151
|
Abstract
Abstract
Research on carbon-based nanomaterials (CBNMs) and their development is one of the major scientific disciplines of the last century. This is mainly because of their unique properties which can lead to improvements in industrial technology or new medical applications. Therefore, it is necessary to examine their properties such as shape, size, chemical composition, density, toxicity, etc. This article focuses on the general characteristics of nanomaterials (NMs) and their behavior when entering the environment (water and soil). In addition, it presents individual members of the graphene family including porous ecological carbon (biochar). The article mainly deals with the new potential technologies of CBNMs considering their possible toxic and genotoxic effects. This review also highlights the latest developments in the application of self-propelled micromotors for green chemistry applications. Finally, it points to the potential biomedical applications of CBNMs.
Collapse
|
152
|
Zhao J, Ning F, Cao X, Yao H, Wang Z, Xing B. Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. WATER RESEARCH 2020; 176:115735. [PMID: 32224330 DOI: 10.1016/j.watres.2020.115735] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Graphene oxide (GO) sheets are unstable in aqueous environments, and the effect of photo-transformation on GO toxicity to freshwater algae (Chlorella pyrenoidosa) was investigated. Our results demonstrated that GO underwent photo-reduction under 25-day sunlight irradiation, and the transformation was generally completed at Day 8. The toxicological investigation showed that 8-day sunlight irradiation significantly increased growth inhibition of GO (25 mg/L) to algal cells by 11.2%, due to enhanced oxidative stress and stronger membrane damage. Low molecular weight (LMW) species were produced during the 8-day GO transformation, and they were identified as two types of aromatic compounds, which played a crucial role in increasing toxicity. The combined toxicity of GO and Cu2+ ions before and after light irradiation was further investigated. Antagonistic effect was observed between the toxicity of pristine GO and co-existing Cu2+ ions. After co-irradiation of GO and Cu2+ ions for 8 days, their combined toxicity was unexpectedly lower or insignificant in comparison with the treatments of pristine GO, or pristine GO in the presence of Cu2+ ions. Two mechanisms were revealed for this finding: (1) Cu2+ ions suppressed the photo-transformation of GO; (2) the toxicity of free Cu2+ ions was decreased through the adsorption/retention of Cu2+ ions and formation of Cu-based nanoparticles (e.g., Cu2O and Cu2S) on the photo-transformed GO. The provided data are helpful for better understanding the environmental process and risk of GO under natural conditions.
Collapse
Affiliation(s)
- Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fangyuan Ning
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huan Yao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
153
|
Fu L, Liao K, Tang B, Jiang L, Huang W. Applications of Graphene and Its Derivatives in the Upstream Oil and Gas Industry: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1013. [PMID: 32466513 PMCID: PMC7353333 DOI: 10.3390/nano10061013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Graphene and its derivatives, with their unique two-dimensional structures and excellent physical and chemical properties, have been an international research hotspot both in the research community and industry. However, in application-oriented research in the oil and gas industry they have only drawn attention in the past several years. Their excellent optical, electrical, thermal and mechanical performance make them great candidates for use in oil and gas exploration, drilling, production, and transportation. Combined with the actual requirements for well working fluids, chemical enhanced oil recovery, heavy oil recovery, profile control and water shutoff, tracers, oily wastewater treatment, pipeline corrosion prevention treatment, and tools and apparatus, etc., this paper introduces the behavior in water and toxicity to organisms of graphene and its derivatives in detail, and comprehensively reviews the research progress of graphene materials in the upstream oil and gas industry. Based on this, suggestions were put forward for the future research. This work is useful to the in-depth mechanism research and application scope broadening research in the upstream oil and gas industry.
Collapse
Affiliation(s)
| | - Kaili Liao
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| | | | | | - Weiqiu Huang
- School of Petroleum Engineering, ChangZhou University, Changzhou 213164, China; (L.F.); (B.T.); (L.J.)
| |
Collapse
|
154
|
Adsorption of fluoroquinolone by carbon nanotubes: a combined experimental and density functional theory study. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01204-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
155
|
Bitounis D, Parviz D, Cao X, Amadei CA, Vecitis CD, Sunderland EM, Thrall BD, Fang M, Strano MS, Demokritou P. Synthesis and Physicochemical Transformations of Size-Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907640. [PMID: 32196921 PMCID: PMC7260083 DOI: 10.1002/smll.201907640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Carlo A. Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Elsie M. Sunderland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
156
|
Lian S, Qu Y, Li S, Zhang Z, Zhang H, Dai C, Deng Y. Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. ENVIRONMENTAL RESEARCH 2020; 184:109392. [PMID: 32209499 DOI: 10.1016/j.envres.2020.109392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The accelerated development and application of graphene-family nanomaterials (GFNs) have increased their release to various environments and converged in wastewater treatment plants (WWTPs). However, little is known about the interactions between GFNs and microbes in WWTPs. In this study, the interaction of graphene oxide (GO) or graphene (G) at different concentrations with microbial communities in sequential batch reactors was investigated. Transmission electron microscopy and Raman spectroscopy analyses showed that the structures of GFNs were obviously changed, which suggested GFNs could be degraded by some microbes. Significantly higher DNA concentration and lower cell number in high-concentration GO group were detected by DNA leakage test and qPCR analysis, which confirmed the microbial toxicity of GO. The chemical oxygen demand and ammonia nitrogen removals were significantly affected by G and GO with high concentrations. Further, high-throughput sequencing confirmed the composition and dynamic changes of microbial communities under GFNs exposure. Saccharibacteria genera incertae sedis (12.55-28.05%) and Nakamurella (20.45-29.30%) were the predominant genera at two stages, respectively. FAPROTAX suggested 12 functional groups with obvious changes related to the biogeochemical cycle of C, N and S. Molecular ecological network analysis showed that the networks were more complex in the presence of GFNs, and the increased negative interactions reflected more competition relationships in microbial communities. This study is the first to report the effect of GFNs on network of microbial communities, which provides in-depth insights into the complex and highlights concerns regarding the risk of GFNs to WWTPs.
Collapse
Affiliation(s)
- Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Henglin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
157
|
Du J, Wang T, Zhou Q, Hu X, Wu J, Li G, Li G, Hou F, Wu Y. Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110304. [PMID: 32066006 DOI: 10.1016/j.ecoenv.2020.110304] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The environmental release of graphene oxide (GO) will certainly induce the GO exposure to plants. To date, the influence of GO on the intracellular structures and the endophytic bacterial ecology of plants have been rarely reported. In the present study, the rice seedlings were exposed to GO (5 mg/L) under hydroponic condition for fifteen days with periodic stir. The cellular structures damage, GO deposition and oxidative stress were found in rice root after GO exposure. A Illumina analysis based on the bacterial 16 S rRNA gene showed that the richness, evenness and diversity of endophytic bacterial communities of rice root decreased due to GO exposure. The relative abundance of beneficial endophytic bacterial populations decreased after GO exposure. Out of potential phenotypes predicted by BugBase, the relative abundance of Gram negative, stress-tolerant and biofilm-forming phenotypes, presented an increase trend after GO exposure.
Collapse
Affiliation(s)
- Junjie Du
- College of Food Science, Shanxi Normal University, Linfen City, 041004, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Ting Wang
- College of Food Science, Shanxi Normal University, Linfen City, 041004, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jianhu Wu
- College of Food Science, Shanxi Normal University, Linfen City, 041004, China
| | - Guifeng Li
- College of Food Science, Shanxi Normal University, Linfen City, 041004, China
| | - Guoqin Li
- College of Food Science, Shanxi Normal University, Linfen City, 041004, China
| | - Fen Hou
- School of Public Administration, Shanxi University of Finance and Economics, Taiyuan, 030000, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| |
Collapse
|
158
|
Zhang P, Guo Z, Luo W, Monikh FA, Xie C, Valsami-Jones E, Lynch I, Zhang Z. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice ( Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3181-3190. [PMID: 32083855 DOI: 10.1021/acs.est.9b05794] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mechanism of graphene-based nanomaterial (GBM)-induced phytotoxicity and its association with the GBM physicochemical properties are not yet fully understood. The present study compared the effects of graphene oxide (GO) and reduced GO (rGO) on rice seedling growth under hydroponic conditions for 3 weeks. GO at 100 and 250 mg/L reduced shoot biomass (by 25 and 34%, respectively) and shoot elongation (by 17 and 43%, respectively) and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement of the antioxidant enzyme activities, suggesting that the surface oxygen content is a critical factor affecting the biological impacts of GBMs. GO treatments (100 and 250 mg/L) enhanced the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times higher than control), which was found to be the main reason for the oxidative damage in shoots. GO-induced acidification of the nutrient solution was the main driver for the Fe overload in plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend against the Fe toxicity via downregulation of the Fe transport associated metabolites (mainly coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to nontoxic rGO, acting as another route for plant adaption to GO-induced phytotoxicity. This study provides new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for the agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid toxicity.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Zhiling Guo
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Wenhe Luo
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | | | - Changjian Xie
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Iseult Lynch
- School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Zhiyong Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
159
|
Medeiros AMZD, Côa F, Alves OL, Teodoro Martinez DS, Barbieri E. Metabolic effects in the freshwater fish Geophagus iporangensis in response to single and combined exposure to graphene oxide and trace elements. CHEMOSPHERE 2020; 243:125316. [PMID: 31733537 DOI: 10.1016/j.chemosphere.2019.125316] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Graphene oxide (GO) is part of a new set of nanomaterials with particular characteristics related to its nanoscale size. Due to this feature, it presents high reactivity and other contaminants present in the environment could bind to them and affect its intrinsic toxicity. The metabolic effects of such nanomaterials and their combination with two common pollutants, zinc and cadmium, on the freshwater fish Geophagus iporangensis are analyzed. Moreover, metabolic rate and ammonia excretion were used as bioindicators to measure metabolic changes. Fishes were exposed for 24 h in filtered tap water to different concentrations of GO (0.5; 1.0; 2.0 and 4.0 mg L-1), Zn (0.5; 1.0; 2.0; 4.0 and 10.0 mg L-1) and Cd (0.1; 0.5; 1.0; 2.0 and 4.0 mg L-1). Combined effects were verified using the same concentrations of trace elements added to 1.0 mg L-1 of GO. Exposure to GO and Cd resulted in a decrease of metabolic rate in G. iporangensis, by about 30% compared to control means, in the highest concentration tested (4.0 mg L-1). However, zinc exposure in the highest concentration (10 mg L-1) raised metabolic rate to around three times that of the control group. Ammonia excretion was not affected by exposure to GO and Cd. In contrast, exposure to Zn at 10 mg L-1 raised the rate to around 47%. The combined exposure of GO and Zn intensified the effects of the trace element, inducing responses in both biomarkers at lower concentrations and demonstrating that the interaction between elements increases zinc's effects. The combination Cd + GO only affects metabolic rate. Thus, this metabolic rate alone reveals that combined exposure potentiates effects of trace elements on fish metabolism.
Collapse
Affiliation(s)
| | - Francine Côa
- Instituto de Pesca-SP-APTA-SAA-Governo do Estado de São Paulo, Av. Prof. Besnard s/n, CEP. 11990-000, Cananéia, SP, Brazil
| | - Oswaldo Luiz Alves
- Laboratório de Química de Estado Sólido (LQES), Instituto de Química, UNICAMP, Campinas, SP, Brazil
| | - Diego Stéfani Teodoro Martinez
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Edison Barbieri
- Instituto de Pesca-SP-APTA-SAA-Governo do Estado de São Paulo, Av. Prof. Besnard s/n, CEP. 11990-000, Cananéia, SP, Brazil.
| |
Collapse
|
160
|
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. NANOSCALE 2020; 12:4790-4815. [PMID: 32073021 DOI: 10.1039/c9nr09274a] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
161
|
Lu L, Chen B. Biochar-amendment-reduced cotransport of graphene oxide nanoparticles and dimethyl phthalate in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135094. [PMID: 31837545 DOI: 10.1016/j.scitotenv.2019.135094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Production and application of graphene oxide (GO) and biochar for water and soil treatment is steadily growing, driving the necessity to understand the cotransport behavior of contaminants and GO nanoparticles in porous media and the possible effect of biochar to reduce their cotransport. The cotransport of GO nanoparticles and dimethyl phthalate (DMP) as a model in a sand column and biochar-amended sand column (biochar column) was compared. The transport of DMP in the test columns was independent of the solution ionic strength (IS), while the transport of GO decreased with increased IS due to the enhanced aggregation of GO nanoparticles. The sand column had no retention capacity (less than 1%) for DMP, while the biochar column had significantly increased retention of DMP (100%). The retention of GO in the biochar column was significantly higher than that of the sand column because biochar can improve the roughness of the media and adsorb GO via π-π interactions. Under low-IS conditions, GO facilitated DMP transport by providing vehicles and adsorption sites (vehicle effect). Due to reversible adsorption-desorption, the adsorbed DMP on GO could be released, resulting in tailing during the flushing phase. The vehicle effect of GO on DMP transport was significantly weakened in the biochar columns, and DMP tailing during the flushing phase was not observed in the biochar columns, which was attributed to the strong retention/adsorption of the biochar columns for both GO and DMP, higher affinity of DMP on biochar than GO, and desorption hysteresis of DMP on biochar. These observations are important for evaluating the potential role of biochar in soil and water remediation, as well as mitigating the health risks of GO and organic contaminants in the environment.
Collapse
Affiliation(s)
- Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
162
|
Li J, Wu F, Fang Q, Wu Z, Duan Q, Li X, Ye W. The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:289-294. [PMID: 31901451 DOI: 10.1016/j.plaphy.2019.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 05/27/2023]
Abstract
The broad application and unique properties of graphene oxide (GO) nanosheets make them interact with other pollutants and subsequently alter their behaviors and toxicities. However, investigation on the effects of GO nanosheets on plant uptake of co-occurring heavy metals is scarce. We evaluated the mutual effects of cadmium (Cd) at 1 mg/L and different concentrated GO nanosheets (0, 1 and 10 mg/L) on the rice seed germination, further seedling growth, Cd uptake and accumulation in rice roots and shoots in a hydroponic system. The effects of GO were concentration dependent. GO alone at 1 mg/L showed no apparent effects, while GO alone at 10 mg/L accelerated the rice seed germination and root growth due to the improved water uptake. Cd alone showed adverse effects on the rice seed germination, which was alleviated by the presence of GO at 1 or 10 mg/L. GO at 10 mg/L also increased the membrane permeability, thus enhancing Cd uptake by rice roots and shoots. These results indicate that GO can change the effects of Cd on the rice seed germination and Cd uptake as well as accumulation in the roots and shoots of rice seedlings, which is helpful for understanding the fate and ecotoxicological impacts of both GO and Cd.
Collapse
Affiliation(s)
- Jie Li
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Fan Wu
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Qing Fang
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Zheng Wu
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Qingyun Duan
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xuede Li
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Wenling Ye
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
163
|
Zhang Z, Huang L, Wang Y, Yang K, Du Y, Wang Y, Kipper MJ, Belfiore LA, Tang J. Theory and simulation developments of confined mass transport through graphene-based separation membranes. Phys Chem Chem Phys 2020; 22:6032-6057. [DOI: 10.1039/c9cp05551g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The perspectives of graphene-based membranes based on confined mass transport from simulations and experiments for water desalination.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Linjun Huang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yanxin Wang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Kun Yang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yingchen Du
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Yao Wang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering
- Colorado State University
- Fort Collins
- USA
| | - Laurence A. Belfiore
- Department of Chemical and Biological Engineering
- Colorado State University
- Fort Collins
- USA
| | - Jianguo Tang
- Institute of Hybrid Materials
- National Center of International Research for Hybrid Materials Technology
- National Base of International Science & Technology Cooperation
- College of Materials Science and Engineering
- Qingdao University
| |
Collapse
|
164
|
Goryunov A, Rozhkov S, Rozhkova N. Fatty acid transfer between serum albumins and shungite carbon nanoparticles and its effect on protein aggregation and association. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:85-94. [PMID: 31865396 DOI: 10.1007/s00249-019-01414-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Abstract
The bioactivity of the natural ultrafine carbon form shungite nanocarbon (ShC) is of particular interest both for biomedical applications of such nanomaterials and their negative impact on the aquatic environmental. Here we studied the interaction of serum albumin (SA) with ShC nanoparticles in aqueous dispersion with respect to its structural-dynamic, thermodynamic, and hydrodynamic effects. Electron spin resonance (EPR) with a 5-DOXYL-stearic acid spin probe (5DSA) demonstrates that ShC can affect fatty acid (FA) binding by SA, protein conformation in the stearic FA spin probe binding region, and protein aggregation due to the partial transfer of FA to the ShC nanoparticles. The ratio of SA fractions changes in the presence of ShC in favor of the fraction that is less saturated with FA as shown by differential scanning calorimetry (DSC). The stability of interaction with ShC is significantly higher for aggregates of SA molecules that carry physiological amounts of FA, compared to aggregates of the FA-free protein, as studied by dynamic light scattering (DLS) analysis. Generally, the mixed dispersion of SA and ShC nanoparticles is more homogeneous than the SA solution alone. This is manifested both in the size of the molecular associates and in the microenvironment of the protein-bound FA. The formation of the SA-ShC interface is likely to result in a greater uniformity of the FA binding sites and a decrease in protein fractions and "hot patches" on the protein surface responsible for the supramolecular heterogeneity of the protein in solution.
Collapse
Affiliation(s)
- Andrey Goryunov
- Institute of Biology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia
| | - Sergei Rozhkov
- Institute of Biology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia.
| | - Natalia Rozhkova
- Institute of Geology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia
| |
Collapse
|
165
|
Kovtun A, Zambianchi M, Bettini C, Liscio A, Gazzano M, Corticelli F, Treossi E, Navacchia ML, Palermo V, Melucci M. Graphene oxide-polysulfone filters for tap water purification, obtained by fast microwave oven treatment. NANOSCALE 2019; 11:22780-22787. [PMID: 31577323 DOI: 10.1039/c9nr06897j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The availability of clean, pure water is a major challenge for the future of our society. 2-Dimensional nanosheets of GO seem promising as nanoporous adsorbent or filters for water purification; however, their processing in macroscopic filters is challenging, and their cost vs. standard polymer filters is too high. Here, we describe a novel approach to combine graphene oxide (GO) sheets with commercial polysulfone (PSU) membranes for improved removal of organic contaminants from water. The adsorption physics of contaminants on the PSU-GO composite follows Langmuir and Brunauer-Emmett-Teller (BET) models, with partial swelling and intercalation of molecules in between the GO layers. Such a mechanism, well-known in layered clays, has not been reported previously for graphene or GO. Our approach requires minimal amounts of GO, deposited directly on the surface of the polymer, followed by stabilization using microwaves or heat. The purification efficiency of the PSU-GO composites is significantly improved vs. benchmark commercial PSU, as demonstrated by the removal of two model contaminants, rhodamine B and ofloxacin. The excellent stability of the composite is confirmed by extensive (100 hours) filtration tests in commercial water cartridges.
Collapse
Affiliation(s)
- Alessandro Kovtun
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Massimo Zambianchi
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Cristian Bettini
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Liscio
- Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi, CNR, 40129 Bologna, Italy
| | - Massimo Gazzano
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Franco Corticelli
- Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi, CNR, 40129 Bologna, Italy
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Maria Luisa Navacchia
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy. and Industrial and Materials Science, Chalmers University of Technology, 41258 Göteborg, Sweden.
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche-Istituto per la Sintesi Organica e la Fotoreattvità (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
166
|
Pei X, Jiang C, Chen W. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO 2 nanocomposites: The synergistic effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113211. [PMID: 31541836 DOI: 10.1016/j.envpol.2019.113211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Once released into the environment, engineered nanomaterials can significantly influence the transformation and fate of organic contaminants. To date, the abilities of composite nanomaterials to catalyze environmentally relevant abiotic transformation reactions of organic contaminants are largely unknown. Herein, we investigated the effects of two nanocomposites - consisting of anatase titanium dioxide (TiO2) with different predominantly exposed crystal facets (i.e., {101} or {001} facets) anchored to hydroxylated multi-walled carbon nanotubes (OH-MWCNT) - on the hydrolysis of 1,1,2,2-tetrachloroethane (TeCA), a common groundwater contaminant, at ambient pH (6, 7 and 8). Both OH-MWCNT/TiO2 nanocomposites were more effective in catalyzing the dehydrochlorination of TeCA than the respective component materials (i.e., bare OH-MWCNT and bare TiO2). Moreover, the synergistic effect of the two components was evident, in that the incorporation of OH-MWCNT increased the TeCA adsorption capacity of the nanocomposites, significantly enhancing the catalytic effect of the deprotonated hydroxyl and carboxyl groups on nanocomposite surfaces, which served as the main catalytic sites for TeCA hydrolysis. The findings may have important implications for the understanding of the environmental implications of composite nanomaterials and may shed light on the design of high-performance nanocomposites for enhanced contaminant removal.
Collapse
Affiliation(s)
- Xule Pei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
167
|
Hsieh HS, Zepp RG. Reactivity of graphene oxide with reactive oxygen species (hydroxyl radical, singlet oxygen, and superoxide anion). ENVIRONMENTAL SCIENCE. NANO 2019; 6:3734-3744. [PMID: 32218919 PMCID: PMC7098813 DOI: 10.1039/c9en00693a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increases in the production and applications of graphene oxide (GO), coupled with reports of its toxic effects, are raising concerns about its health and ecological risks. To better understand GO's fate and transport in aquatic environments, we investigated its reactivity with three major reactive oxygen species (ROS): HO˙, 1O2, and O2˙-. Second-order degradation rate constants were calculated on the loss of dissolved organic carbon (DOC) and steady-state concentration of individual ROS species. Absolute second-order rate constants were determined by competition kinetics to be 6.24 × 104, 8.65 × 102, and 0.108 mg-C-1 L s-1 for HO˙, 1O2, and O2˙-, respectively. Photoreduced GO products had a similar reactivity to HO˙ as GO, with rate constants comparable to polycyclic aromatic compounds, but about two times higher than dissolved organic matter on a per carbon basis. Reaction with HO˙ resulted in decomposition of GO, with loss of color and formation of photoluminescent products. In contrast, reaction with 1O2 showed no effect on DOC, UV-vis spectra or particle size, while reaction with O2˙- slightly reduced GO. These results demonstrate that interactions with ROS will affect GO's persistence in water and should be considered in exposure assessment or environmental application of GO.
Collapse
Affiliation(s)
- Hsin-Se Hsieh
- National Research Council Associate, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| | - Richard G Zepp
- National Exposure Research Laboratory, Exposure Methods & Measurement Division, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| |
Collapse
|
168
|
Babakhani P, Bridge J, Phenrat T, Fagerlund F, Doong RA, Whittle KR. Comparison of a new mass-concentration, chain-reaction model with the population-balance model for early- and late-stage aggregation of shattered graphene oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
169
|
Zhang Q, Lin Q, Zhang X, Chen Y. A novel hierarchical stiff carbon foam with graphene-like nanosheet surface as the desired adsorbent for malachite green removal from wastewater. ENVIRONMENTAL RESEARCH 2019; 179:108746. [PMID: 31586862 DOI: 10.1016/j.envres.2019.108746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
A novel hierarchical stiff carbon foam (HSCF) was successfully prepared via a carbothermal reduction between the carbon foam with two-level pore structure and the Al2O3 from aluminum sulfate, and used as a bulk adsorbent for removing malachite green (MG) dye. The structures of the HSCF were characterized using SEM, XRD, FTIR, BET, and XPS, and the effects of adsorption condition on the MG removal were studied through batch adsorption experiments. Results show that large-sized and complex-shaped HSCF can be easily fabricated with a high compression strength of 1.58 MPa at a low bulk density (0.10 g cm-3). The HSCF possesses a fluffy graphene-like nanosheet surface with a mesoporous structure and meanwhile exhibits good hydrophilicity loaded with aluminum hydroxide. The experimental maximum adsorption capacity for MG reaches 425.2 mg g-1 with a relatively high partition coefficient of 9.38 mg g-1 μM-1 at the optimal condition. The experimental data are in good agreement with Langmuir isotherm and pseudo-second-order kinetic model, and meanwhile, the adsorption of MG onto the HSCF is a spontaneous and endothermic process. Also, the HSCF still exhibits good adsorption ability and stability after seven regeneration cycles.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| | - Xialan Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yangfa Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| |
Collapse
|
170
|
Xiao X, Wang Q, Owens G, Chiellini F, Chen Z. Reduced graphene oxide/iron nanoparticles used for the removal of Pb (II) by one step green synthesis. J Colloid Interface Sci 2019; 557:598-607. [DOI: 10.1016/j.jcis.2019.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
|
171
|
Lata S. Externally predictive quantum-mechanical models for the adsorption of aromatic organic compounds by graphene-oxide nanomaterials. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:847-863. [PMID: 31577156 DOI: 10.1080/1062936x.2019.1666164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide is most often chosen as an alternative to graphene in the applications of carbon-based nanomaterials where adsorption is the primary process. However, its adsorption properties are poorly understood. The existing reports on the adsorption mechanism of graphene oxide rely on the linear free-energy/solvation-energy relationship (LFER/LSER) models. This computational work explores the role of quantum mechanical descriptors in the adsorption of aromatic organic compounds by graphene-oxide. For this, externally predictive quantitative models based on quantum-mechanical descriptors are developed and compared with the existing LSERs for the prediction of adsorption coefficients of organic compounds at three different adsorbate concentrations. The predictivity of the models is assessed using an external prediction set of compounds not used for developing the models. Notably, the mean polarizability, but originating from the quantum mechanical exchange interactions (between electrons of parallel spin), is found to be the most significant factor in driving the adsorption on graphene oxide. The present work also proposes quantum-mechanical-LSER models based on a combination of quantum-mechanical and LSER descriptors, which are in fact found to be equally predictive as the existing LSERs. The quantum-mechanical models proposed in this work are further utilized for the prediction of adsorption coefficients of aliphatic compounds.
Collapse
Affiliation(s)
- S Lata
- Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
172
|
Si W, Xu H, Kong M, Liu J, Xu M, Liu X. Effects of molecular weight fractions and chemical properties of time-series cyanobacterial extracellular polymeric substances on the aggregation of lake colloidal particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1201-1208. [PMID: 31539951 DOI: 10.1016/j.scitotenv.2019.07.360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Colloidal particles in lake waters interact inevitably with cyanobacterial extracellular polymeric substance (EPS), which will change their behavior and fate. Quantitative prediction of the effects of cyanobacterial EPS on colloidal behavior is difficult due to its variability and heterogeneity. To explore the effects of molecular weight (MW) fractions and chemical properties of cyanobacterial EPS on aggregation kinetics of colloidal particles, time-series cyanobacterial samples were collected in Lake Taihu, China, from April to November (during blooming and maintenance period), with the bulk EPS matrix fractionating into low MW (LMW-, <1 nm) and high MW (HMW-, 1 nm-0.45 μm) fractions. HMW-EPS was generally characterized with higher absorbance and predominant distribution of protein-like substances, while LMW-EPS contained mainly the humic- and fulvic-like substances. The absorbance, molecular size, and humification degree for each MW fraction consistently increased from April to November, showing obvious temporal variations from blooming period to maintenance period. As for the MW-dependent aggregation behaviors, the HMW-EPS provided better stability against aggregation than the LMW-EPS, and the bulk EPS matrix that consisted of HMW- and LMW-fractions exhibited the effects intermediate between that of each fraction alone. Regardless of MW fractions, the effects of EPS-induced stability enhancement were more evident in maintenance period than in blooming period. Further analysis showed that the colloidal stability was correlated positively with SUVA254 (R2 = 0.82-0.93) but negatively with Slope275-295 (R2 = 0.53-0.91) of UV-Vis absorption spectra, indicating that aromaticity and MWs were two critical parameters controlling colloidal aggregation. Therefore, cyanobacterial EPS can exhibit variable effects on colloidal stability, and characterization of MW distribution is strongly required in predicating the behavior and fate of colloidal particles in water environments.
Collapse
Affiliation(s)
- Wei Si
- Department of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jin Liu
- Key Laboratory of the Pearl River Estuarine Dynamics & Associated Process Regulation, MWR, Guangzhou 510661, China
| | - Mengwen Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
173
|
Ouyang S, Li K, Zhou Q, Hu X. Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide. WATER RESEARCH 2019; 165:114987. [PMID: 31450222 DOI: 10.1016/j.watres.2019.114987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The environmental behaviors and risks associated with graphene oxide (GO, a popular 2D nanomaterial) have attracted considerable attention. GO released to aquatic systems will most likely interact with ubiquitous nanocolloids (Nc) in surface water. However, the effects of Nc on the fate and risk of GO remain largely unknown in water. Herein, the binding of Nc onto GO was investigated via electron microscopy, electron paramagnetic resonance, 2D correlation spectroscopy and biolayer interferometry. The results revealed that electron charge transfers, hydrophilic effects and π-π stacking contributed to a strong affinity (KD = 5.6 nM) and high adsorption capacity (159.8 mg/g) of Nc onto the GO surface. Moreover, GO nanosheets transformed to a scroll morphology or multiple GO particles bridging by Nc, which remarkably reduced the aggregation and sedimentation rates after binding with Nc. Interestingly, co-exposure with Nc greatly alleviated the toxicity (e.g., tail malformation, yolk sac edema and oxidative stress) of GO to zebrafish embryos. Morphological and structural alterations of GO after binding to Nc contributed to the mechanisms for the antagonistic effects on the zebrafish embryos toxicity. The present work provides insights into the environmental fate and risk of GO by ubiquitous Nc in natural water.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kaiwen Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
174
|
Cao X, Ma C, Zhao J, Musante C, White JC, Wang Z, Xing B. Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. ENVIRONMENT INTERNATIONAL 2019; 131:104992. [PMID: 31288181 DOI: 10.1016/j.envint.2019.104992] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
The outstanding commercial application potential of graphene oxide (GO) will inevitably lead to its increasing release into the environment, and then affect the environmental behavior and toxicity of conventional pollutants. Interactions between arsenite [As (III)]/arsenate [As (V)] with GO and their combined toxicity to Chlorella pyrenoidosa were investigated. Under abiotic conditions, approximately 42% of the adsorbed As (III) was oxidized by GO with simulated sunlight illumination, which was induced by electron-hole pairs on the surface of GO. Co-exposure with GO greatly enhanced the toxicity of As (III, V) to alga. When adding 10 mg/L GO, the 72 h median effect concentration of As (III) and As (V) to C. pyrendoidosa decreased to 12.7 and 9.4 mg/L from 30.1 and 16.3 mg/L in the As alone treatment, respectively. One possible mechanism by which GO enhanced As toxicity could be that GO decreased the phosphate concentration in the algal medium, and then increased the accumulation of As (V) in algae. In addition, transmission electron microscope (TEM) images demonstrated that GO acted as a carrier for As (III) and As (V) transport into the algal cells. Also, GO induced severe oxidative stress, which could have subsequently compromised important detoxification pathways (e.g., As complexation with glutathione, As methylation, and intracellular As efflux) in the algal cells. Our findings highlight the significant impact of GO on the fate and toxicity of As in the aquatic environment.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Craig Musante
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
175
|
Graphene oxide nano-sheets loading with praseodymium cations: Adsorption-desorption study, quantum mechanics calculations and dual active-barrier effect for smart coatings fabrication. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
176
|
Feng K, Ni C, Yu L, Zhou W, Li X. Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids Surf B Biointerfaces 2019; 184:110518. [PMID: 31581054 DOI: 10.1016/j.colsurfb.2019.110518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
A novel indole derivative (N-(1H-2-phenyl-indole-3-ylmethyl) acrylamide, NPI) synthesized by a Friedel-Crafts alkylation reaction was identified using IR spectroscopy, 1H NMR, 13C NMR and elemental analysis. The inhibitory effect of this novel indole derivative on bacteria and marine algae was studied. The results showed that the inhibition ratios of the indole derivative against Escherichia coli and Staphylococcus aureus were 95.93% and 94.91%, respectively, and the indole derivative possessed prominent inhibitory activity against Phaeodactylum tricornutum, Nitzschia Closterium and Skeletonema costatum. These findings indicate that the indole derivative has high biological activity. Subsequently, the indole derivative was introduced to acrylate resins by free-radical polymerization. The resulting acrylate resins were subjected to self-polishing, anti-algal and antifouling test, the results of which indicated that acrylate resins containing the synthesized indole derivative could exhibit significant antifouling properties because of the combination of the biofouling resistance of the indole derivative and the self-polishing properties of acrylate. This work provides an academic foundation for studying environmentally friendly and highly efficient antifouling coatings.
Collapse
Affiliation(s)
- Kang Feng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chunhua Ni
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wenjun Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xia Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
177
|
Cao X, Ma C, Zhao J, Guo H, Dai Y, Wang Z, Xing B. Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:270-278. [PMID: 31082600 DOI: 10.1016/j.scitotenv.2019.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
We systematically investigated the reduction mechanisms and reduction kinetics of silver ions (Ag ions) by graphene oxide (GO) under ambient condition. UV-vis spectroscopy, transmission electron microscopy, and electron diffraction results revealed that silver nanoparticles (Ag NPs) could be formed from aqueous Ag ions in the presence of GO at pH 8 under light. Formation of Ag NPs increased with increasing pH (7.4, 8, and 9) and temperature (from 30 to 90); however, the increasing ionic strength and dissolved oxygen reduced the Ag NPs yield. The Ag ions reduction by GO followed pseudo-first-order kinetics under both dark and light, and light irradiation significantly accelerated the Ag NPs formation induced by GO. The phenolic-OH on GO was the dominating electron donator for Ag ion reduction in dark. Exposure to light increased the concentration of phenolic-OH on the GO surface, thereby stimulating the reduction rate of Ag ions by GO. In addition, the light induced electron-hole pairs on GO surface and light activated oxygen-centered radicals on GO surface promoted the reduction of adsorbed Ag ions by GO. Our findings provide important information for the role of GO in reducing Ag ions to Ag NPs in aquatic environments, and shed light on understanding the environmental fate and risk of both Ag ions and GO materials.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yanhui Dai
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
178
|
Souza JP, Mansano AS, Venturini FP, Santos F, Zucolotto V. Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1289-1297. [PMID: 31278452 DOI: 10.1007/s10695-019-00678-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) is a carbon nanomaterial with specific properties, which allow its use in several areas. Some studies have characterized the effects of GO on aquatic organisms, but the ability of recovery after exposure remains largely unknown. In this study, we evaluated the effects of GO on the antioxidant metabolism of zebrafish after 48 h of sub-lethal exposure, and the fish recovery after 168 h in nanoparticle-free water. After the sub-lethal exposure, superoxide dismutase (SOD) activity was significantly increased in 20 mg L-1, as well as catalase (CAT) activity in 2, 10, and 20 mg L-1, and the lipid peroxidation (LPO) had an increase in 2 mg L-1. On other hand, the glutathione peroxidase (GPx) activity was inhibited at 20 mg L-1. After 168 h of recovery in clean water, the SOD activity remained significantly increased in 20 mg L-1; the CAT activity was unchanged in all tested concentrations; the GPx activity was inhibited in 2, 10, and 20 mg L-1; and the LPO significantly decreased in 2 mg L-1. Our study suggests that GO exposure disrupts the antioxidant metabolism of adult zebrafish. Even after 168 h of recovery in clean water, homeostasis was not completely restored, although organisms developed mechanisms of recovery, and toxic effects were more subtle. Our results are pivotal to better understanding the physiological mechanisms involved in the detoxification process after GO exposure, and for strategies of protection on fish species.
Collapse
Affiliation(s)
- Jaqueline P Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil.
| | - Adrislaine S Mansano
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Francine P Venturini
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Fabrício Santos
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
179
|
Xia T, Lin Y, Guo X, Li S, Cui J, Ping H, Zhang J, Zhong R, Du L, Han C, Zhu L. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:723-730. [PMID: 31112926 DOI: 10.1016/j.envpol.2019.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Increasing production and application of nanomaterials lead to their environmental release possible. The nanomaterials with different properties may transport together in porous media, and consequently affect their environmental fates. In this study, column experiments were conducted to investigate the co-transport of two typical nanomaterials, graphene oxide (GO) and nano-titanium dioxide (nTiO2), in saturated quartz sand in NaCl and CaCl2 electrolyte solutions under both favorable and unfavorable conditions. The breakthrough curves as well as the retained profiles of single and binary nanoparticles were examined. The results indicated that nTiO2 significantly enhanced the GO retention under all examined conditions, especially at lower pH, higher ionic strength and the presence of divalent cation Ca2+. This might be attributed to the formation of less negatively charged and larger-sized GO-nTiO2 agglomerates as well as the increased retention sites on sand surface by preferentially deposited nTiO2. However, GO merely slightly enhanced the transport of nTiO2 in NaCl solutions, whereas had negligible effect on nTiO2 transport and retention in CaCl2 solutions. The highly hydrophilic and mobile GO served as a carrier and facilitated the transport of nTiO2 in NaCl solutions. In CaCl2 solutions, the strong attachment affinity between positively charged nTiO2 and negatively charged quartz sand (at pH 4.5), and dramatical accumulation of large nTiO2 agglomerates near the column inlets (at pH 6.5) led to significant deposition of nTiO2 on quartz sand. The co-presence of GO failed to counteract the retention of nTiO2 particles on sand.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yixuan Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jingshan Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Huaixiang Ping
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Rongwei Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lisha Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Chunxiao Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
180
|
Ersan G, Kaya Y, Ersan MS, Apul OG, Karanfil T. Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. CHEMOSPHERE 2019; 229:515-524. [PMID: 31100622 DOI: 10.1016/j.chemosphere.2019.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, adsorption kinetics of phenanthrene (PNT) and trichloroethylene (TCE) by a graphene nanosheet (GNS), a graphene oxide nanosheet (GO), a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based activated carbons (ACs) (F400 and HD3000) were examined in distilled and deionized water (DDW) and under natural organic matter (NOM) preloading conditions. The results showed the times needed for the adsorption of PNT and TCE to reach apparent equilibrium (i.e., ≤3% change per day) followed the order of GO ≥ MWCNT > GNS > SWCNT ∼ HD3000∼F400 and SWCNT > GNS ∼ HD3000 > F400 ∼ MWCNT > GO, respectively. The pseudo second order model successfully represented kinetics data for three classes of carbonaceous adsorbents. The Weber-Morris intraparticle diffusion model indicated three steps adsorption process for PNT and two step adsorption for TCE. In addition, the times needed to reach apparent equilibrium for the adsorption of PNT and TCE in the presence of hydrophobic (HPO) and hydrophilic (HPI) NOM solutions increased for all adsorbents (except for GO). In general, both NOM showed similar impacts on the adsorption rates of PNT and TCE. Aggregation of both GNS and CNTs rapidly occurred during initial couple hours of contact time during preloading, and spiking both PNT and TCE further increased their aggregation.
Collapse
Affiliation(s)
- Gamze Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Yasemin Kaya
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA.
| |
Collapse
|
181
|
Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019; 62:933-967. [DOI: https:/doi.org/10.1007/s11426-019-9492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 06/25/2023]
|
182
|
Gao Y, Ren X, Zhang X, Chen C. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:821-829. [PMID: 31125812 DOI: 10.1016/j.envpol.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Currently, there is little comparative data on the colloidal stability and the toxicity of ultraviolet (UV)- and visible-light (VL)-transformed graphene oxide (GO). In order to identify this knowledge gap, the physicochemical properties of UV/VL-transformed GO are investigated in detail. Attempts are made to correlate the physicochemical alterations of UV/VL-transformed GO to the observed changes in its colloidal properties and toxicity. The results show that both UV and VL irradiations induce the significant change in the color, UV-vis absorbance, morphology, surface charge, size, oxygen containing functional groups, total of carbon, and photoluminescence properties of GO. The photo-reaction behavior of GO under UV exposure is different from that under VL irradiation in terms of reaction rate, order, and extent. Finally, the UV and VL irradiations show different effects not only on the colloidal stability of GO in the City water and Dongpu Lake water, but also on the toxicity of GO to Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. This study clearly shows how the environmental fate and risk of GO are modified by UV and VL irradiations.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230000, PR China
| | - Xuemei Ren
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, PR China.
| | - Xiaodong Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, PR China
| | - Changlun Chen
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China; NAAM Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
183
|
|
184
|
Graphene Composites for Lead Ions Removal from Aqueous Solutions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142925] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The indiscriminate disposal of non-biodegradable, heavy metal ionic pollutants from various sources, such as refineries, pulp industries, lead batteries, dyes, and other industrial effluents, into the aquatic environment is highly dangerous to the human health as well as to the environment. Among other heavy metals, lead (Pb(II)) ions are some of the most toxic pollutants generated from both anthropogenic and natural sources in very large amounts. Adsorption is the simplest, efficient and economic water decontamination technology. Hence, nanoadsorbents are a major focus of current research for the effective and selective removal of Pb(II) metal ions from aqueous solution. Nanoadsorbents based on graphene and its derivatives play a major role in the effective removal of toxic Pb(II) metal ions. This paper summarizes the applicability of graphene and functionalized graphene-based composite materials as Pb(II) ions adsorbent from aqueous solutions. In addition, the synthetic routes, adsorption process, conditions, as well as kinetic studies have been reviewed.
Collapse
|
185
|
Li MF, Liu YG, Zeng GM, Liu N, Liu SB. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. CHEMOSPHERE 2019; 226:360-380. [PMID: 30947046 DOI: 10.1016/j.chemosphere.2019.03.117] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 05/27/2023]
Abstract
Due to their extensive application in human and veterinary medicine, antibiotics have been found worldwide and studied as new pollutants in the aquatic environment. In order to remove such pollutants, adsorption and photocatalysis have attracted tremendous attention because of their great potential in antibiotics removal from aqueous solutions. Graphene, as a novel two-dimensional nanomaterial, possesses unique structure and physicochemical properties, which can be used to efficiently adsorb and photodegrade antibiotics. This review provides an overview of the adsorptive and catalytic properties of graphene, and recent advances in adsorption and photodegradation of antibiotics by graphene and its derivatives. The factors that affect the adsorption and photodegradation of antibiotics are reviewed and discussed. Furthermore, the underlying mechanisms of adsorption and photodegradation are summarized and analyzed. Meanwhile, statistical analysis is conducted based on the number of papers and the maximum adsorption and photodegradation ability on various antibiotics removal. Finally, some unsolved problems together with major challenges that exist in the fabrication and application of graphene-based nanocomposites and the development for antibiotics removal is also proposed. This work provides theoretical guidance for subsequent research in the field of adsorption and photocatalytic removal of antibiotics from aqueous solution, especially on influence factors and mechanisms aspects.
Collapse
Affiliation(s)
- Mei-Fang Li
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China.
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China
| | - Ni Liu
- College of Environmental Science and Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, PR China
| | - Shao-Bo Liu
- School of Metallurgy and Environment, Central South University, Lushan South Road, Yuelu District, Changsha, 410083, PR China; School of Architecture and Art, Central South University, Lushan South Road, Yuelu District, Changsha, 410083, PR China.
| |
Collapse
|
186
|
Lin CH, Li CM, Chen CH, Chen WH. Removal of chlorpheniramine and variations of nitrosamine formation potentials in municipal wastewaters by adsorption onto the GO-Fe 3O 4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20701-20711. [PMID: 31102232 DOI: 10.1007/s11356-019-05278-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Chlorpheniramine is a pharmaceutical pollutant and a precursor of carcinogenic nitrosamines during disinfection/oxidation. In our previous study, graphene oxide coated with magnetite (GO-Fe3O4) was capable of removing chlorpheniramine in deionized water by adsorption. This study investigated the removal of chlorpheniramine and its nitrosamine formation potentials (FPs) by adsorption onto magnetic GO-Fe3O4, with respect to the influence by using real municipal wastewaters as the background. In the results, the adsorption performances of chlorpheniramine in wastewaters decreased in the order: GO-Fe3O4 suspension > GO-Fe3O4 particles > activated carbon. Chlorpheniramine adsorptions on GO-Fe3O4 particles and activated carbon were reduced by using real wastewaters as the background, whereas chlorpheniramine adsorption on GO-Fe3O4 suspension was enhanced due to the effects of surface charge on GO-Fe3O4 and ionic strength variation in water. The fittings of adsorption isotherms indicated that the wastewater background reduced the surface heterogeneity of GO-Fe3O4 suspension and improved the adsorption performance. Appreciable removal efficiencies of NDMA and other nitrosamine FPs were observed when GO-Fe3O4 particles were added in real wastewaters. However, when chlorpheniramine was present in wastewaters, chlorpheniramine adsorption and degradation reaction simultaneously occurred on the surface of GO-Fe3O4, increasing NDMA and other nitrosamine FPs in wastewaters after GO-Fe3O4 addition for chlorpheniramine adsorption. The assumption was further demonstrated by observing the NDMA-FP increase during chlorpheniramine adsorption on GO-Fe3O4 in deionized water. GO-Fe3O4 is a potential adsorbent for chlorpheniramine removal. Nevertheless, the low treatment efficiencies at high doses limit its application for nitrosamine FP adsorptions in real wastewaters.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Chi-Min Li
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
187
|
Zeng Z, Wang Y, Zhou Q, Yang K, Lin D. New insight into the aggregation of graphene oxide in synthetic surface water: Carbonate nanoparticle formation on graphene oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:366-374. [PMID: 31022642 DOI: 10.1016/j.envpol.2019.03.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO), used in a wide variety of applications, is increasingly being introduced into aquatic environments; this situation calls for research on GO aggregation and sedimentation to regulate the environmental behaviors and risks. Many studies have investigated the aggregation and the mechanism of GO in water with a single background salt (monosalt system); however, this may not reflect real water environments where multiple salts coexist (multisalt system). A typical synthetic surface water (soft water) with representative multisalts was therefore used to study the aggregation and sedimentation of GO. The GO concentration-dependent aggregation (low concentration aggregation, high concentration stability) was observed in the soft water, and this concentration-dependent aggregation is opposite to the aggregation in monosalt systems (NaCl or CaCl2 solutions). The presence of GO sheets induced the formation of amorphous CaMg(CO3)2 nanoparticles on the GO surfaces in the soft water, and the formed nanoparticles promoted the aggregation and sedimentation of low concentrations of GO through bridging action. Neutral and alkaline conditions were favorable for the formation of CaMg(CO3)2 nanoparticles and the induced GO aggregation. These findings show a new mechanism of GO aggregation in environmentally relevant waters and help us to better evaluate the environmental fate of GO.
Collapse
Affiliation(s)
- Zhiyuan Zeng
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanlong Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingbo Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
188
|
Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9492-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
189
|
Cao G, Lin H, Fraser S, Zheng X, Del Rosal B, Gan Z, Wei S, Gan X, Jia B. Resilient Graphene Ultrathin Flat Lens in Aerospace, Chemical, and Biological Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20298-20303. [PMID: 31063351 DOI: 10.1021/acsami.9b05109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of ultrathin flat lenses has revolutionized the lens technologies and holds great promise for miniaturizing the conventional lens system in integrated photonic applications. In certain applications, the lenses are required to operate in harsh and/or extreme environments, for example aerospace, chemical, and biological environments. Under such circumstances, it is critical that the ultrathin flat lenses can be resilient and preserve their outstanding performance. However, the majority of the demonstrated ultrathin flat lenses are based on metal or semiconductor materials that have poor chemical, thermal, and UV stability, which limit their applications. Herein, we experimentally demonstrate a graphene ultrathin flat lens that can be applied in harsh environments for different applications, including a low Earth orbit space environment, strong corrosive chemical environments (pH = 0 and pH = 14), and biochemical environment. The graphene lenses have extraordinary environmental stability and can maintain a high level of structural integrity and outstanding focusing performance under different test conditions. Thus, it opens tremendous practical application opportunities for ultrathin flat lenses.
Collapse
Affiliation(s)
- Guiyuan Cao
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Scott Fraser
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Xiaorui Zheng
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Blanca Del Rosal
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Zhixing Gan
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Shibiao Wei
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Xiaosong Gan
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Engineering, Science and Technology , Swinburne University of Technology , John Street , Hawthorn VIC 3122 , Australia
| |
Collapse
|
190
|
Hu X, Lu D. Intensification of chemical separation engineering by nanostructured channels and nanofluidics: From theories to applications. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
191
|
Cai Y, Wang X, Feng J, Zhu M, Alsaedi A, Hayat T, Tan X. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:434-442. [PMID: 30913442 DOI: 10.1016/j.envpol.2019.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Efficient sequestration of U(VI) from complex aqueous solution is of vital importance for environmental remediation. In this work, the fully phosphorylated graphene oxide foam (phos-GOF) was synthesized via a facile hydrothermal method and the as-prepared 3D phos-GOF was served as an adsorbent to capture U(VI) from aqueous solution. The introduction of abundant phosphorus-containing groups via phytic acid endows phos-GOF good hydrophilia and excellent affinity for U(VI). The adsorption performance of phos-GOF for U(VI) was carefully evaluated under different environments. phos-GOF shows rapid and high efficiency for U(VI) adsorption. The maximum adsorption capacity of phos-GOF for U(VI) is ∼483 mg/g, which is much higher than that of pristine graphene oxide foam (GOF). In addition, the spent 3D phos-GOF can be easily regenerated by a simple and low-cost desorption process using 0.02 mol/L HNO3. The interaction mechanism between phos-GOF and U(VI) is mainly attributed to the inner-sphere complexation between phosphoric functional groups and U(VI) based on a series of spectroscopic analyses. The 3D phos-GOF exhibits favorable sequestration performance towards U(VI) which can be used as a potential candidate in uranium-bearing wastewater treatment and disposal.
Collapse
Affiliation(s)
- Yawen Cai
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | - Xin Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jinghua Feng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Mingyu Zhu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ahmed Alsaedi
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tasawar Hayat
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
192
|
Adeleye AS, Ho KT, Zhang M, Li Y, Burgess RM. Fate and Transformation of Graphene Oxide in Estuarine and Marine Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5858-5867. [PMID: 30998850 PMCID: PMC6707712 DOI: 10.1021/acs.est.8b06485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility of graphene oxide (GO) exposure to the environment has spurred several studies investigating the fate of this nanoparticle (NP). However, there is currently little or no data on the fate of GO in estuarine and marine waters. This study investigated the aggregation, sedimentation, and transformation of GO in saline waters, considering the roles of salinity (0-50 ‰), light (visible light and solar irradiation), and aging, among others. The attachment efficiency of GO reached unity at 1.33 ‰. The sedimentation rate of GO increased with salinity up to 10 ‰ after which it decreased due to formation of ramified GO agglomerates and media density. On the basis of the sedimentation rate determined at 30 ‰ (0.121 m/d), the residence time of GO agglomerates in the euphotic zone of typical open oceans will exceed 500 days. Aging in the presence of visible light increased the relative abundance of the GO's aromatic (C-C/C=C) fraction, reducing the NP. Reduction of GO in visible light was confirmed via UV-vis and Raman spectroscopic techniques. Reduction of GO was faster under solar irradiation. This study demonstrates that when introduced into saline waters, GO will undergo a range of transformations affecting its fate and potential effects to aquatic organisms.
Collapse
Affiliation(s)
- Adeyemi S. Adeleye
- National Research Council Research Associate, US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| | - Min Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, USA
| |
Collapse
|
193
|
Li J, Chen J, Lu T, Wang Y, Zhang H, Shang Z, Li D, Zhou Y, Qi Z. Effects of low-molecular weight organic acids on the transport of graphene oxide nanoparticles in saturated sand columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:94-102. [PMID: 30798247 DOI: 10.1016/j.scitotenv.2019.02.242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The impact of low-molecular weight organic acids (LMWOAs) on the transport of graphene oxide (GO) nanoparticles in saturated quartz sand was investigated. The different LMWOAs such as acetic acid, glycolic acid, malonic acid, and tartaric acid were used in experiments. The effects of LMWOAs on the transport of GO were markedly dependent upon organic acid species. In general, the transport enhancement effects followed the order of tartaric acid > malonic acid > glycolic acid > acetic acid, the regular pattern might be related to amount and type of functional groups of LMWOAs. Additionally, the different enhanced ability of LMWOAs was determined by their molecular weight. In the presence of Na+, the main deposition mechanism was ascribed to steric hindrance and competition between LMWOA and GO for deposition sites on grain surfaces under acidic conditions (i.e., pH 4.0 and 5.0). Batch adsorption experiments indicated the extents of competitive adsorption between LMWOAs and GO on quartz sand. In addition, the DLVO theory was not applicable to describe the transport of GO in the presence of LMWOAs at pH 5.0. Nevertheless, electrostatic and steric repulsion, existing between GO and sand grains, were the most important deposition mechanisms under the neutral condition (i.e., pH 7.0). When Ca2+ was the main cation in the background solution, the transport enhancement effects followed quite similar order to those of Na+, mainly due to different complexing strength of organic acids.
Collapse
Affiliation(s)
- Jiaqi Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiuyan Chen
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ying Wang
- Henan University Minsheng College, Kaifeng 475004, China
| | - Haojing Zhang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhongbo Shang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Deliang Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| |
Collapse
|
194
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
195
|
Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, Leo BF. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf B Biointerfaces 2019; 181:6-15. [PMID: 31103799 DOI: 10.1016/j.colsurfb.2019.05.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
The antibacterial nature of graphene oxide (GO) has stimulated wide interest in the medical field. Although the antibacterial activity of GO towards bacteria has been well studied, a deeper understanding of the mechanism of action of GO is still lacking. The objective of the study was to elucidate the difference in the interactions of GO towards Gram-positive and Gram-negative bacteria. The synthesized GO was characterized by Ultraviolet-visible spectroscopy (UV-vis), Raman and Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). Viability, time-kill and Lactose Dehydrogenase (LDH) release assays were carried out along with FESEM, TEM and ATR-FTIR analysis of GO treated bacterial cells. Characterizations of synthesized GO confirmed the transition of graphene to GO and the antibacterial activity of GO was concentration and time-dependent. Loss of membrane integrity in bacteria was enhanced with increasing GO concentrations and this corresponded to the elevated release of LDH in the reaction medium. Surface morphology of GO treated bacterial culture showed apparent differences in the mechanism of action of GO towards Gram-positive and Gram-negative bacteria where cell entrapment was mainly observed for Gram-positive Staphylococcus aureus and Enterococcus faecalis whereas membrane disruption due to physical contact was noted for Gram-negative Escherichia coli and Pseudomonas aeruginosa. ATR-FTIR characterizations of the GO treated bacterial cells showed changes in the fatty acids, amide I and amide II of proteins, peptides and amino acid regions compared to untreated bacterial cells. Therefore, the data generated further enhance our understanding of the antibacterial activity of GO towards bacteria.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Eaqub Ali
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jimmy Nelson Appaturi
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zhan Yuin Ong
- School of Physics and Astronomy and Leeds Institute of Biomedical and Clinical Sciences, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
196
|
Maryam Saleh Mohammadnia, Hemmati S, Ghasemi N, Bahari M. Preparation of Carboxylated Graphene Oxide/Polydimethacrylate Nanocomposites via Atom Transfer Radical Polymerization and the Mechanical Properties of Nanocomposites. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Rathour RKS, Bhattacharya J, Mukherjee A. β-Cyclodextrin conjugated graphene oxide: A regenerative adsorbent for cadmium and methylene blue. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
198
|
Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, Yang J, Zhang J, Luo L, Zhou Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:128-138. [PMID: 30784860 DOI: 10.1016/j.jenvman.2019.02.068] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 05/19/2023]
Abstract
With the development of the removal of organic pollutants in the soil and water environment, antibiotics have been considered as emerging pollutants and received considerable attention among the scientific community. Thus, there is a need for an effective, economical, fast, operational feasible and environmental-friendly technology to remove antibiotics. Adsorption technology would be one of the most promising option on the basis that it best meets the criteria we set out above. From the most primitive activated carbon to the most innovative modified biochar, carbon-based materials have played a significant role in the adsorption process of antibiotics all the time. This paper reviews the adsorption behavior of some representative antibiotics (e.g., chloramphenicols, sulfonamides, tetracyclines, flouroquinolones) over various carbonaceous materials (i.e., activated carbon, carbon nanotubes, graphene, and biochar). Nevertheless, in addition to the structural characteristics and adsorption capacities of carbon-based materials, a special emphasis was placed on the underlying adsorption mechanisms and roles of different influencing factors in the adsorption process. Moreover, the knowledge gaps and research challenges have been highlighted, including design and optimization of the carbonaceous materials for antibiotics adsorption.
Collapse
Affiliation(s)
- Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Zhangyi Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yuyi Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China.
| | - Xiao Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Zhi Zhou
- College of Science, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
199
|
Mu Y, Zhu K, Luan J, Zhang S, Zhang C, Na R, Yang Y, Zhang X, Wang G. Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
200
|
Wang Q, Li C, Wang Y, Que X. Phytotoxicity of Graphene Family Nanomaterials and Its Mechanisms: A Review. Front Chem 2019; 7:292. [PMID: 31119125 PMCID: PMC6506787 DOI: 10.3389/fchem.2019.00292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Graphene family nanomaterials (GFNs) have experienced significant development in recent years and have been used in many fields. Despite the benefits, they bring to society and the economy, their potential for posing environmental and health risks should also be considered. The increasing release of GFNs into the ecosystem is one of the key environmental problems that humanity is facing. Although most of these nanoparticles are present at low concentrations, many of them raise considerable toxicological concerns, particularly regarding their accumulation in plants and the consequent toxicity introduced at the bottom of the food chain. Here, we review the recent progress in the study of toxicity caused by GFNs to plants, as well as its influencing factors. The phytotoxicity of GFNs is mainly manifested as a delay in seed germination and a severe loss of morphology of the plant seedling. The potential mechanisms of phytotoxicity were summarized. Key mechanisms include physical effects (shading effect, mechanical injury, and physical blockage) and physiological and biochemical effects (enhancement of reactive oxygen species (ROS), generation and inhibition of antioxidant enzyme activities, metabolic disturbances, and inhibition of photosynthesis by reducing the biosynthesis of chlorophyll). In the future, it is necessary to establish a widely accepted phytotoxicity evaluation system for safe manufacture and use of GFNs.
Collapse
Affiliation(s)
- Qinghai Wang
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cui Li
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaoe Que
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|