Departments of Biochemistry and Plant Biology and Plant Biotechnology Center, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
163
|
Affiliation(s)
- Lynn Hancock
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
164
|
Gomelsky M, Klug G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 2002; 27:497-500. [PMID: 12368079 DOI: 10.1016/s0968-0004(02)02181-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
Collapse
Affiliation(s)
- Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA.
| | | |
Collapse
|
165
|
Liebl U, Bouzhir-Sima L, Negrerie M, Martin JL, Vos MH. Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: general regulatory implications for heme-based sensors. Proc Natl Acad Sci U S A 2002; 99:12771-6. [PMID: 12271121 PMCID: PMC130535 DOI: 10.1073/pnas.192311699] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Indexed: 11/18/2022] Open
Abstract
Heme-based oxygen sensors are part of ligand-specific two-component regulatory systems, which have both a relatively low oxygen affinity and a low oxygen-binding rate. To get insight into the dynamical aspects underlying these features and the ligand specificity of the signal transduction from the heme sensor domain, we used femtosecond spectroscopy to study ligand dynamics in the heme domains of the oxygen sensors FixL from Bradyrhizobium japonicum (FixLH) and Dos from Escherichia coli (DosH). The heme coordination with different ligands and the corresponding ground-state heme spectra of FixLH are similar to myoglobin (Mb). After photodissociation, the excited-state properties and ligand-rebinding kinetics are qualitatively similar for FixLH and Mb for CO and NO as ligands. In contrast to Mb, the transient spectra of FixLH after photodissociation of ligands are distorted compared with the ground-state difference spectra, indicating differences in the heme environment with respect to the unliganded state. This distortion is particularly marked for O(2). Strikingly, heme-O(2) recombination occurs with efficiency unprecedented for heme proteins, in approximately 5 ps for approximately 90% of the dissociated O(2). For DosH-O(2), which shows 60% sequence similarity to FixLH, but where signal detection and transmission presumably are quite different, a similarly fast recombination was found with an even higher yield. Altogether these results indicate that in these sensors the heme pocket acts as a ligand-specific trap. The general implications for the functioning of heme-based ligand sensors are discussed in the light of recent studies on heme-based NO and CO sensors.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optical Biosciences, Institut National de la Santé et de la Recherche Médicale U451, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7645, France
| | | | | | | | | |
Collapse
|
166
|
Youn H, Kerby RL, Thorsteinsson MV, Clark RW, Burstyn JN, Roberts GP. Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity. J Biol Chem 2002; 277:33616-23. [PMID: 12121986 DOI: 10.1074/jbc.m203684200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA is the CO-sensing transcriptional activator from Rhodospirillum rubrum, in which CO binding to its heme prosthetic group triggers a conformational change of CooA that allows the protein to bind its cognate target DNA sequence. By a powerful in vivo screening method following the simultaneous randomization of the codons for two C-helix residues, 113 and 116, near the distal heme pocket of CooA, we have isolated a series of novel CooA variants. In vivo, these show very high CO-independent activities (comparable with that of wild-type CooA in the presence of CO) and diminished CO-dependent activities. Sequence analysis showed that this group of variants commonly contains lysine at position 116 with a variety of residues at position 113. DNA-binding analysis of a representative purified variant, L116K CooA, revealed that this protein is competent to bind target DNA with K(d) values of 56 nm for Fe(III), 36 nm for Fe(II), and 121 nm for Fe(II)-CO CooA forms. Electron paramagnetic resonance and electronic absorption spectroscopies, combined with additional mutagenic studies, showed that L116K CooA has a new ligand replacing Pro(2) in both Fe(III) and Fe(II) states. The most plausible replacement ligand is the substituted lysine at position 116, so that the ligands of Fe(III) L116K CooA are Cys(75) and Lys(116) and those in the Fe(II) form are His(77) and Lys(116). A possible explanation for CO-independent activity in L116K CooA is that ligation of Lys(116) results in a repositioning of the C-helices at the CooA dimer interface. This result is consistent with that repositioning being an important aspect of the activation of wild-type CooA by CO.
Collapse
Affiliation(s)
- Hwan Youn
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
167
|
Sato A, Sasakura Y, Sugiyama S, Sagami I, Shimizu T, Mizutani Y, Kitagawa T. Stationary and time-resolved resonance Raman spectra of His77 and Met95 mutants of the isolated heme domain of a direct oxygen sensor from Escherichia coli. J Biol Chem 2002; 277:32650-8. [PMID: 12080073 DOI: 10.1074/jbc.m204559200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.
Collapse
Affiliation(s)
- Akira Sato
- School of Advanced Sciences, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Sasakura Y, Hirata S, Sugiyama S, Suzuki S, Taguchi S, Watanabe M, Matsui T, Sagami I, Shimizu T. Characterization of a direct oxygen sensor heme protein from Escherichia coli. Effects of the heme redox states and mutations at the heme-binding site on catalysis and structure. J Biol Chem 2002; 277:23821-7. [PMID: 11970957 DOI: 10.1074/jbc.m202738200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protein containing a heme-binding PAS (PAS is from the protein names in which imperfect repeat sequences were first recognized: PER, ARNT, and SIM) domain from Escherichia coli has been implied a direct oxygen sensor (Ec DOS) enzyme. In the present study, we isolated cDNA for the Ec DOS full-length protein, expressed it in E. coli, and examined its structure-function relationships for the first time. Ec DOS was found to be tetrameric and was obtained as a 6-coordinate low spin ferric heme complex. Its alpha-helix content was calculated as 53% by CD spectroscopy. The redox potential of the heme was found to be +67 mV versus SHE. Mutation of His-77 of the isolated PAS domain abolished heme binding, whereas mutation of His-83 did not, suggesting that His-77 is one of the heme axial ligands. Ferrous, but not ferric, Ec DOS had phosphodiesterase (PDE) activity of nearly 0.15 min(-1) with cAMP, which was optimal at pH 8.5 in the presence of Mg(2+) and was strongly inhibited by CO, NO, and etazolate, a selective cAMP PDE inhibitor. Absorption spectral changes indicated tight CO and NO bindings to the ferrous heme. Therefore, the present study unequivocally indicates for the first time that Ec DOS exhibits PDE activity with cAMP and that this is regulated by the heme redox state.
Collapse
Affiliation(s)
- Yukie Sasakura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
Cellulose biosynthesis has recently been established for a variety of bacteria of diverse origin at the phenotypic and genetic levels. Novel regulatory pathways, which involve the second messenger bis-(3',5') cyclic diguanylic acid and several proteins with the GGDEF domain, participate in the regulation of cellulose biosynthesis. The biological significance of cellulose production in environmental, commensal and pathogenic bacteria is only punctually resolved. This review summarizes current knowledge on cellulose biosynthesis, its regulation and biological function.
Collapse
Affiliation(s)
- Ute Römling
- Department of Cell Biology and Immunology, Research group Clonal variability, Braunschweig, Germany.
| |
Collapse
|
170
|
Aono S, Kato T, Matsuki M, Nakajima H, Ohta T, Uchida T, Kitagawa T. Resonance Raman and ligand binding studies of the oxygen-sensing signal transducer protein HemAT from Bacillus subtilis. J Biol Chem 2002; 277:13528-38. [PMID: 11821422 DOI: 10.1074/jbc.m112256200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of Bacillus subtilis. The recombinant HemAT-Bs expressed in Escherichia coli was purified as the oxy form in which oxygen was bound to the ferrous heme. Oxygen binding and dissociation rate constants were determined to be k(on) = 32 microm(-1) s(-1) and k(off) = 23 s(-1), respectively, revealing that HemAT-Bs has a moderate oxygen affinity similar to that of sperm whale myoglobin (Mb). The rate constant for autoxidation at 37 degrees C was 0.06 h(-1), which is also close to that of Mb. Although the electronic absorption spectra of HemAT-Bs were similar to those of Mb, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. Oxygen-bound HemAT-Bs gave the nu(Fe-O(2)) band at a noticeably low frequency (560 cm(-1)), which suggests a unique hydrogen bonding between a distal amino acid residue and the proximal atom of the bound oxygen molecule. Deoxy HemAT-Bs gave the nu(Fe-His) band at a higher frequency (225 cm(-1)) than those of ordinary His-coordinated deoxy heme proteins. CO-bound HemAT-Bs gave the nu(Fe-CO) and nu(C-O) bands at 494 and 1964 cm(-1), respectively, which fall on the same nu(C-O) versus nu(Fe-CO) correlation line as that of Mb. Based on these results, the structural and functional properties of HemAT-Bs are discussed.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
171
|
Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW. MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 2001; 205:17-23. [PMID: 11728710 DOI: 10.1111/j.1574-6968.2001.tb10919.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
MHYT, a new conserved protein domain with a likely signaling function, is described. This domain consists of six transmembrane segments, three of which contain conserved methionine, histidine, and tyrosine residues that are projected to lie near the outer face of the cytoplasmic membrane. In Synechocystis sp. PCC6803, this domain forms the N-terminus of the sensor histidine kinase Slr2098. In Pseudomonas aeruginosa and several other organisms, the MHYT domain forms the N-terminal part of a three-domain protein together with previously described GGDEF and EAL domains, both of which have been associated with signal transduction due to their presence in likely signaling proteins. In Bacillus subtilis YkoW protein, an additional PAS domain is found between the MHYT and GGDEF domains. A ykoW null mutant of B. subtilis did not exhibit any growth alterations, consistent with a non-essential, signaling role of this protein. A model of the membrane topology of the MHYT domain indicates that its conserved residues could coordinate one or two copper ions, suggesting a role in sensing oxygen, CO, or NO.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | |
Collapse
|
172
|
Brody MS, Vijay K, Price CW. Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis. J Bacteriol 2001; 183:6422-8. [PMID: 11591687 PMCID: PMC100138 DOI: 10.1128/jb.183.21.6422-6428.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general stress response of Bacillus subtilis is controlled by the sigma(B) transcription factor, which is activated in response to diverse energy and environmental stresses. These two classes of stress are transmitted by separate signaling pathways which converge on the direct regulators of sigma(B), the RsbV anti-anti-sigma factor and the RsbW anti-sigma factor. The energy signaling branch involves the RsbP phosphatase, which dephosphorylates RsbV in order to trigger the general stress response. The rsbP structural gene lies downstream from rsbQ in a two-gene operon. Here we identify the RsbQ protein as a required positive regulator inferred to act in concert with the RsbP phosphatase. RsbQ bound RsbP in the yeast two-hybrid system, and a large in-frame deletion in rsbQ had the same phenotype as a null allele of rsbP-an inability to activate sigma(B) in response to energy stress. Genetic complementation studies indicated that this phenotype was not due to a polar effect of the rsbQ alteration on rsbP. The predicted rsbQ product is a hydrolase or acyltransferase of the alpha/beta fold superfamily, members of which catalyze a wide variety of reactions. Notably, substitutions in the presumed catalytic triad of RsbQ also abolished the energy stress response but had no detectable effect on RsbQ structure, synthesis, or stability. We conclude that the catalytic activity of RsbQ is an essential constituent of the energy stress signaling pathway.
Collapse
Affiliation(s)
- M S Brody
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
173
|
Taylor BL, Rebbapragada A, Johnson MS. The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli. Antioxid Redox Signal 2001; 3:867-79. [PMID: 11761333 DOI: 10.1089/15230860152665037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aer, the aerotaxis receptor in Escherichia coli, is a member of a novel class of flavoproteins that act as redox sensors. The internal energy of the cell is coupled to the redox state of the electron transport system, and this status is sensed by Aer(FAD). This is a more versatile sensory response system than if E. coli sensed oxygen per se. Energy-depleting conditions that decrease electron transport also alter the redox state of the electron transport system. Aer responds by sending a signal to the flagellar motor to change direction. The output of other sensory systems that utilize redox sensors is more commonly transcriptional regulation than a behavioral response. Analysis in silico showed Aer to be part of a superfamily of PAS domain proteins that sense the intracellular environment. In Aer, FAD binds to the PAS domain. By using site-specific mutagenesis, residues critical for FAD binding and sensory transduction were identified in the PAS domain. The PAS domain appears to interact with a linker region in the C-terminus. The linker region is a member of a HAMP domain family, which has signal transduction roles in other systems.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350, USA.
| | | | | |
Collapse
|
174
|
Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:35-63. [PMID: 11525385 DOI: 10.1016/s0079-6603(01)67024-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CooA, the heme-containing carbon monoxide (CO) sensor from the bacterium Rhodospirillum rubrum, is a transcriptional factor that activates expression of certain genes in response to CO. As with other heme proteins, CooA is unable to bind CO when the Fe heme is oxidized, consistent with the fact that some of the regulated gene products are oxygen-labile. Upon reduction, there is an unusual switch of protein ligands to the six-coordinate heme and the reduced heme is able to bind CO. CO binding stabilizes a conformation of the dimeric protein that allows sequence-specific DNA binding, and transcription is activated through contacts between CooA and RNA polymerase. CooA is therefore a novel redox sensor as well as a specific CO sensor. CooA is a homolog of catabolite responsive protein (CRP), whose transcriptionally active conformation has been known for some time. The recent solution of the crystal structure of the CO-free (transcriptionally inactive) form of CooA has allowed insights into the mechanism by which both proteins respond to their specific small-molecule effectors.
Collapse
Affiliation(s)
- G P Roberts
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
175
|
Hvitved AN, Trent JT, Premer SA, Hargrove MS. Ligand binding and hexacoordination in synechocystis hemoglobin. J Biol Chem 2001; 276:34714-21. [PMID: 11438545 DOI: 10.1074/jbc.m105175200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43).
Collapse
Affiliation(s)
- A N Hvitved
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
176
|
Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 2001; 203:11-21. [PMID: 11557134 DOI: 10.1111/j.1574-6968.2001.tb10814.x] [Citation(s) in RCA: 479] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The archetypal two-component signal transduction systems include a sensor histidine kinase and a response regulator, which consists of a receiver CheY-like domain and a DNA-binding domain. Sequence analysis of the sensor kinases and response regulators encoded in complete bacterial and archaeal genomes revealed complex domain architectures for many of them and allowed the identification of several novel conserved domains, such as PAS, GAF, HAMP, GGDEF, EAL, and HD-GYP. All of these domains are widely represented in bacteria, including 19 copies of the GGDEF domain and 17 copies of the EAL domain encoded in the Escherichia coli genome. In contrast, these novel signaling domains are much less abundant in bacterial parasites and in archaea, with none at all found in some archaeal species. This skewed phyletic distribution suggests that the newly discovered complexity of signal transduction systems emerged early in the evolution of bacteria, with subsequent massive loss in parasites and some horizontal dissemination among archaea. Only a few proteins containing these domains have been studied experimentally, and their exact biochemical functions remain obscure; they may include transformations of novel signal molecules, such as the recently identified cyclic diguanylate. Recent experimental data provide the first direct evidence of the participation of these domains in signal transduction pathways, including regulation of virulence genes and extracellular enzyme production in the human pathogens Bordetella pertussis and Borrelia burgdorferi and the plant pathogen Xanthomonas campestris. Gene-neighborhood analysis of these new domains suggests their participation in a variety of processes, from mercury and phage resistance to maintenance of virulence plasmids. It appears that the real picture of the complexity of phosphorelay signal transduction in prokaryotes is only beginning to unfold.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
177
|
Affiliation(s)
- G Alexandre
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | |
Collapse
|
178
|
Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M. Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria. Proc Natl Acad Sci U S A 2001; 98:9353-8. [PMID: 11481493 PMCID: PMC55424 DOI: 10.1073/pnas.161185598] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered prokaryotic signal transducer HemAT, which has been described in both Archaea and Bacteria, mediates aerotactic responses. The N-terminal regions of HemAT from the archaeon Halobacterium salinarum (HemAT-Hs) and from the Gram-positive bacterium Bacillus subtilis (HemAT-Bs) contain a myoglobin-like motif, display characteristic heme-protein absorption spectra, and bind oxygen reversibly. Recombinant HemAT-Hs and HemAT-Bs shorter than 195 and 176 residues, respectively, do not bind heme effectively. Sequence homology comparisons and three-dimensional modeling predict that His-123 is the proximal heme-binding residue in HemAT from both species. The work described here used site-specific mutagenesis and spectroscopy to confirm this prediction, thereby providing direct evidence for a functional domain of prokaryotic signal transducers that bind heme in a globin fold. We postulate that this domain is part of a globin-coupled sensor (GCS) motif that exists as a two-domain transducer having no similarity to the PER-ARNT-SIM (PAS)-domain superfamily transducers. Using the GCS motif, we have identified several two-domain sensors in a variety of prokaryotes. We have cloned, expressed, and purified two potential globin-coupled sensors and performed spectral analysis on them. Both bind heme and show myoglobin-like spectra. This observation suggests that the general function of GCS-type transducers is to bind diatomic oxygen and perhaps other gaseous ligands, and to transmit a conformational signal through a linked signaling domain.
Collapse
Affiliation(s)
- S Hou
- Departments of Microbiology and Chemistry, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105:683-94. [PMID: 11389837 DOI: 10.1016/s0092-8674(01)00380-4] [Citation(s) in RCA: 680] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice carrying a null mutation in the Period 1 (mPer1) gene were generated using embryonic stem cell technology. Homozygous mPer1 mutants display a shorter circadian period with reduced precision and stability. Mice deficient in both mPer1 and mPer2 do not express circadian rhythms. While mPER2 regulates clock gene expression at the transcriptional level, mPER1 is dispensable for the rhythmic RNA expression of mPer1 and mPer2 and may instead regulate mPER2 at a posttranscriptional level. Studies of clock-controlled genes (CCGs) reveal a complex pattern of regulation by mPER1 and mPER2, suggesting independent controls by the two proteins over some output pathways. Genes encoding key enzymes in heme biosynthesis are under circadian control and are regulated by mPER1 and mPER2. Together, our studies show that mPER1 and mPER2 have distinct and complementary roles in the mouse clock mechanism.
Collapse
Affiliation(s)
- B Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Thorsteinsson MV, Kerby RL, Youn H, Conrad M, Serate J, Staples CR, Roberts GP. Redox-mediated transcriptional activation in a CooA variant. J Biol Chem 2001; 276:26807-13. [PMID: 11359778 DOI: 10.1074/jbc.m102758200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA, the carbon monoxide-sensing transcription factor from Rhodospirillum rubrum, binds CO at a reduced (Fe(II)) heme moiety with resulting conformational changes that promote DNA binding. In this study, we report a variant of CooA, M124R, that is active in transcriptional activation in a redox-dependent manner. Where wild-type CooA is active only in the Fe(II) + CO form, M124R CooA is active in both Fe(II) + CO and Fe(III) forms. Analysis of the pH dependence of the activity of Fe(III) M124R CooA demonstrated that the activity was also coordination state-dependent with a five-coordinate, high-spin species identified as the active form and Cys(75) as the retained ligand. In contrast, the active Fe(II) + CO forms of both wild-type and M124R CooA are six-coordinate and low-spin with a protein ligand other than Cys(75), so that WT and Fe(III) M124R CooA are apparently achieving an active conformation despite two different heme coordination and ligation states. A hypothesis to explain these results is proposed. This study demonstrates the utility of CooA as a model system for the isolation of functionally interesting heme proteins.
Collapse
Affiliation(s)
- M V Thorsteinsson
- Departments of Bacteriology and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Anantharaman V, Koonin EV, Aravind L. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 2001; 307:1271-92. [PMID: 11292341 DOI: 10.1006/jmbi.2001.4508] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central cellular functions such as metabolism, solute transport and signal transduction are regulated, in part, via binding of small molecules by specialized domains. Using sensitive methods for sequence profile analysis and protein structure comparison, we exhaustively surveyed the protein sets from completely sequenced genomes for all occurrences of 21 intracellular small-molecule-binding domains (SMBDs) that are represented in at least two of the three major divisions of life (bacteria, archaea and eukaryotes). These included previously characterized domains such as PAS, GAF, ACT and ferredoxins, as well as three newly predicted SMBDs, namely the 4-vinyl reductase (4VR) domain, the NIFX domain and the 3-histidines (3H) domain. Although there are only a limited number of different superfamilies of these ancient SMBDs, they are present in numerous distinct proteins combined with various enzymatic, transport and signal-transducing domains. Most of the SMBDs show considerable evolutionary mobility and are involved in the generation of many lineage-specific domain architectures. Frequent re-invention of analogous architectures involving functionally related, but not homologous, domains was detected, such as, fusion of different SMBDs to several types of DNA-binding domains to form diverse transcription regulators in prokaryotes and eukaryotes. This is suggestive of similar selective forces affecting the diverse SMBDs and resulting in the formation of multidomain proteins that fit a limited number of functional stereotypes. Using the "guilt by association approach", the identification of SMBDs allowed prediction of functions and mode of regulation for a variety of previously uncharacterized proteins.
Collapse
Affiliation(s)
- V Anantharaman
- National Center for Biotechnology Information National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | | | | |
Collapse
|
182
|
Abstract
In recent years, an increasing number of proteins have been discovered which utilize heme cofactors to sense oxygen, carbon monoxide and nitric oxide. The identification and characterization of these proteins are revising our understanding of heme-mediated allostery first established in the early 1960s. Biochemical and structural studies are revealing new mechanisms for heme-driven conformational changes distinct from the classical hemoglobin model.
Collapse
Affiliation(s)
- M K Chan
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210-1173, USA.
| |
Collapse
|
183
|
Nakajima H, Honma Y, Tawara T, Kato T, Park SY, Miyatake H, Shiro Y, Aono S. Redox properties and coordination structure of the heme in the co-sensing transcriptional activator CooA. J Biol Chem 2001; 276:7055-61. [PMID: 11096066 DOI: 10.1074/jbc.m003972200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CO-sensing transcriptional activator CooA contains a six-coordinate protoheme as a CO sensor. Cys(75) and His(77) are assigned to the fifth ligand of the ferric and ferrous hemes, respectively. In this study, we carried out alanine-scanning mutagenesis and EXAFS analyses to determine the coordination structure of the heme in CooA. Pro(2) is thought to be the sixth ligand of the ferric and ferrous hemes in CooA, which is consistent with the crystal structure of ferrous CooA (Lanzilotta, W. N., Schuller, D. J., Thorsteinsson, M. V., Kerby, R. L., Roberts, G. P., and Poulos, T. L. (2000) Nat. Struct. Biol. 7, 876-880). CooA exhibited anomalous redox chemistry, i.e. hysteresis was observed in electrochemical redox titrations in which the observed reduction and oxidation midpoint potentials were -320 mV and -260 mV, respectively. The redox-controlled ligand exchange of the heme between Cys(75) and His(77) is thought to cause the difference between the reduction and oxidation midpoint potentials.
Collapse
Affiliation(s)
- H Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi-gun, Ishikawa 923-1292, Japan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Plant nonsymbiotic hemoglobins are hexacoordinate heme proteins found in all plants. Although expression is linked with hypoxic environmental conditions (Taylor, E. R., Nie, X. Z., Alexander, W. M., and Hill, R. D. (1994) Plant Mol. Biol. 24, 853-862), no discrete physiological function has yet been attributed to this family of proteins. The crystal structure of a nonsymbiotic hemoglobin from rice has recently been determined. The crystalline protein is homodimeric and hexacoordinate with two histidine side chains coordinating the heme iron atom. Despite the fact that the amino acids responsible for the subunit interface are relatively conserved among the nonsymbiotic hemoglobins, previous work suggests that this group of proteins might display variability in quaternary structure (Duff, S. M. G., Wittenberg, J. B., and Hill, R. D. (1997) J. Biol. Chem. 272, 16746-16752; Arredondo-Peter, R., Hargrove, M. S., Sarath, G., Moran, J. F., Lohrman, J., Olson, J. S., and Klucas, R. V. (1997) Plant Physiol. 115, 1259-1266). Analytical ultracentrifugation and size exclusion high pressure liquid chromatography were used to investigate the quaternary structure of rice nonsymbiotic hemoglobin at various states of ligation and oxidation. Additionally, site-directed mutagenesis was used to test the role of several interface amino acids in dimer formation and ligand binding. Results were analyzed in light of possible physiological functions and indicate that the plant nonsymbiotic hemoglobins are not oxygen transport proteins but more closely resemble known oxygen sensors.
Collapse
Affiliation(s)
- M D Goodman
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
185
|
Thorsteinsson MV, Kerby RL, Conrad M, Youn H, Staples CR, Lanzilotta WN, Poulos TJ, Serate J, Roberts GP. Characterization of variants altered at the N-terminal proline, a novel heme-axial ligand in CooA, the CO-sensing transcriptional activator. J Biol Chem 2000; 275:39332-8. [PMID: 11007793 DOI: 10.1074/jbc.m007691200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA, the carbon monoxide-sensing transcription factor from Rhodospirillum rubrum, binds CO through a heme moiety resulting in conformational changes that promote DNA binding. The crystal structure shows that the N-terminal Pro(2) of one subunit (Met(1) is removed post-translationally) provides one ligand to the heme of the other subunit in the CooA homodimer. To determine the importance of this novel ligand and the contiguous residues to CooA function, we have altered the N terminus through two approaches: site-directed mutagenesis and regional randomization, and characterized the resulting CooA variants. While Pro(2) appears to be optimal for CooA function, it is not essential and a variety of studied variants at this position have substantial CO-sensing function. Surprisingly, even alterations that add a residue (where Pro(2) is replaced by Met(1)-Tyr(2), for example) accumulate heme-containing CooA with functional properties that are similar to those of wild-type CooA. Other nearby residues, such as Phe(5) and Asn(6) appear to be important for either the structural integrity or the function of CooA. These results are contrasted with those previously reported for alteration of the His(77) ligand on the opposite side of the heme.
Collapse
Affiliation(s)
- M V Thorsteinsson
- Department of Bacteriology and the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
A flash photolysis method is described for analyzing ligand binding to the new and growing group of hemoglobins which are hexacoordinate in the unligated, ferrous state. Simple analysis of a two exponential fit to time courses for CO rebinding at varying CO concentrations yields rate constants for formation and dissociation of the hexacoordinate complex, and the bimolecular rate constant for CO binding. This method was tested with a nonsymbiotic plant hemoglobin from rice for which these values had not previously been determined. For this protein, dissociation and rebinding of the hexacoordinating amino acid side chain, His(73), is rapid and similar to the rate of CO binding at high CO concentrations. These results indicate that hexacoordination must be taken into account when evaluating the affinity of hexacoordinate hemoglobins for ligands.
Collapse
Affiliation(s)
- M S Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|