151
|
Loderer C, Jonna VR, Crona M, Rozman Grinberg I, Sahlin M, Hofer A, Lundin D, Sjöberg BM. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover. J Biol Chem 2017; 292:19044-19054. [PMID: 28972190 PMCID: PMC5704485 DOI: 10.1074/jbc.m117.806331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.
Collapse
Affiliation(s)
- Christoph Loderer
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| | | | - Mikael Crona
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Inna Rozman Grinberg
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Margareta Sahlin
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Anders Hofer
- the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Daniel Lundin
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Britt-Marie Sjöberg
- From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and
| |
Collapse
|
152
|
O'Brien E, Holt ME, Thompson MK, Salay LE, Ehlinger AC, Chazin WJ, Barton JK. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. Science 2017; 355:355/6327/eaag1789. [PMID: 28232525 DOI: 10.1126/science.aag1789] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023]
Abstract
DNA charge transport chemistry offers a means of long-range, rapid redox signaling. We demonstrate that the [4Fe4S] cluster in human DNA primase can make use of this chemistry to coordinate the first steps of DNA synthesis. Using DNA electrochemistry, we found that a change in oxidation state of the [4Fe4S] cluster acts as a switch for DNA binding. Single-atom mutations that inhibit this charge transfer hinder primase initiation without affecting primase structure or polymerization. Generating a single base mismatch in the growing primer duplex, which attenuates DNA charge transport, inhibits primer truncation. Thus, redox signaling by [4Fe4S] clusters using DNA charge transport regulates primase binding to DNA and illustrates chemistry that may efficiently drive substrate handoff between polymerases during DNA replication.
Collapse
Affiliation(s)
- Elizabeth O'Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marilyn E Holt
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew K Thompson
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren E Salay
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Aaron C Ehlinger
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
153
|
Zhang H, Wu W, Mo Y. Study of proton-coupled electron transfer (PCET) with four explicit diabatic states at the ab initio level. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
154
|
Alcaide B, Almendros P, Aparicio B, Lázaro-Milla C, Luna A, Faza ON. Gold-Photoredox-Cocatalyzed Tandem Oxycyclization/Coupling Sequence of Allenols and Diazonium Salts with Visible Light Mediation. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700598] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas; IQOG-CSIC; Juan de la Cierva 3 28006 Madrid Spain
| | - Borja Aparicio
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Amparo Luna
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Facultade de Ciencias; Universidade de Vigo; Campus as Lagoas 32004 Ourense Spain
| |
Collapse
|
155
|
Zhang M, Wang L, Zhong D. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys 2017; 632:158-174. [PMID: 28802828 DOI: 10.1016/j.abb.2017.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Photolyase, a flavoenzyme containing flavin adenine dinucleotide (FAD) molecule as a catalytic cofactor, repairs UV-induced DNA damage of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproduct using blue light. The FAD cofactor, conserved in the whole protein superfamily of photolyase/cryptochromes, adopts a unique folded configuration at the active site that plays a critical functional role in DNA repair. Here, we review our comprehensive characterization of the dynamics of flavin cofactor and its repair photocycles by different classes of photolyases on the most fundamental level. Using femtosecond spectroscopy and molecular biology, significant advances have recently been made to map out the entire dynamical evolution and determine actual timescales of all the catalytic processes in photolyases. The repair of CPD reveals seven electron-transfer (ET) reactions among ten elementary steps by a cyclic ET radical mechanism through bifurcating ET pathways, a direct tunneling route mediated by the intervening adenine and a two-step hopping path bridged by the intermediate adenine from the cofactor to damaged DNA, through the conserved folded flavin at the active site. The unified, bifurcated ET mechanism elucidates the molecular origin of various repair quantum yields of different photolyases from three life kingdoms. For 6-4 photoproduct repair, a similar cyclic ET mechanism operates and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases is revealed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
156
|
Nick TU, Ravichandran KR, Stubbe J, Kasanmascheff M, Bennati M. Spectroscopic Evidence for a H Bond Network at Y 356 Located at the Subunit Interface of Active E. coli Ribonucleotide Reductase. Biochemistry 2017. [PMID: 28640584 DOI: 10.1021/acs.biochem.7b00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction catalyzed by E. coli ribonucleotide reductase (RNR) composed of α and β subunits that form an active α2β2 complex is a paradigm for proton-coupled electron transfer (PCET) processes in biological transformations. β2 contains the diferric tyrosyl radical (Y122·) cofactor that initiates radical transfer (RT) over 35 Å via a specific pathway of amino acids (Y122· ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2). Experimental evidence exists for colinear and orthogonal PCET in α2 and β2, respectively. No mechanistic model yet exists for the PCET across the subunit (α/β) interface. Here, we report unique EPR spectroscopic features of Y356·-β, the pathway intermediate generated by the reaction of 2,3,5-F3Y122·-β2/CDP/ATP with wt-α2, Y731F-α2, or Y730F-α2. High field EPR (94 and 263 GHz) reveals a dramatically perturbed g tensor. [1H] and [2H]-ENDOR reveal two exchangeable H bonds to Y356·: a moderate one almost in-plane with the π-system and a weak one. DFT calculation on small models of Y· indicates that two in-plane, moderate H bonds (rO-H ∼1.8-1.9 Å) are required to reproduce the gx value of Y356· (wt-α2). The results are consistent with a model, in which a cluster of two, almost symmetrically oriented, water molecules provide the two moderate H bonds to Y356· that likely form a hydrogen bond network of water molecules involved in either the reversible PCET across the subunit interface or in H+ release to the solvent during Y356 oxidation.
Collapse
Affiliation(s)
- Thomas U Nick
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Kanchana R Ravichandran
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Müge Kasanmascheff
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany.,Department of Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
157
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
158
|
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase. Essays Biochem 2017; 61:281-292. [PMID: 28487404 DOI: 10.1042/ebc20160072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'-deoxynucleotides using a radical mechanism. Each turnover requires radical transfer from an assembled diferric tyrosyl radical (Y•) cofactor to the enzyme active site over 35 Å away. This unprecedented reaction occurs via an amino acid radical hopping pathway spanning two protein subunits. To study the mechanism of radical transport in RNR, a suite of biochemical approaches have been developed, such as site-directed incorporation of unnatural amino acids with altered electronic properties and photochemical generation of radical intermediates. The resulting variant RNRs have been investigated using a variety of time-resolved physical techniques, including transient absorption and stopped-flow UV-Vis spectroscopy, as well as rapid freeze-quench EPR, ENDOR, and PELDOR spectroscopic methods. The data suggest that radical transport occurs via proton-coupled electron transfer (PCET) and that the protein structure has evolved to manage the proton and electron transfer co-ordinates in order to prevent 'off-pathway' reactivity and build-up of oxidised intermediates. Thus, precise design and control over the factors that govern PCET is key to enabling reversible and long-range charge transport by amino acid radicals in RNR.
Collapse
|
159
|
Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D'Angiolella V, Myers WK, Domene C, Flashman E, Hammond EM. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Mol Cell 2017; 66:206-220.e9. [PMID: 28416140 PMCID: PMC5405111 DOI: 10.1016/j.molcel.2017.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target. RRM2B is induced in response to hypoxia in both cell models and patient datasets RRM2B retains activity in hypoxic conditions and is the favored RNR subunit in hypoxia Loss of RRM2B has detrimental consequences for cell fate, specifically in hypoxia RRM2B depletion enhanced hypoxic-specific apoptosis and increased radiosensitivity
Collapse
Affiliation(s)
- Iosifina P Foskolou
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Christian Jorgensen
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Monica M Olcina
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hanna Tarhonskaya
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Bauke Haisma
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Carmen Domene
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
160
|
Lin Q, Parker MJ, Taguchi AT, Ravichandran K, Kim A, Kang G, Shao J, Drennan CL, Stubbe J. Glutamate 52-β at the α/β subunit interface of Escherichia coli class Ia ribonucleotide reductase is essential for conformational gating of radical transfer. J Biol Chem 2017; 292:9229-9239. [PMID: 28377505 DOI: 10.1074/jbc.m117.783092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleoside diphosphate substrates (S) to deoxynucleotides with allosteric effectors (e) controlling their relative ratios and amounts, crucial for fidelity of DNA replication and repair. Escherichia coli class Ia RNR is composed of α and β subunits that form a transient, active α2β2 complex. The E. coli RNR is rate-limited by S/e-dependent conformational change(s) that trigger the radical initiation step through a pathway of 35 Å across the subunit (α/β) interface. The weak subunit affinity and complex nucleotide-dependent quaternary structures have precluded a molecular understanding of the kinetic gating mechanism(s) of the RNR machinery. Using a docking model of α2β2 created from X-ray structures of α and β and conserved residues from a new subclassification of the E. coli Ia RNR (Iag), we identified and investigated four residues at the α/β interface (Glu350 and Glu52 in β2 and Arg329 and Arg639 in α2) of potential interest in kinetic gating. Mutation of each residue resulted in loss of activity and with the exception of E52Q-β2, weakened subunit affinity. An RNR mutant with 2,3,5-trifluorotyrosine radical (F3Y122•) replacing the stable Tyr122• in WT-β2, a mutation that partly overcomes conformational gating, was placed in the E52Q background. Incubation of this double mutant with His6-α2/S/e resulted in an RNR capable of catalyzing pathway-radical formation (Tyr356•-β2), 0.5 eq of dCDP/F3Y122•, and formation of an α2β2 complex that is isolable in pulldown assays over 2 h. Negative stain EM images with S/e (GDP/TTP) revealed the uniformity of the α2β2 complex formed.
Collapse
Affiliation(s)
- Qinghui Lin
- From the Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China and
| | | | | | | | | | | | - Jimin Shao
- From the Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China and
| | - Catherine L Drennan
- the Departments of Chemistry and .,Biology, and.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
161
|
Gong ZL, Deng LY, Zhong YW, Yao J. Anion-regulated electronic communication in a cyclometalated diruthenium complex with a urea bridge. Phys Chem Chem Phys 2017; 19:8902-8907. [PMID: 28294210 DOI: 10.1039/c6cp08019g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined study of electrochemical measurements, intervalence charge transfer analysis, and DFT calculations suggests that the degree of urea-mediated electronic coupling between two cyclometalated ruthenium sites is enhanced by the coordination of urea with Br- or Cl-via hydrogen bonding. In contrast, the redox waves of the diruthenium complex become highly irreversible in the presence of relatively strong basic anions such as H2PO4-, F-, or OAc-. This work demonstrates that the anion-urea interaction can be employed to regulate the electronic coupling and electron transfer between redox-active sites, suggesting the potential applications of the urea-functionalized diruthenium complex in anion sensing and stimuli-responsive molecular electronics.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Li-Ye Deng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
162
|
Ravichandran KR, Zong AB, Taguchi AT, Nocera DG, Stubbe J, Tommos C. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. J Am Chem Soc 2017; 139:2994-3004. [PMID: 28171730 DOI: 10.1021/jacs.6b11011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox-active tyrosines (Ys) play essential roles in enzymes involved in primary metabolism including energy transduction and deoxynucleotide production catalyzed by ribonucleotide reductases (RNRs). Thermodynamic characterization of Ys in solution and in proteins remains a challenge due to the high reduction potentials involved and the reactive nature of the radical state. The structurally characterized α3Y model protein has allowed the first determination of formal reduction potentials (E°') for a Y residing within a protein (Berry, B. W.; Martı́nez-Rivera, M. C.; Tommos, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9739-9743). Using Schultz's technology, a series of fluorotyrosines (FnY, n = 2 or 3) was site-specifically incorporated into α3Y. The global protein properties of the resulting α3(3,5)F2Y, α3(2,3,5)F3Y, α3(2,3)F2Y and α3(2,3,6)F3Y variants are essentially identical to those of α3Y. A protein film square-wave voltammetry approach was developed to successfully obtain reversible voltammograms and E°'s of the very high-potential α3FnY proteins. E°'(pH 5.5; α3FnY(O•/OH)) spans a range of 1040 ± 3 mV to 1200 ± 3 mV versus the normal hydrogen electrode. This is comparable to the potentials of the most oxidizing redox cofactors in nature. The FnY analogues, and the ability to site-specifically incorporate them into any protein of interest, provide new tools for mechanistic studies on redox-active Ys in proteins and on functional and aberrant hole-transfer reactions in metallo-enzymes. The former application is illustrated here by using the determined α3FnY ΔE°'s to model the thermodynamics of radical-transfer reactions in FnY-RNRs and to experimentally test and support the key prediction made.
Collapse
Affiliation(s)
| | - Allan B Zong
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | - Cecilia Tommos
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
163
|
Celis AI, Gauss GH, Streit BR, Shisler K, Moraski GC, Rodgers KR, Lukat-Rodgers GS, Peters JW, DuBois JL. Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates in Coproheme Decarboxylase (HemQ). J Am Chem Soc 2017; 139:1900-1911. [PMID: 27936663 PMCID: PMC5348300 DOI: 10.1021/jacs.6b11324] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coproheme decarboxylase catalyzes two sequential oxidative decarboxylations with H2O2 as the oxidant, coproheme III as substrate and cofactor, and heme b as the product. Each reaction breaks a C-C bond and results in net loss of hydride, via steps that are not clear. Solution and solid-state structural characterization of the protein in complex with a substrate analog revealed a highly unconventional H2O2-activating distal environment with the reactive propionic acids (2 and 4) on the opposite side of the porphyrin plane. This suggested that, in contrast to direct C-H bond cleavage catalyzed by a high-valent iron intermediate, the coproheme oxidations must occur through mediating amino acid residues. A tyrosine that hydrogen bonds to propionate 2 in a position analogous to the substrate in ascorbate peroxidase is essential for both decarboxylations, while a lysine that salt bridges to propionate 4 is required solely for the second. A mechanism is proposed in which propionate 2 relays an oxidizing equivalent from a coproheme compound I intermediate to the reactive deprotonated tyrosine, forming Tyr•. This residue then abstracts a net hydrogen atom (H•) from propionate 2, followed by migration of the unpaired propionyl electron to the coproheme iron to yield the ferric harderoheme and CO2 products. A similar pathway is proposed for decarboxylation of propionate 4, but with a lysine residue as an essential proton shuttle. The proposed reaction suggests an extended relay of heme-mediated e-/H+ transfers and a novel route for the conversion of carboxylic acids to alkenes.
Collapse
Affiliation(s)
- Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - George H. Gauss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - Bennett R. Streit
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - Krista Shisler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - Garrett C. Moraski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050
| | - John W. Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717-3400
| |
Collapse
|
164
|
Affiliation(s)
- Norbert Hoffmann
- CNRS Université de Reims Champagne-Ardenne; ICMR; Université de Reims Champagne-Ardenne; B.P. 1039 51687 Reims France
| |
Collapse
|
165
|
Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat Chem 2017. [PMID: 28644475 DOI: 10.1038/nchem.2714] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.
Collapse
|
166
|
Ravichandran K, Minnihan EC, Lin Q, Yokoyama K, Taguchi AT, Shao J, Nocera DG, Stubbe J. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Biochemistry 2017; 56:856-868. [PMID: 28103007 DOI: 10.1021/acs.biochem.6b01145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) is composed of two subunits that form an active α2β2 complex. The nucleoside diphosphate substrates (NDP) are reduced in α2, 35 Å from the essential diferric-tyrosyl radical (Y122•) cofactor in β2. The Y122•-mediated oxidation of C439 in α2 occurs by a pathway (Y122 ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2) across the α/β interface. The absence of an α2β2 structure precludes insight into the location of Y356 and Y731 at the subunit interface. The proximity in the primary sequence of the conserved E350 to Y356 in β2 suggested its importance in catalysis and/or conformational gating. To study its function, pH-rate profiles of wild-type β2/α2 and mutants in which 3,5-difluorotyrosine (F2Y) replaces residue 356, 731, or both are reported in the presence of E350 or E350X (X = A, D, or Q) mutants. With E350, activity is maintained at the pH extremes, suggesting that protonated and deprotonated states of F2Y356 and F2Y731 are active and that radical transport (RT) can occur across the interface by proton-coupled electron transfer at low pH or electron transfer at high pH. With E350X mutants, all RNRs were inactive, suggesting that E350 could be a proton acceptor during oxidation of the interface Ys. To determine if E350 plays a role in conformational gating, the strong oxidants, NO2Y122•-β2 and 2,3,5-F3Y122•-β2, were reacted with α2, CDP, and ATP in E350 and E350X backgrounds and the reactions were monitored for pathway radicals by rapid freeze-quench electron paramagnetic resonance spectroscopy. Pathway radicals are generated only when E350 is present, supporting its essential role in gating the conformational change(s) that initiates RT and masking its role as a proton acceptor.
Collapse
Affiliation(s)
| | | | - Qinghui Lin
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine , Hangzhou 310058, China
| | | | | | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
167
|
Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. J Am Chem Soc 2017; 139:1950-1957. [PMID: 28075562 DOI: 10.1021/jacs.6b11563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) β subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c β subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-μ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Elizabeth J Blaesi
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
168
|
Glover SD, Parada GA, Markle TF, Ott S, Hammarström L. Isolating the Effects of the Proton Tunneling Distance on Proton-Coupled Electron Transfer in a Series of Homologous Tyrosine-Base Model Compounds. J Am Chem Soc 2017; 139:2090-2101. [DOI: 10.1021/jacs.6b12531] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Starla D. Glover
- Department of Chemistry−Ångström, Uppsala University, Box
532, SE-751 20, Uppsala, Sweden
| | - Giovanny A. Parada
- Department of Chemistry−Ångström, Uppsala University, Box
532, SE-751 20, Uppsala, Sweden
| | - Todd F. Markle
- Department of Chemistry−Ångström, Uppsala University, Box
532, SE-751 20, Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry−Ångström, Uppsala University, Box
532, SE-751 20, Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry−Ångström, Uppsala University, Box
532, SE-751 20, Uppsala, Sweden
| |
Collapse
|
169
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
170
|
Hu C, Yu Y, Wang J. Improving artificial metalloenzymes' activity by optimizing electron transfer. Chem Commun (Camb) 2017; 53:4173-4186. [DOI: 10.1039/c6cc09921a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This feature article discusses the strategies to optimize electron transfer efficiency, towards enhancing the activity of artificial metalloenzymes.
Collapse
Affiliation(s)
- Cheng Hu
- Laboratory of RNA Biology
- Institute of Biophysics
- Chinese Academy of Sciences
- Chaoyang District
- China
| | - Yang Yu
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
- China
| | - Jiangyun Wang
- Laboratory of RNA Biology
- Institute of Biophysics
- Chinese Academy of Sciences
- Chaoyang District
- China
| |
Collapse
|
171
|
Bury CS, Carmichael I, Garman EF. OH cleavage from tyrosine: debunking a myth. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:7-18. [PMID: 28009542 PMCID: PMC5182017 DOI: 10.1107/s1600577516016775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 05/09/2023]
Abstract
During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C-O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr -OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr -OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr -OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr -OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to disulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported.
Collapse
Affiliation(s)
- Charles S. Bury
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
172
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
173
|
Chen YR, Tsou B, Hu S, Ma H, Liu X, Yen Y, Ann DK. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget 2016; 7:1984-99. [PMID: 26675256 PMCID: PMC4811511 DOI: 10.18632/oncotarget.6539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/21/2015] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy can promote cellular survival or death depending on the cellular context and its extent. We hypothesized that autophagy induction would synergize with a therapeutic agent targeting the autophagic cargo. To test this hypothesis, we treated breast cancer MDA-MB-231 cells with tamoxifen (TMX), which induces autophagy through an estrogen receptor-independent pathway. Induction of autophagy reduced cellular levels of RRM2, a subunit of ribonucleotide reductase (RR), the rate limiting enzyme in the production of deoxyribonucleotide triphosphates (dNTPs). This autophagy inducer was combined with COH29, an inhibitor developed in our laboratory that targets RR through a novel mechanism. The combination therapy showed synergistic effects on cytotoxicity in vitro and in an in vivo xenograft model. This cytotoxicity was blocked by knockdown of the autophagy protein ATG5 or addition of chloroquine, an autophagy inhibitor. The combined therapy also induced dNTP depletion and massive genomic instability, leading us to hypothesize that combining autophagy induction with RR inhibition can lead to mitotic catastrophe in rapidly dividing cells. We propose that this TMX + COH29 combined therapy may have clinical benefit. Furthermore, autophagy induction may be a general mechanism for augmenting the effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Brittany Tsou
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Shuya Hu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Huimin Ma
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiyong Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diabetes and Metabolic Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
174
|
Solid state generation of phenoxyl radicals through β-fragmentation from specifically designed diazenes. An ESR investigation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
175
|
Ravichandran KR, Taguchi AT, Wei Y, Tommos C, Nocera DG, Stubbe J. A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. J Am Chem Soc 2016; 138:13706-13716. [PMID: 28068088 PMCID: PMC5224885 DOI: 10.1021/jacs.6b08200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Escherichia coli class Ia ribonucleotide reductase
(RNR) converts ribonucleotides to deoxynucleotides. A diferric-tyrosyl
radical (Y122•) in one subunit (β2) generates
a transient thiyl radical in another subunit (α2) via long-range
radical transport (RT) through aromatic amino acid residues (Y122 ⇆ [W48] ⇆ Y356 in β2
to Y731 ⇆ Y730 ⇆ C439 in α2). Equilibration of Y356•, Y731•, and Y730• was recently observed using
site specifically incorporated unnatural tyrosine analogs; however,
equilibration between Y122• and Y356•
has not been detected. Our recent report of Y356•
formation in a kinetically and chemically competent fashion in the
reaction of β2 containing 2,3,5-trifluorotyrosine at Y122 (F3Y122•-β2) with α2, CDP
(substrate), and ATP (effector) has now afforded the opportunity to
investigate equilibration of F3Y122•
and Y356•. Incubation of F3Y122•-β2, Y731F-α2 (or Y730F-α2),
CDP, and ATP at different temperatures (2–37 °C) provides
ΔE°′(F3Y122•–Y356•) of 20 ± 10 mV at 25
°C. The pH dependence of the F3Y122•
⇆ Y356• interconversion (pH 6.8–8.0)
reveals that the proton from Y356 is in rapid exchange
with solvent, in contrast to the proton from Y122. Insertion
of 3,5-difluorotyrosine (F2Y) at Y356 and rapid
freeze-quench EPR analysis of its reaction with Y731F-α2,
CDP, and ATP at pH 8.2 and 25 °C shows F2Y356• generation by the native Y122•. FnY-RNRs (n = 2 and 3) together
provide a model for the thermodynamic landscape of the RT pathway
in which the reaction between Y122 and C439 is
∼200 meV uphill.
Collapse
Affiliation(s)
| | | | | | - Cecilia Tommos
- Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
176
|
Mondal D, Bar M, Mukherjee S, Baitalik S. Design of Ru(II) Complexes Based on Anthraimidazoledione-Functionalized Terpyridine Ligand for Improvement of Room-Temperature Luminescence Characteristics and Recognition of Selective Anions: Experimental and DFT/TD-DFT Study. Inorg Chem 2016; 55:9707-9724. [PMID: 27617341 DOI: 10.1021/acs.inorgchem.6b01483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we report synthesis and characterization of three rigid and linear rodlike monometallic Ru(II) complexes based on a terpyridine ligand tightly connected to 9,10-anthraquinone electron-acceptor unit through phenyl-imidazole spacer. The motivation of designing these complexes is to enhance their excited-state lifetimes at room temperature. Interestingly it is found that all three complexes exhibit luminescence at room temperature with excited-state lifetimes in the range of 1.6-52.8 ns, depending upon the coligand as well as the solvent. Temperature-dependent luminescence investigations indicate that the energy gap between the emitting 3MLCT state and nonemitting metal-centered state 3MC in the complexes increased enormously compared with parent [Ru(tpy)2]2+. In addition, by taking advantage of the imidazole NH proton(s), which became appreciably acidic upon combined effect of electron accepting anthraquinone moiety as well as metal ion coordination, we also examined anion recognition and sensing behaviors of the complexes in organic, mixed aqueous-organic as well as in solid medium through different optical channels such as absorption, steady-state and time-resolved emission, and 1H NMR spectroscopic techniques. In conjunction with the experiment, computational investigation was also employed to examine the electronic structures of the complexes and accurate assignment of experimentally observed spectral and redox behaviors.
Collapse
Affiliation(s)
- Debiprasad Mondal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Shruti Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University , Kolkata 700032, India
| |
Collapse
|
177
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
178
|
Manbeck GF, Fujita E, Concepcion JJ. Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. J Am Chem Soc 2016; 138:11536-49. [DOI: 10.1021/jacs.6b03506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J. Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
179
|
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 2016; 48:411-20. [PMID: 26537399 DOI: 10.1017/s0033583515000062] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances. Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer distances by hole hopping (multistep tunneling) through intervening tyrosines and tryptophans. In this perspective, we advance the hypothesis that such hole hopping through Tyr/Trp chains could protect oxygenase, dioxygenase, and peroxidase enzymes from oxidative damage. In support of this view, by examining the structures of P450 (CYP102A) and 2OG-Fe (TauD) enzymes, we have identified candidate Tyr/Trp chains that could transfer holes from uncoupled high-potential intermediates to reductants in contact with protein surface sites.
Collapse
|
180
|
Steidl RJ, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun 2016; 7:12217. [PMID: 27481214 PMCID: PMC4974642 DOI: 10.1038/ncomms12217] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (∼10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network. The roles played by cytochromes and conductive filamentous appendages (pili) in the electrical conductivity of Geobacter bacterial biofilms are controversial. Here, Steidl et al. present evidence that both mechanisms cooperate in thin biofilms, while pili are important for conductivity across thicker biofilms.
Collapse
Affiliation(s)
- Rebecca J Steidl
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 6190, Biomedical and Physical Science building, East Lansing, Michigan 48824, USA
| | - Sanela Lampa-Pastirk
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 6190, Biomedical and Physical Science building, East Lansing, Michigan 48824, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, Rm 6190, Biomedical and Physical Science building, East Lansing, Michigan 48824, USA
| |
Collapse
|
181
|
Park AK, Kim IS, Jeon BW, Roh SJ, Ryu MY, Baek HR, Jo SW, Kim YS, Park H, Lee JH, Yoon HS, Kim HW. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem Biophys Res Commun 2016; 477:395-400. [DOI: 10.1016/j.bbrc.2016.06.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 01/12/2023]
|
182
|
Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J Am Chem Soc 2016; 138:7951-64. [PMID: 27276098 PMCID: PMC4929525 DOI: 10.1021/jacs.6b03605] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Fluorinated tyrosines
(FnY’s, n = 2
and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the
recently evolved M. jannaschii Y-tRNA synthetase/tRNA
pair. Class Ia RNRs require four redox active Y’s, a stable
Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356
in β and 731 and 730 in α) to initiate the radical-dependent
nucleotide reduction process. FnY (3,5;
2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β
and the X-ray structures of each resulting β with a diferric
cluster are reported and compared with wt-β2 crystallized under
the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1
Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide
reduction with activities that vary from 5% to 85% that of wt-β2.
Each FnY·-β2 has been characterized
by 9 and 130 GHz electron paramagnetic resonance and high-field electron
nuclear double resonance spectroscopies. The hyperfine interactions
associated with the 19F nucleus provide unique signatures
of each FnY· that are readily distinguishable
from unlabeled Y·’s. The variability of the abiotic FnY pKa’s
(6.4 to 7.8) and reduction potentials (−30 to +130 mV relative
to Y at pH 7.5) provide probes of enzymatic reactions proposed to
involve Y·’s in catalysis and to investigate the importance
and identity of hopping Y·’s within redox active proteins
proposed to protect them from uncoupled radical chemistry.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | - Paul A Stucky
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Troy A Stich
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
183
|
|
184
|
Olshansky L, Greene BL, Finkbeiner C, Stubbe J, Nocera DG. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Biochemistry 2016; 55:3234-40. [PMID: 27159163 PMCID: PMC4929995 DOI: 10.1021/acs.biochem.6b00292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli class Ia ribonucleotide reductase (RNR) achieves forward and reverse proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 ⇌ β-Y356 ⇌ α-Y731 ⇌ α-Y730 ⇌ α-C439) spanning ∼35 Å and two subunits every time it turns over. We have developed photoRNRs that allow radical transport to be phototriggered at tyrosine (Y) or fluorotyrosine (FnY) residues along the PCET pathway. We now report a new photoRNR in which photooxidation of a tryptophan (W) residue replacing Y356 within the α/β subunit interface proceeds by a stepwise ET/PT (electron transfer then proton transfer) mechanism and provides an orthogonal spectroscopic handle with respect to radical pathway residues Y731 and Y730 in α. This construct displays an ∼3-fold enhancement in photochemical yield of W(•) relative to F3Y(•) and a ∼7-fold enhancement relative to Y(•). Photogeneration of the W(•) radical occurs with a rate constant of (4.4 ± 0.2) × 10(5) s(-1), which obeys a Marcus correlation for radical generation at the RNR subunit interface. Despite the fact that the Y → W variant displays no enzymatic activity in the absence of light, photogeneration of W(•) within the subunit interface results in 20% activity for turnover relative to wild-type RNR under the same conditions.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - Brandon L. Greene
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
| | - Chelsea Finkbeiner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; .
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138–2902;
| |
Collapse
|
185
|
Henthorn JT, Agapie T. Modulation of Proton-Coupled Electron Transfer through Molybdenum-Quinonoid Interactions. Inorg Chem 2016; 55:5337-42. [PMID: 27227812 DOI: 10.1021/acs.inorgchem.6b00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An expanded series of π-bound molybdenum-quinonoid complexes supported by pendant phosphines has been synthesized. These compounds formally span three protonation-oxidation states of the quinonoid fragment (catechol, semiquinone, quinone) and two different oxidation states of the metal (Mo(0), Mo(II)), notably demonstrating a total of two protons and four electrons accessible in the system. Previously, the reduced Mo(0)-catechol complex 1 and its reaction with dioxygen to yield the two-proton/two-electron oxidized Mo(0)-quinone compound 4 was explored, while, herein, the expansion of the series to include the two-electron oxidized Mo(II)-catechol complex 2, the one-proton/two-electron oxidized Mo-semiquinone complex 3, and the two-proton/four-electron oxidized Mo(II)-quinone complexes 5 and 6 is reported. Transfer of multiple equivalents of protons and electrons from the Mo(0) and Mo(II) catechol complexes, 1 and 2, to H atom acceptor TEMPO suggests the presence of weak O-H bonds. Although thermochemical analyses are hindered by the irreversibility of the electrochemistry of the present compounds, the reactivity observed suggests weaker O-H bonds compared to the free catechol, indicating that proton-coupled electron transfer can be facilitated significantly by the π-bound metal center.
Collapse
Affiliation(s)
- Justin T Henthorn
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
186
|
Miller DC, Tarantino KT, Knowles RR. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Top Curr Chem (Cham) 2016; 374:30. [PMID: 27573270 PMCID: PMC5107260 DOI: 10.1007/s41061-016-0030-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.
Collapse
Affiliation(s)
- David C Miller
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle T Tarantino
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
187
|
Design of Ruthenium Biimidazole-Anthraquinone Dyads to Demonstrate Photoinduced Electron Transfer: Combined Experimental and DFT/TD-DFT Investigations. ChemistrySelect 2016. [DOI: 10.1002/slct.201600352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
188
|
Xie J, Man WL, Wong CY, Chang X, Che CM, Lau TC. Four-Electron Oxidation of Phenols to p-Benzoquinone Imines by a (Salen)ruthenium(VI) Nitrido Complex. J Am Chem Soc 2016; 138:5817-20. [PMID: 27111432 DOI: 10.1021/jacs.6b02923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron-transfer reactions of phenols have received considerable attention because of their fundamental interest and their relevance to many biological processes. Here we describe a remarkable four-electron oxidation of phenols by a (salen)ruthenium(VI) complex in the presence of pyridine in CH3OH to afford (salen)ruthenium(II) p-benzoquinone imine complexes. Mechanistic studies indicate that this reaction occurs in two phases. The first phase is proposed to be a two-electron transfer process that involves electrophilic attack by Ru≡N at the phenol aromatic ring, followed by proton shift to generate a Ru(IV) p-hydroxyanilido intermediate. In the second phase the intermediate undergoes intramolecular two-electron transfer, followed by rapid deprotonation to give the Ru(II) p-benzoquinone imine product.
Collapse
Affiliation(s)
- Jianhui Xie
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong , Tat Chee Avenue, Hong Kong, China
| | - Wai-Lun Man
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong , Tat Chee Avenue, Hong Kong, China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong , Tat Chee Avenue, Hong Kong, China
| | - Xiaoyong Chang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Tai-Chu Lau
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong , Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
189
|
Lee Y, Boycheva S, Brittain T, Boyd PDW. Intramolecular electron transfer in the dihaem cytochrome c peroxidase of Pseudomonas aeruginosa. Chembiochem 2016; 8:1440-6. [PMID: 17634996 DOI: 10.1002/cbic.200700159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutant forms of the enzyme cytochrome c peroxidase from Pseudomonas aeruginosa, in which the peroxidatic haem ligand (H71) and putative haem-bridging amino acid (W94) have been mutated, were produced in an E. coli expression system as a means of investigating possible mechanisms of intramolecular electron transfer within the enzyme. EPR spectroscopy indicated the presence of a high-spin, presumably five-coordinate, peroxidatic haem site in the H71G and H71G/W94A mutants, whilst the W94A mutant apparently retained the normal six-coordinate haem structures. In turnover experiments, these mutants show 55, 4, and <1% activity, respectively, as compared to the wild-type enzyme. The W94A mutant shows essentially no activity in turnover experiments. Circular dichroism spectroscopy indicates no measurable difference in the secondary structure of the H71G mutant from that of the native enzyme, whilst some small differences are observed for the double mutant. Treatment of the oxidised mutant proteins with hydrogen peroxide, in the absence of preactivation or exogenous reductants, yields products that suggest the formation of a tryptophan radical species in the case of the H71 mutant and the production of a porphyrin radical in the case of the double mutant. These results are discussed in terms of the intramolecular electron transfer in this enzyme.
Collapse
Affiliation(s)
- Yong Lee
- School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland, 1142, New Zealand
| | | | | | | |
Collapse
|
190
|
Nguyen LQ, Knowles RR. Catalytic C–N Bond-Forming Reactions Enabled by Proton-Coupled Electron Transfer Activation of Amide N–H Bonds. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00486] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lucas Q. Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
191
|
Soetbeer J, Dongare P, Hammarström L. Marcus-type driving force correlations reveal the mechanism of proton-coupled electron transfer for phenols and [Ru(bpy) 3] 3+ in water at low pH. Chem Sci 2016; 7:4607-4612. [PMID: 30155108 PMCID: PMC6013771 DOI: 10.1039/c6sc00597g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/01/2016] [Indexed: 11/21/2022] Open
Abstract
We examined PCET between a series of phenol derivatives and photogenerated [Ru(bpy)3]3+ in low pH (≤4) water using the laser flash-quench technique.
Proton-coupled electron transfer (PCET) from tyrosine and other phenol derivatives in water is an important elementary reaction in chemistry and biology. We examined PCET between a series of phenol derivatives and photogenerated [Ru(bpy)3]3+ in low pH (≤4) water using the laser flash-quench technique. From an analysis of the kinetic data using a Marcus-type free energy relationship, we propose that our model system follows a stepwise electron transfer-proton transfer (ETPT) pathway with a pH independent rate constant at low pH in water. This is in contrast to the concerted or proton-first (PTET) mechanisms that often dominate at higher pH and/or with buffers as primary proton acceptors. The stepwise mechanism remains competitive despite a significant change in the pKa and redox potential of the phenols which leads to a span of rate constants from 1 × 105 to 2 × 109 M–1 s–1. These results support our previous studies which revealed separate mechanistic regions for PCET reactions and also assigned phenol oxidation by [Ru(bpy)3]3+ at low pH to a stepwise PCET mechanism.
Collapse
Affiliation(s)
- Janne Soetbeer
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| | - Prateek Dongare
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . ;
| |
Collapse
|
192
|
Kasanmascheff M, Lee W, Nick TU, Stubbe J, Bennati M. Radical transfer in E. coli ribonucleotide reductase: a NH 2Y 731/R 411A-α mutant unmasks a new conformation of the pathway residue 731. Chem Sci 2016; 7:2170-2178. [PMID: 29899944 PMCID: PMC5968753 DOI: 10.1039/c5sc03460d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 11/21/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all living organisms. The catalytic cycle of E. coli RNR involves a long-range proton-coupled electron transfer (PCET) from a tyrosyl radical (Y122˙) in subunit β2 to a cysteine (C439) in the active site of subunit α2, which subsequently initiates nucleotide reduction. This oxidation occurs over 35 Å and involves a specific pathway of redox active amino acids (Y122 ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2). The mechanisms of the PCET steps at the interface of the α2β2 complex remain puzzling due to a lack of structural information for this region. Recently, DFT calculations on the 3-aminotyrosyl radical (NH2Y731˙)-α2 trapped by incubation of NH2Y731-α2/β2/CDP(substrate)/ATP(allosteric effector) suggested that R411-α2, a residue close to the α2β2 interface, interacts with NH2Y731˙ and accounts in part for its perturbed EPR parameters. To examine its role, we further modified NH2Y731-α2 with a R411A substitution. NH2Y731˙/R411A generated upon incubation of NH2Y731/R411A-α2/β2/CDP/ATP was investigated using multi-frequency (34, 94 and 263 GHz) EPR, 34 GHz pulsed electron-electron double resonance (PELDOR) and electron-nuclear double resonance (ENDOR) spectroscopies. The data indicate a large conformational change in NH2Y731˙/R411A relative to the NH2Y731˙ single mutant. Particularly, the inter-spin distance from NH2Y731˙/R411A in one αβ pair to Y122˙ in a second αβ pair decreases by 3 Å in the presence of the R411A mutation. This is the first experimental evidence for the flexibility of pathway residue Y731-α2 in an α2β2 complex and suggests a role for R411 in the stacked Y731/Y730 conformation involved in collinear PCET. Furthermore, NH2Y731˙/R411A serves as a probe of the PCET process across the subunit interface.
Collapse
Affiliation(s)
- Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Wankyu Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Thomas U Nick
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
193
|
Dongare P, Maji S, Hammarström L. Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron−Proton Transfer Reaction in Water. J Am Chem Soc 2016; 138:2194-9. [DOI: 10.1021/jacs.5b08294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prateek Dongare
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Somnath Maji
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Leif Hammarström
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| |
Collapse
|
194
|
Olshansky L, Stubbe J, Nocera DG. Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase. J Am Chem Soc 2016; 138:1196-205. [PMID: 26710997 PMCID: PMC4924928 DOI: 10.1021/jacs.5b09259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides to provide the monomeric building blocks for DNA replication and repair. Nucleotide reduction occurs by way of multistep proton-coupled electron transfer (PCET) over a pathway of redox active amino acids spanning ∼35 Å and two subunits (α2 and β2). Despite the fact that PCET in RNR is rapid, slow conformational changes mask examination of the kinetics of these steps. As such, we have pioneered methodology in which site-specific incorporation of a [Re(I)] photooxidant on the surface of the β2 subunit (photoβ2) allows photochemical oxidation of the adjacent PCET pathway residue β-Y356 and time-resolved spectroscopic observation of the ensuing reactivity. A series of photoβ2s capable of performing photoinitiated substrate turnover have been prepared in which four different fluorotyrosines (FnYs) are incorporated in place of β-Y356. The FnYs are deprotonated under biological conditions, undergo oxidation by electron transfer (ET), and provide a means by which to vary the ET driving force (ΔG°) with minimal additional perturbations across the series. We have used these features to map the correlation between ΔG° and kET both with and without the fully assembled photoRNR complex. The photooxidation of FnY356 within the α/β subunit interface occurs within the Marcus inverted region with a reorganization energy of λ ≈ 1 eV. We also observe enhanced electronic coupling between donor and acceptor (HDA) in the presence of an intact PCET pathway. Additionally, we have investigated the dynamics of proton transfer (PT) by a variety of methods including dependencies on solvent isotopic composition, buffer concentration, and pH. We present evidence for the role of α2 in facilitating PT during β-Y356 photooxidation; PT occurs by way of readily exchangeable positions and within a relatively "tight" subunit interface. These findings show that RNR controls ET by lowering λ, raising HDA, and directing PT both within and between individual polypeptide subunits.
Collapse
Affiliation(s)
- Lisa Olshansky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Chemical Biology, 12 Oxford St., Harvard University, Cambridge, Massachusetts 02138, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, 12 Oxford St., Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
195
|
Warren JJ, Shafaat OS, Winkler JR, Gray HB. Proton-coupled electron hopping in Ru-modified P. aeruginosa azurin. J Biol Inorg Chem 2016; 21:113-9. [PMID: 26790882 DOI: 10.1007/s00775-016-1332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
We constructed two artificial multiple-step electron transfer (hopping) systems based on Pseudomonas aeruginosa azurin where a tyrosine (YOH) is situated between Ru(2,2'-bipyridine)2(imidazole)(histidine) and the native copper site: RuH107YOH109 and RuH124-YOH122. We investigated the rates of Cu(I) oxidation by flash-quench generated Ru(III) over a range of conditions that probed the role of proton-coupled oxidation/reduction of YOH in the reaction. Rates of Cu(I) oxidation were enhanced over single-step electron transfer by factors between 3 and 80, depending on specific scaffold and buffer conditions.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA. .,Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Oliver S Shafaat
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
196
|
Bar M, Maity D, Das S, Baitalik S. Demonstration of intramolecular energy transfer in asymmetric bimetallic ruthenium(ii) complexes. Dalton Trans 2016; 45:17241-17253. [DOI: 10.1039/c6dt03250h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric bimetallic Ru(ii) complexes exhibit photo-induced intramolecular energy transfer with rate constant values on the order of 107 s−1.
Collapse
Affiliation(s)
- Manoranjan Bar
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Dinesh Maity
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Shyamal Das
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| | - Sujoy Baitalik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
197
|
Shi S, Szostak R, Szostak M. Proton-coupled electron transfer in the reduction of carbonyls using SmI2–H2O: implications for the reductive coupling of acyl-type ketyl radicals with SmI2–H2O. Org Biomol Chem 2016; 14:9151-9157. [DOI: 10.1039/c6ob01621a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The feasibility of concerted PCET in the reduction of carbonyl groups using SmI2–H2O is quantitatively assessed.
Collapse
Affiliation(s)
- Shicheng Shi
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | - Roman Szostak
- Department of Chemistry
- Wroclaw University
- Wroclaw 50-383
- Poland
| | | |
Collapse
|
198
|
Kerber WD, Goheen JT, Perez KA, Siegler MA. Enhanced Stability of the FeII/MnII State in a Synthetic Model of Heterobimetallic Cofactor Assembly. Inorg Chem 2015; 55:848-57. [DOI: 10.1021/acs.inorgchem.5b02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William D. Kerber
- Department
of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Joshua T. Goheen
- Department
of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Kaitlyn A. Perez
- Department
of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
199
|
Abstract
Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.
Collapse
Affiliation(s)
- Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
200
|
Walpita J, Yang X, Khatmullin R, Luk HL, Hadad CM, Glusac KD. Pourbaix diagrams in weakly coupled systems: a case study involving acridinol and phenanthridinol pseudobases. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Janitha Walpita
- Department of Chemistry; Bowling Green State University; Bowling Green OH 43403 USA
| | - Xin Yang
- Department of Chemistry; Bowling Green State University; Bowling Green OH 43403 USA
| | - Renat Khatmullin
- Department of Chemistry; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hoi Ling Luk
- Department of Chemistry; Bowling Green State University; Bowling Green OH 43403 USA
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry; The Ohio State University; Columbus OH 43210 USA
| | - Ksenija D. Glusac
- Department of Chemistry; Bowling Green State University; Bowling Green OH 43403 USA
| |
Collapse
|