151
|
Kasprzyk R, Starek BJ, Ciechanowicz S, Kubacka D, Kowalska J, Jemielity J. Fluorescent Turn-On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Cap-Recognizing Proteins. Chemistry 2019; 25:6728-6740. [PMID: 30801798 DOI: 10.1002/chem.201900051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Indexed: 12/16/2022]
Abstract
The m7 G cap is a unique nucleotide structure at the 5'-end of all eukaryotic mRNAs. The cap specifically interacts with numerous cellular proteins and participates in biological processes that are essential for cell growth and function. To provide small molecular probes to study important cap-recognizing proteins, we synthesized m7 G nucleotides labeled with fluorescent tags via the terminal phosph(on)ate group and studied how their emission properties changed upon protein binding or enzymatic cleavage. Only the pyrene-labeled compounds behaved as sensitive turn-on probes. A pyrene-labeled m7 GTP analogue showed up to eightfold enhanced fluorescence emission upon binding to eukaryotic translation initiation factor 4E (eIF4E) and over 30-fold enhancement upon cleavage by decapping scavenger (DcpS) enzyme. These observations served as the basis for developing binding- and hydrolytic-activity assays. The assay utility was validated with previously characterized libraries of eIF4E ligands and DcpS inhibitors. The DcpS assay was also applied to study hydrolytic activity and inhibition of endogenous enzyme in cytoplasmic extracts from HeLa and HEK cells.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Beata J Starek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Sylwia Ciechanowicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
152
|
Archer SA, Raza A, Dröge F, Robertson C, Auty AJ, Chekulaev D, Weinstein JA, Keane T, Meijer AJHM, Haycock JW, MacNeil S, Thomas JA. A dinuclear ruthenium(ii) phototherapeutic that targets duplex and quadruplex DNA. Chem Sci 2019; 10:3502-3513. [PMID: 30996941 PMCID: PMC6430095 DOI: 10.1039/c8sc05084h] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
With the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new iso-structural derivative containing RuII(TAP)2 fragments (TAP = 1,4,5,8-tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays Ru → L-based 3MLCT emission in both MeCN and water. Results from electrochemical studies and emission quenching experiments involving guanosine monophosphate are consistent with an excited state located on a TAP moiety. This hypothesis is further supported by detailed DFT calculations, which take into account solvent effects on excited state dynamics. Cell-free steady-state and time-resolved optical studies on the interaction of the new complex with duplex and quadruplex DNA show that the complex binds with high affinity to both structures and indicate that its photoexcited state is also quenched by DNA, a process that is accompanied by the generation of the guanine radical cation sites as photo-oxidization products. Like the parent complex, this new compound is taken up by live cells where it primarily localizes within the nucleus and displays low cytotoxicity in the absence of light. However, in complete contrast to [{RuII(phen)2}2(tpphz)]4+, the new complex is therapeutically activated by light to become highly phototoxic toward malignant human melanoma cell lines showing that it is a promising lead for the treatment of this recalcitrant cancer.
Collapse
Affiliation(s)
- Stuart A Archer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Ahtasham Raza
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - Fabian Dröge
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Craig Robertson
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Alexander J Auty
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Dimitri Chekulaev
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Julia A Weinstein
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Theo Keane
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Anthony J H M Meijer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - John W Haycock
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - Sheila MacNeil
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - James A Thomas
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| |
Collapse
|
153
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
154
|
Woźniak AP, Leś A, Adamowicz L. Theoretical modeling of DNA electron hole transport through polypyrimidine sequences: a QM/MM study. J Mol Model 2019; 25:97. [PMID: 30874898 DOI: 10.1007/s00894-019-3976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
The phenomenon of DNA hole transport (HT) has attracted of scientists for several decades, mainly due to its potential application in molecular electronics. As electron holes mostly localize on purine bases in DNA, the majority of scientific effort has been invested into chemically modifying the structures of adenine and guanine in order to increase their HT-mediating properties. In this work we examine an alternative, never yet explored, way of affecting the HT efficiency by forcing electron holes to localize on pyrimidine bases and move between them. Using an enhanced and revised version of our previously developed QM/MM model, we perform simulations of HT through polyadenine, polycytosine, polyguanine, and polythymine stacks according to a multistep hopping mechanism. From these simulations, kinetic parameters for HT are obtained. The results indicate a particularly high efficiency of cytosine→cytosine hopping, which is about ten times higher than the G → G hopping. We also discuss possible improvement of cytosine HT by modifying the oxidoreductive properties of complementary guanine residues.
Collapse
Affiliation(s)
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Pharmaceutical Research Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Ludwik Adamowicz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA.
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
155
|
Oladepo SA, Yusuf BO. Simple protocol for sequence-specific detection of mixed-base nucleic acids using a smart probe with NABs. Anal Biochem 2019; 568:53-56. [PMID: 30610841 DOI: 10.1016/j.ab.2018.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
A fluorescent smart probe (SP) was used to detect a mixed-base ribonucleic acids sequence. While the SP presents excellent sensitivity for the target, it gives subtle discrimination between the perfect target sequence and several mismatch sequences. Its sequence-specificity for the target was greatly enhanced by using nucleic acid blockers (NABs), which are unlabeled, non-fluorescent hairpin oligonucleotides that are perfectly complementary to those mismatch sequences. This approach is simple, feasible at room temperature, requires no amplification enzymes, and it is suitable for applications requiring routine nucleic acids sequence detection and quantification methods such as genetic testing and biomedical diagnostics.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Basiru O Yusuf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
156
|
Reuter H, van Bodegraven AM, Bender E, Knies C, Diek N, Beginn U, Hammerbacher K, Schneider V, Kinscherf R, Bonaterra GA, Svajda R, Rosemeyer H. Guanosine Nucleolipids: Synthesis, Characterization, Aggregation and X-Ray Crystallographic Identification of Electricity-Conducting G-Ribbons. Chem Biodivers 2019; 16:e1900024. [PMID: 30793846 DOI: 10.1002/cbdv.201900024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 11/06/2022]
Abstract
The lipophilization of β-d-riboguanosine (1) with various symmetric as well as asymmetric ketones is described (→3a-3f). The formation of the corresponding O-2',3'-ketals is accompanied by the appearance of various fluorescent by-products which were isolated chromatographically as mixtures and tentatively analyzed by ESI-MS spectrometry. The mainly formed guanosine nucleolipids were isolated and characterized by elemental analyses, 1 H-, 13 C-NMR and UV spectroscopy. For a drug profiling, static topological polar surface areas as well as 10 logPOW values were calculated by an increment-based method as well as experimentally for the systems 1-octanol-H2 O and cyclohexane-H2 O. The guanosine-O-2',3'-ketal derivatives 3b and 3a could be crystallized in (D6 )DMSO - the latter after one year of standing at ambient temperature. X-ray analysis revealed the formation of self-assembled ribbons consisting of two structurally similar 3b nucleolipid conformers as well as integrated (D6 )DMSO molecules. In the case of 3a ⋅ DMSO, the ribbon is formed by a single type of guanosine nucleolipid molecules. The crystalline material 3b ⋅ DMSO was further analyzed by differential scanning calorimetry (DSC) and temperature-dependent polarization microscopy. Crystallization was also performed on interdigitated electrodes (Au, distance, 5 μm) and visualized by scanning electron microscopy. Resistance and amperage measurements clearly demonstrate that the electrode-bridging 3b crystals are electrically conducting. All O-2',3'-guanosine ketals were tested on their cytostatic/cytotoxic activity towards phorbol 12-myristate 13-acetate (PMA)-differentiated human THP-1 macrophages as well as against human astrocytoma/oligodendroglioma GOS-3 cells and against rat malignant neuroectodermal BT4Ca cells.
Collapse
Affiliation(s)
- Hans Reuter
- Anorganische Chemie II, Strukturchemie, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Anna Maria van Bodegraven
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Eugenia Bender
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Christine Knies
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Nadine Diek
- Organic Chemistry I - Organic Materials Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Uwe Beginn
- Organic Chemistry I - Organic Materials Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Katharina Hammerbacher
- Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-, University of Marburg, Robert-Koch-Strasse 8, DE-35032, Marburg, Germany
| | - Vanessa Schneider
- Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-, University of Marburg, Robert-Koch-Strasse 8, DE-35032, Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-, University of Marburg, Robert-Koch-Strasse 8, DE-35032, Marburg, Germany
| | - Gabriel A Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-, University of Marburg, Robert-Koch-Strasse 8, DE-35032, Marburg, Germany
| | - Rainer Svajda
- Department of Physics, Workshop for Electronics/IT, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| | - Helmut Rosemeyer
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, DE-49069, Osnabrück, Germany
| |
Collapse
|
157
|
Ahmed IA, Acharyya A, Eng CM, Rodgers JM, DeGrado WF, Jo H, Gai F. 4-Cyanoindole-2'-deoxyribonucleoside as a Dual Fluorescence and Infrared Probe of DNA Structure and Dynamics. Molecules 2019; 24:E602. [PMID: 30744004 PMCID: PMC6384856 DOI: 10.3390/molecules24030602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022] Open
Abstract
Unnatural nucleosides possessing unique spectroscopic properties that mimic natural nucleobases in both size and chemical structure are ideally suited for spectroscopic measurements of DNA/RNA structure and dynamics in a site-specific manner. However, such unnatural nucleosides are scarce, which prompts us to explore the utility of a recently found unnatural nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS), as a site-specific spectroscopic probe of DNA. A recent study revealed that 4CNI-NS is a universal nucleobase that maintains the high fluorescence quantum yield of 4-cyanoindole and that among the four natural nucleobases, only guanine can significantly quench its fluorescence. Herein, we further show that the C≡N stretching frequency of 4CNI-NS is sensitive to the local environment, making it a useful site-specific infrared probe of oligonucleotides. In addition, we demonstrate that the fluorescence-quencher pair formed by 4CNI-NS and guanine can be used to quantitatively assess the binding affinity of a single-stranded DNA to the protein system of interest via fluorescence spectroscopy, among other applications. We believe that this fluorescence binding assay is especially useful as its potentiality allows high-throughput screening of DNA⁻protein interactions.
Collapse
Affiliation(s)
- Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Christina M Eng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jeffrey M Rodgers
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
158
|
Zhang Y, Xie P, Yang S, Han K. Ionization and Electron Attachment for Nucleobases in Water. J Phys Chem B 2019; 123:1237-1247. [DOI: 10.1021/acs.jpcb.8b09435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, Binhai Road 72, Qingdao 266237, China
| | - Peng Xie
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
159
|
Zuffo M, Xie X, Granzhan A. Strength in Numbers: Development of a Fluorescence Sensor Array for Secondary Structures of DNA. Chemistry 2019; 25:1812-1818. [DOI: 10.1002/chem.201805422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Xiao Xie
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| |
Collapse
|
160
|
Wang M, Choi B, Sun Z, Wei X, Feng A, Thang SH. Spindle-like and telophase-like self-assemblies mediated by complementary nucleobase molecular recognition. Chem Commun (Camb) 2019; 55:1462-1465. [DOI: 10.1039/c8cc09923e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Supramolecular nanoparticles based on complementary nucleobase interactions have aroused wide interest.
Collapse
Affiliation(s)
- Mu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhonghe Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaohu Wei
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- School of Chemistry
- Monash University
- Clayton Campus
- VIC 3800
- Australia
| |
Collapse
|
161
|
Avagliano D, Sánchez-Murcia PA, González L. Directional and regioselective hole injection of spiropyran photoswitches intercalated into A/T-duplex DNA. Phys Chem Chem Phys 2019; 21:17971-17977. [DOI: 10.1039/c9cp03398j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hole electron transfer of UV excited spiropyran intercalated in dsDNA is directional, asymmetric and regioselective, as shown by quantitative multiscale computations.
Collapse
Affiliation(s)
- Davide Avagliano
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Pedro A. Sánchez-Murcia
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Leticia González
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
162
|
Target-switched triplex nanotweezer and synergic fluorophore translocation for highly selective melamine assay. Mikrochim Acta 2018; 186:42. [PMID: 30569196 DOI: 10.1007/s00604-018-3134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
This paper describes a triplex DNA nanotweezer to specifically capture melamine (MEL). The triplex-forming oligonucleotide (TFO) arm can be switched from the open state to the closed state once MEL binds to the abasic site (AP site) in duplex via the bifacial hydrogen bonding with thymines. Following this nanotweezer operation, the AP site-bound fluorophore is translocated to the terminal triplet to subsequently light up the nanotweezer. The TFO arm is found to be pivotal for permitting the AP site binding. The synergic processes of target competition and fluorophore translocation support a high selectivity for the MEL assay even against the inherent adenosine and the MEL hydrolysis products. Chelerythrine is employed as the fluorescent probe. The detection limit of MEL was estimated to be about 140 nM assuming a signal-to-noise ratio of 3. It was applied to the determination of MEL in spiked milk samples without any separation procedure. Conceivably, this method opens a new avenue towards highly selective triplex-based sensors by making use of other commercially available DNA modifications for recognizing other analytes. Graphical abstract Schematic presentation of a triplex nanotweezer with an open-to-close conversion upon the abasic site binding of melamine. The assay is based on a synergic fluorophore translocation. The corresponding duplex otherwise shows no binding with melamine. Chelerythrine (CHE) with a yellow-green emission peaking at 544 nm is employed as the fluorescent probe.
Collapse
|
163
|
Teppang KL, Lee RW, Burns DD, Turner MB, Lokensgard ME, Cooksy AL, Purse BW. Electronic Modifications of Fluorescent Cytidine Analogues Control Photophysics and Fluorescent Responses to Base Stacking and Pairing. Chemistry 2018; 25:1249-1259. [PMID: 30338571 DOI: 10.1002/chem.201803653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 11/07/2022]
Abstract
The rational design of fluorescent nucleoside analogues is greatly hampered by the lack of a general method to predict their photophysics, a problem that is especially acute when base pairing and stacking change fluorescence. To better understand these effects, a series of tricyclic cytidine (tC and tCO ) analogues ranging from electron-rich to electron-deficient was designed and synthesized. They were then incorporated into oligonucleotides, and photophysical responses to base pairing and stacking were studied. When inserted into double-stranded DNA oligonucleotides, electron-rich analogues exhibit a fluorescence turn-on effect, in contrast with the electron-deficient compounds, which show diminished fluorescence. The magnitude of these fluorescence changes is correlated with the oxidation potential of nearest neighbor nucleobases. Moreover, matched base pairing enhances fluorescence turn-on for the electron-rich compounds, and it causes a fluorescence decrease for the electron-deficient compounds. For the tCO compounds, the emergence of vibrational fine structure in the fluorescence spectra in response to base pairing and stacking was observed, offering a potential new tool for studying nucleic acid structure and dynamics. These results, supported by DFT calculations, help to rationalize fluorescence changes in the base stack and will be useful for selecting the best fluorescent nucleoside analogues for a desired application.
Collapse
Affiliation(s)
- Kristine L Teppang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - Raymond W Lee
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - Dillon D Burns
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - M Benjamin Turner
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - Melissa E Lokensgard
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - Andrew L Cooksy
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
164
|
Han Y, Zhang F, Gong H, Cai C. Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes. Mikrochim Acta 2018; 186:30. [PMID: 30564958 DOI: 10.1007/s00604-018-3119-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
A DNA-templated copper nanoparticle (CuNP) probe has been developed for the determination of the human immunodeficiency virus oligonucleotide (HIV-DNA). The function of the probe relies on affinity binding-induced DNA hybridization associated with the use of double G-quadruplexes. Double-stranded DNA (dsDNA) with poly(AT-TA) bases was used as a template for synthesis of dsDNA-CuNPs. These have weak fluorescence. In the next step, two G-rich sequences that are linked to both sides of the ds-DNA are locked by HIV complementary DNA (cDNA). If HIV-DNA is introduced, it will hybridize with cDNA, thereby transforming the two G-rich sequences into G-quadruplexes. This enhances the fluorescence of the adjacent dsDNA-CuNPs. Fluorescence increases linearly in the 1 to 200 and 250-1000 nM HIV-DNA concentration range, and the detection limit is 13 pM. This enzyme-free fluorometric assay is time-saving, easily operated, and therefore has large potential in biosensing because it may be extended to various other DNA targets. Graphic abstract Double-strand DNA-templated copper nanoparticles (DNA-CuNPs) have weak fluorescence. When Human Immunodeficiency Virus oligonucleotide (HIV-DNA) is added, it completely hybridized with HIV complementary DNA (cDNA). As a result, the two exposed G-rich sequences are transformed into G-quadruplexes, and an apparent increase in the fluorescence intensity can be observed. (AA: ascorbic acid).
Collapse
Affiliation(s)
- Yunpeng Han
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
165
|
Li Y, Artés JM, Demir B, Gokce S, Mohammad HM, Alangari M, Anantram MP, Oren EE, Hihath J. Detection and identification of genetic material via single-molecule conductance. NATURE NANOTECHNOLOGY 2018; 13:1167-1173. [PMID: 30397286 DOI: 10.1038/s41565-018-0285-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/20/2018] [Indexed: 05/05/2023]
Abstract
The ongoing discoveries of RNA modalities (for example, non-coding, micro and enhancer) have resulted in an increased desire for detecting, sequencing and identifying RNA segments for applications in food safety, water and environmental protection, plant and animal pathology, clinical diagnosis and research, and bio-security. Here, we demonstrate that single-molecule conductance techniques can be used to extract biologically relevant information from short RNA oligonucleotides, that these measurements are sensitive to attomolar target concentrations, that they are capable of being multiplexed, and that they can detect targets of interest in the presence of other, possibly interfering, RNA sequences. We also demonstrate that the charge transport properties of RNA:DNA hybrids are sensitive to single-nucleotide polymorphisms, thus enabling differentiation between specific serotypes of Escherichia coli. Using a combination of spectroscopic and computational approaches, we determine that the conductance sensitivity primarily arises from the effects that the mutations have on the conformational structure of the molecules, rather than from the direct chemical substitutions. We believe that this approach can be further developed to make an electrically based sensor for diagnostic purposes.
Collapse
Affiliation(s)
- Yuanhui Li
- Electrical and Computer Engineering Department, University of California Davis, Davis, CA, USA
| | - Juan M Artés
- Electrical and Computer Engineering Department, University of California Davis, Davis, CA, USA
- Biophysics and Photosynthesis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Chemistry Department, University of Massachusetts Lowell, Lowell, MA, USA
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Sumeyye Gokce
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Hashem M Mohammad
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Mashari Alangari
- Electrical and Computer Engineering Department, University of California Davis, Davis, CA, USA
| | - M P Anantram
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
| | - Joshua Hihath
- Electrical and Computer Engineering Department, University of California Davis, Davis, CA, USA.
| |
Collapse
|
166
|
1 H-[1,2,4]Triazolo[4,3- a]pyridin-4-ium and 3 H-[1,2,4]triazolo[4,3- a]quinolin-10-ium derivatives as new intercalating agents for DNA. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTwo new cationic DNA intercalators, 3-phenyl-1-(6-phenylpyridin-2-yl)-1H-[1,2,4]triazolo[4,3-a]pyridin-4-ium (1a)+and 1-phenyl-3-(6-phenylpyridin-2-yl)-3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium (1b)+, were synthesized from 2-chloropyridine and 2-chloroquinoline, respectively, in a four-step procedure. Generation of the hydrazine, followed by condensation with an aldehyde to give a hydrazone and subsequent Buchwald-Hartwig amination gave a mixture ofE- andZ-configuredN,N-functionalized hydrazones. Finally, oxidative cyclisation gave rise to the formation of the cationic DNA intercalators, whose molecular structures were determined by single-crystal X-ray diffraction analysis of the hexafluorophosphate and tribromide salt of (1a)+and (1b)+, respectively. The intercalative binding of (1a)PF6and (1b)PF6to ctDNA was confirmed by means of UV, CD and luminescence spectroscopy, determination of the DNA melting temperature and by rheology measurements.
Collapse
|
167
|
Dong K, Zhou J, Yang T, Dai S, Tan H, Chen Y, Pan H, Chen J, Audit B, Zhang S, Xu J. Sensitive Hg 2+ Ion Detection Using Metal Enhanced Fluorescence of Novel Polyvinyl Pyrrolidone (PVP)-Templated Gold Nanoparticles. APPLIED SPECTROSCOPY 2018; 72:1645-1652. [PMID: 29767534 DOI: 10.1177/0003702818775704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we report a straightforward strategy for Hg2+ ion detection. Fluorescent Au nanoparticles (NPs) were one-pot synthesized using a polymer (polyvinyl pyrrolidone [PVP]) as both capping and fluorescence agent. The as-synthesized PVP-Au NPs showed a remarkably rapid response selectively for Hg2+ ions compared to 14 other metal ions. The detection limit of Hg2+ was estimated at 100 nM. We discuss the emission and quenching mechanism of the PVP-Au NPs, the former being attributed to metal enhanced fluorescence and the latter being related to static quenching by Hg2+. The fluorescence of PVP-Au NPs offers an efficient and reliable strategy for Hg2+ ions detection. They therefore have a great potential for applications in health and environmental monitoring.
Collapse
Affiliation(s)
- Kailong Dong
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jiasheng Zhou
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Taiqun Yang
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Shan Dai
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Hao Tan
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Yuting Chen
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Haifeng Pan
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jinquan Chen
- 2 University of Lyon, Laboratoire de Physique, Lyon, France
| | - Benjamin Audit
- 2 University of Lyon, Laboratoire de Physique, Lyon, France
| | - Sanjun Zhang
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, China
- 4 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| | - Jianhua Xu
- 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, China
| |
Collapse
|
168
|
Chen X, Qin P, Zheng X, Hu Z, Zong W, Zhang D, Yang B. Characterizing the noncovalent binding behavior of tartrazine to lysozyme: A combined spectroscopic and computational analysis. J Biochem Mol Toxicol 2018; 33:e22258. [PMID: 30368991 DOI: 10.1002/jbt.22258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022]
Abstract
Tartrazine is a stable water-soluble azo dye widely used as a food additive, which could pose potential threats to humans and the environment. In this paper, we evaluated the response mechanism between tartrazine and lysozyme under simulated conditions by means of biophysical methods, including multiple spectroscopic techniques, isothermal titration calorimetry (ITC), and molecular docking studies. From the multispectroscopic analysis, we found that tartrazine could effectively quench the intrinsic fluorescence of lysozyme to form a complex and lead to the conformational and microenvironmental changes of the enzyme. The ITC measurements suggested that the electrostatic forces played a major role in the binding of tartrazine to lysozyme with two binding sites. Finally, the molecular docking indicated that tartrazine had specific interactions with the residues of Trp108. The study provides an important insight within the binding mechanism of tartrazine to lysozyme in vitro.
Collapse
Affiliation(s)
- Xue Chen
- College of Chemistry Engineering & Material Science, Shandong Normal University, Jinan, Shandong, China.,Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, China
| | - Pengfei Qin
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, China
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, Jinan, China
| | - Dongsheng Zhang
- College of Chemistry Engineering & Material Science, Shandong Normal University, Jinan, Shandong, China.,Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, China
| | - Baochan Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, China
| |
Collapse
|
169
|
Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release. J Colloid Interface Sci 2018; 527:87-94. [DOI: 10.1016/j.jcis.2018.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
170
|
Narayanan M, Singh VR, Kodali G, Moravcevic K, Morris KJ, Stanley RJ. An Ethenoadenine FAD Analog Accelerates UV Dimer Repair by DNA Photolyase. Photochem Photobiol 2018; 93:343-354. [PMID: 27935052 DOI: 10.1111/php.12684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
Reduced anionic flavin adenine dinucleotide (FADH- ) is the critical cofactor in DNA photolyase (PL) for the repair of cyclobutane pyrimidine dimers (CPD) in UV-damaged DNA. The initial step involves photoinduced electron transfer from *FADH- to the CPD. The adenine (Ade) moiety is nearly stacked with the flavin ring, an unusual conformation compared to other FAD-dependent proteins. The role of this proximity has not been unequivocally elucidated. Some studies suggest that Ade is a radical intermediate, but others conclude that Ade modulates the electron transfer rate constant (kET ) through superexchange. No study has succeeded in removing or modifying this Ade to test these hypotheses. Here, FAD analogs containing either an ethano- or etheno-bridged Ade between the AN1 and AN6 atoms (e-FAD and ε-FAD, respectively) were used to reconstitute apo-PL, giving e-PL and ε-PL respectively. The reconstitution yield of e-PL was very poor, suggesting that the hydrophobicity of the ethano group prevented its uptake, while ε-PL showed 50% reconstitution yield. The substrate binding constants for ε-PL and rPL were identical. ε-PL showed a 15% higher steady-state repair yield compared to FAD-reconstituted photolyase (rPL). The acceleration of repair in ε-PL is discussed in terms of an ε-Ade radical intermediate vs superexchange mechanism.
Collapse
Affiliation(s)
| | - Vijay R Singh
- Postdoctoral Fellow at the Department of Nanoscience and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Katarina Moravcevic
- Large Molecule Analytical Development, Janssen Research & Development, LLC, Horsham, PA
| | | | | |
Collapse
|
171
|
Lawson CP, Füchtbauer AF, Wranne MS, Giraud T, Floyd T, Dumat B, Andersen NK, H El-Sagheer A, Brown T, Gradén H, Wilhelmsson LM, Grøtli M. Synthesis, oligonucleotide incorporation and fluorescence properties in DNA of a bicyclic thymine analogue. Sci Rep 2018; 8:13970. [PMID: 30228309 PMCID: PMC6143597 DOI: 10.1038/s41598-018-31897-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
Fluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-phase DNA synthesis. The bT deoxyribonucleoside has a brightness value of 790 M−1cm−1 in water, which is comparable or higher than most fluorescent thymine analogues reported. When incorporated into DNA, bT pairs selectively with adenine without perturbing the B-form structure, keeping the melting thermodynamics of the B-form duplex DNA virtually unchanged. As for most fluorescent base analogues, the emission of bT is reduced inside DNA (4.5- and 13-fold in single- and double-stranded DNA, respectively). Overall, these properties make bT an interesting thymine analogue for studying DNA and an excellent starting point for the development of brighter bT derivatives.
Collapse
Affiliation(s)
- Christopher P Lawson
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Tristan Giraud
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Thomas Floyd
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Blaise Dumat
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Nicolai K Andersen
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Henrik Gradén
- Cardiovascular, Renal and Metabolic Diseases IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal, SE-431 83, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden.
| |
Collapse
|
172
|
Hammler D, Marx A, Zumbusch A. Fluorescence-Lifetime-Sensitive Probes for Monitoring ATP Cleavage. Chemistry 2018; 24:15329-15335. [PMID: 30070405 DOI: 10.1002/chem.201803234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP) probes modified with fluorescence dyes that change their fluorescence properties upon cleavage are an interesting tool for monitoring enzymatic ATP turnover. As a readout parameter, fluorescence lifetime is attractive because it is nearly independent of concentration. In our study, we synthesised and investigated fifteen different ATP analogues, in which the fluorophores were attached to the γ-phosphate of ATP. All analogues showed distinctly different fluorescence lifetimes compared to the corresponding values of the free fluorophores. Both increases and decreases in fluorescence lifetime were observed upon attachment to ATP. To shed light on the photophysical processes governing the lifetime changes, we performed photoelectron spectroscopy in air (PESA) to determine HOMO energy levels and time-resolved fluorescence spectroscopy to obtain rate constants. We present evidence that fluorescence quenching in the compounds tested is dynamic and attributed to photoinduced electron transfer (PET), whereas fluorescence lifetime increases are caused by stacking interactions between chromophore and the nucleobase reducing non-radiative relaxation. Finally, we demonstrate that enzymatic cleavage of the ATP analogues presented can be followed by continuous monitoring of fluorescence lifetime changes.
Collapse
Affiliation(s)
- Daniel Hammler
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry and Center for Applied Photonics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
173
|
Saito Y, Hudson RH. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
174
|
Ma J, Marignier JL, Pernot P, Houée-Levin C, Kumar A, Sevilla MD, Adhikary A, Mostafavi M. Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model of the backbone-to-base hole transfer. Phys Chem Chem Phys 2018; 20:14927-14937. [PMID: 29786710 DOI: 10.1039/c8cp00352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.
Collapse
Affiliation(s)
- Jun Ma
- Laboratoire de Chimie Physique, CNRS/Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Lewis FD, Young RM, Wasielewski MR. Tracking Photoinduced Charge Separation in DNA: from Start to Finish. Acc Chem Res 2018; 51:1746-1754. [PMID: 30070820 DOI: 10.1021/acs.accounts.8b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The initial studies of the dynamics of photoinduced charge separation conducted in our laboratories 20 years ago found strongly distance-dependent rate constants over short distances but failed to detect intermediates in the transport of positive charge (holes). These observations were consistent with the single-step superexchange or tunneling mechanism that had been observed for numerous donor-bridge-acceptor systems at that time. Subsequent studies found weak distance dependence for hole transport over longer distances in DNA, characteristic of incoherent hopping of either localized or delocalized holes. The introduction of synthetic DNA capped hairpin constructs possessing hole donor and acceptor chromophores (or purine bases) at opposite ends of a base-pair domain made it possible to determine the time required for transit of charge from one chromophore to the other and, in some cases, to distinguish between the transit time and the much faster initial charge injection time. These studies eliminated conventional tunneling as a viable mechanism for charge transport in DNA except at very short donor-acceptor separations; however, they did not establish the presence or nature of intermediates in the charge separation process. Recent studies in our laboratories have succeeded in identifying key intermediates as well as untangling the dynamics and efficiency of the charge separation process from start to finish. The dynamics of the initial charge injection process is dependent upon both its free energy and the stacking of the hole donor chromophore and adjacent purine base. The transport of positive charge (holes) over multiple base pairs in duplex DNA occurs most efficiently via repeating adenine bases, known as A-tracts. The transit time across an A-tract is strongly dependent upon the free energy for hole injection, whereas the efficiency of charge separation depends on the competition between charge delocalization and charge recombination in the contact radical ion pair. The guanine cation radical has been detected both by femtosecond transient absorption and by stimulated Raman spectroscopies when the guanine is located near the chromophore employed for hole injection into an A-tract. Replacement of guanine by its derivative 8-phenylethynylguanine (EG), permits tracking of hole transport across longer poly(purine) sequences as a consequence of the stronger transient absorption and stimulated Raman scattering for EG+• vs G+•. We have recently obtained evidence based on femtosecond transient absorption spectroscopy for the formation of delocalized A-polarons in A-tracts possessing four or more A-T base pairs. Similar methods have been used to track hole transport across less-common DNA structures including diblock and triblock poly(purines), locked nucleic acids, three-way junctions, and G-quadruplexes. Similar methods are have been applied to the study of photoinduced electron transport in DNA.
Collapse
Affiliation(s)
- Frederick D. Lewis
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
176
|
Zhuang Q, Cao W, Ni Y, Wang Y. Synthesis-identification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis. Talanta 2018; 185:491-498. [DOI: 10.1016/j.talanta.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 04/07/2018] [Indexed: 12/31/2022]
|
177
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
178
|
Passow KT, Harki DA. 4-Cyanoindole-2'-deoxyribonucleoside (4CIN): A Universal Fluorescent Nucleoside Analogue. Org Lett 2018; 20:4310-4313. [PMID: 29989830 PMCID: PMC6168291 DOI: 10.1021/acs.orglett.8b01746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of a universal and fluorescent nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CIN), and its incorporation into DNA is described. 4CIN is a highly efficient fluorophore with quantum yields >0.90 in water. When incorporated into duplex DNA, 4CIN pairs equivalently with native nucleobases and has uniquely high quantum yields ranging from 0.15 to 0.31 depending on sequence and hybridization contexts, surpassing that of 2-aminopurine, the prototypical nucleoside fluorophore. 4CIN constitutes a new isomorphic nucleoside for diverse applications.
Collapse
Affiliation(s)
- Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
179
|
Xie X, Reznichenko O, Chaput L, Martin P, Teulade-Fichou MP, Granzhan A. Topology-Selective, Fluorescent “Light-Up” Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer. Chemistry 2018; 24:12638-12651. [DOI: 10.1002/chem.201801701] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Oksana Reznichenko
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Ludovic Chaput
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
- CNRS UPR2301; Institut de Chimie des Substances Naturelles (ICSN); 91198 Gif-sur-Yvette France
| | - Pascal Martin
- ITODYS, CNRS UMR7086; Université Paris Diderot; 75205 Paris France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
180
|
Dahlmann HA, Berger FD, Kung RW, Wyss LA, Gubler I, McKeague M, Wetmore SD, Sturla SJ. Fluorescent Nucleobase Analogues with Extended Pi Surfaces Stabilize DNA Duplexes Containing O
6
-Alkylguanine Adducts. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heidi A. Dahlmann
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Florence D. Berger
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Ryan W. Kung
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge Alberta T1K 3M4 Canada
| | - Laura A. Wyss
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Irina Gubler
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Maureen McKeague
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge Alberta T1K 3M4 Canada
| | - Shana J. Sturla
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| |
Collapse
|
181
|
Merta TJ, Geacintov NE, Shafirovich V. Generation of 8-oxo-7,8-dihydroguanine in G-Quadruplexes Models of Human Telomere Sequences by One-electron Oxidation. Photochem Photobiol 2018; 95:244-251. [PMID: 29679477 PMCID: PMC6196120 DOI: 10.1111/php.12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic aspects of one-electron oxidation of G-quadruplexes in the basket (Na+ ions) and hybrid (K+ ions) conformations were investigated by transient absorption laser kinetic spectroscopy and HPLC detection of the 8-oxo-7,8-dihydroguanine (8-oxoG) oxidation product. The photo-induced one-electron abstraction from G-quadruplexes was initiated by sulfate radical anions (SO4 ˙- ) derived from the photolysis of persulfate ions by 308 nm excimer laser pulses. In neutral aqueous solutions (pH 7.0), the transient absorbance of neutral guanine radicals, G(-H)˙, is observed following the complete decay of SO4 ˙- radicals (~10 μs after the actinic laser flash). In both basket and hybrid conformations, the G(-H)˙ decay is biphasic with one component decaying with a lifetime of ~0.1 ms, and the other with a lifetime of 20-30 ms. The fast decay component (~0.1 ms) in G-quadruplexes is correlated with the formation of 8-oxoG lesions. We propose that in G-quadruplexes, G(-H)˙ radicals retain radical cation character by sharing the N1-proton with the O6 -atom of G in the [G˙+ : G] Hoogsteen base pair; this [G(-H)˙: H+ G <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>⇄</mml:mo></mml:math> G˙+ : G] leads to the hydration of G˙+ radical cation within the millisecond time domain, and is followed by the formation of the 8-oxoG lesions.
Collapse
Affiliation(s)
- Tomasz J Merta
- Chemistry Program, NYU Shanghai, Pudong Xinqu, Shanghai Shi, China
| | - Nicholas E Geacintov
- Chemistry Program, NYU Shanghai, Pudong Xinqu, Shanghai Shi, China.,Chemistry Department, New York University, New York, NY
| | | |
Collapse
|
182
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
183
|
Capobianco A, Landi A, Peluso A. Modeling DNA oxidation in water. Phys Chem Chem Phys 2018; 19:13571-13578. [PMID: 28513687 DOI: 10.1039/c7cp02029e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel set of hole-site energies and electronic coupling parameters to be used, in the framework of the simplest tight-binding approximation, for predicting DNA hole trapping efficiencies and rates of hole transport in oxidized DNA is proposed. The novel parameters, significantly different from those previously reported in the literature, have been inferred from reliable density functional calculations, including both the sugar-phosphate ionic backbone and the effects of the aqueous environment. It is shown that most of the experimental oxidation free energies of DNA tracts and of oligonucleotides available from photoelectron spectroscopy and voltammetric measurements are reproduced with great accuracy, without the need for introducing sequence dependent parameters.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, I-84084 Fisciano (SA), Italy.
| | | | | |
Collapse
|
184
|
Cheng X, An P, Li S, Zhou L. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals. J Phys Chem B 2018; 122:4397-4406. [PMID: 29616819 DOI: 10.1021/acs.jpcb.7b12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO-), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 108 and 2.01 × 109 dm3 mol-1 s-1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo•+) by trans-resveratrol via an SET mechanism is 7.17 × 109 dm3 mol-1 s-1. The repair activity of RO- toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo•+ is better than that of RO-. Unfortunately, neither ROH nor RO- can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo•+. The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.
Collapse
Affiliation(s)
| | | | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , PR China
| | - Liping Zhou
- College of Physics, Optoelectronics and Energy , Soochow University , Suzhou 215006 , PR China
| |
Collapse
|
185
|
Real-time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic Probes. Sci Rep 2018; 8:5548. [PMID: 29615801 PMCID: PMC5883045 DOI: 10.1038/s41598-018-23930-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is an isothermal nucleic acid amplification (iNAAT) technique known for its simplicity, sensitivity and speed. Its low-cost feature has resulted in its wide scale application, especially in low resource settings. The major disadvantage of LAMP is its heavy reliance on indirect detection methods like turbidity and non-specific dyes, which often leads to the detection of false positive results. In the present work, we have developed a direct detection approach, whereby a labelled loop probe quenched in its unbound state, fluoresces only when bound to its target (amplicon). Henceforth, referred to as Fluorescence of Loop Primer Upon Self Dequenching-LAMP (FLOS-LAMP), it allows for the sequence-specific detection of LAMP amplicons. The FLOS-LAMP concept was validated for rapid detection of the human pathogen, Varicella-zoster virus, from clinical samples. The FLOS-LAMP had a limit of detection of 500 copies of the target with a clinical sensitivity and specificity of 96.8% and 100%, respectively. The high level of specificity is a major advance and solves one of the main shortcomings of the LAMP technology, i.e. false positives. Self-quenching/de-quenching probes were further used with other LAMP primer sets and different fluorophores, thereby demonstrating its versatility and adaptability.
Collapse
|
186
|
Liu Y, Liu W, Li H, Yan W, Yang X, Liu D, Wang S, Zhang J. Two-photon fluorescent probe for detection of nitroreductase and hypoxia-specific microenvironment of cancer stem cell. Anal Chim Acta 2018; 1024:177-186. [PMID: 29776544 DOI: 10.1016/j.aca.2018.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
Hypoxia plays a crucial role in cancer progression, and it has great significance for monitoring hypoxic level in biosystems. Cancer stem cells (CSCs) represent a small population of tumour cells that regard as the key to seed tumours. The survival of CSCs depend on the tumour microenvironment, which is distinct region has the hypoxic property. Therefore, the detection of the hypoxic CSC niche plays a pivotal role in the destructing the 'soil' of CSCs, and eliminating CSCs population. Numerous one-photon excited fluorescent probes have been developed to indicate the hypoxic status in tumours through the detection of nitroreductase (NTR) level. However, the biomedical application of one-photon fluorescent probes is limited due to the poor tissue penetration. In the present work, we reported a two-photon fluorescent probe to detect the NTR in CSCs and monitor the hypoxic microenvironment in vivo. The two-photon fluorescent molecular probe with a hypoxic specific response group can be reduced by NTR under hypoxic conditions. We used the two-photon probe to detect the hypoxia status of 3D cultured-CSCs in vitro and in vivo CSCs' microenvironment in tumour. The two-photon absorption cross section extends fluorescent excitation spectra to the near infrared region, which dramatically promotes the tissue penetration for hypoxic microenvironment detection of CSC in vivo.
Collapse
Affiliation(s)
- Yajing Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Wei Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Hongjuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weixiao Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China; College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
187
|
Roy A, Seidel R, Kumar G, Bradforth SE. Exploring Redox Properties of Aromatic Amino Acids in Water: Contrasting Single Photon vs Resonant Multiphoton Ionization in Aqueous Solutions. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.7b11762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anirban Roy
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Robert Seidel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Gaurav Kumar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
188
|
Saikia N, Karna SP, Pandey R. Theoretical study of gas and solvent phase stability and molecular adsorption of noncanonical guanine bases on graphene. Phys Chem Chem Phys 2018. [PMID: 28627546 DOI: 10.1039/c7cp02944f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gas and solvent phase stability of noncanonical (Gua)n nucleobases is investigated in the framework of dispersion-corrected density functional theory (DFT). The calculated results strongly support the high tendency for the dimerization of (Gua)n bases in both gas and solvent phases. An interplay between intermolecular and bifurcated H-bonds is suggested to govern the stability of (Gua)n bases which bears a correlation with the description of dispersion correction terms employed in the DFT calculations. For example, a higher polarity is predicted for (Gua)n bases by the dispersion-corrected DFT in contrast to the non-polar nature of (Gua)3 and (Gua)4 predicted by the hybrid meta-GGA calculations. This distinct variation becomes significant under physiological conditions as polar (Gua)n is likely to exhibit greater stabilization in the gas phase compared to solvated (Gua)n. Graphene acting as a substrate induces modification in base configurations via maximization of π-orbital overlap between the base and substrate. In solvent, the substrate-induced effects are further heightened with lowering of the dipole moments of (Gua)n as also displayed by the corresponding isosurface of the electrostatic potential. The graphene-induced stability in both gas and solvent phases appears to fulfill one of the prerequisite criteria for molecular self-assembly. The DFT results therefore provide atomistic insights into the stability and molecular assembly of free-standing noncanonical (Gua)n nucleobases which can be extended to understanding the self-assembly process of functional biomolecules on 2D materials for potential biosensing applications.
Collapse
Affiliation(s)
- Nabanita Saikia
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA.
| | | | | |
Collapse
|
189
|
Gao Y, Zeng F, Sun X, Zeng M, Yang Z, Huang X, Shen G, Tan Y, Feng R, Qi C. One-pot Synthesis of Alkynylated Coumarins via
Rhodium-Catalyzed Annulation of Aryl Thiocarbamates with 1,3-Diynes or Terminal Alkynes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Gao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Fenfen Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Xudong Sun
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Zhen Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng 252059 People's Republic of China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng 252059 People's Republic of China
| | - Yongsheng Tan
- Department of Physics; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Ruokun Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry; Shaoxing University; Shaoxing 312000 People's Republic of China
| |
Collapse
|
190
|
β-Glucosidase from Thermotoga naphthophila RKU-10 for exclusive synthesis of galactotrisaccharides: Kinetics and thermodynamics insight into reaction mechanism. Food Chem 2018; 240:422-429. [DOI: 10.1016/j.foodchem.2017.07.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
|
191
|
Andreoni A, Sen S, Hagedoorn PL, Buma WJ, Aartsma TJ, Canters GW. Fluorescence Correlation Spectroscopy of Labeled Azurin Reveals Photoinduced Electron Transfer between Label and Cu Center. Chemistry 2018; 24:646-654. [PMID: 29064125 DOI: 10.1002/chem.201703733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Fluorescent labeling of biomacromolecules enjoys increasing popularity for structural, mechanistic, and microscopic investigations. Its success hinges on the ability of the dye to alternate between bright and dark states. Förster resonance energy transfer (FRET) is an important source of fluorescence modulation. Photo-induced electron transfer (PET) may occur as well, but is often considered only when donor and acceptor are in van der Waals contact. In this study, PET is shown between a label and redox centers in oxidoreductases, which may occur over large distances. In the small blue copper protein azurin, labeled with ATTO655, PET is observed when the label is at 18.5 Å, but not when it is at 29.1 Å from the Cu. For CuII , PET from label to Cu occurs at a rate of (4.8±0.3)×104 s-1 and back at (0.7±0.1)×103 s-1 . With CuI the numbers are (3.3±0.7)×106 s-1 and (1.0±0.1)×104 s-1 . Reorganization energies and electronic coupling elements are in the range of 0.8-1.2 eV and 0.02-0.5 cm-1 , respectively. These data are compatible with electron transfer (ET) along a through-bond pathway although transient complex formation followed by ET cannot be ruled out. The outcome of this study is a useful guideline for experimental designs in which oxidoreductases are labelled with fluorescent dyes, with particular attention to single molecule investigations. The labelling position for FRET can be optimized to avoid reactions like PET by evaluating the structure and thermodynamics of protein and label.
Collapse
Affiliation(s)
- Alessio Andreoni
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Saptaswa Sen
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: AlbaNova University Center, Department of Applied Physics, KTH-Royal Institute of, Technology, 10691, Stockholm, Sweden
| | - Peter-Leon Hagedoorn
- TU Delft, Applied Sciences, Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Wybren J Buma
- Van't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| | - Gerard W Canters
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| |
Collapse
|
192
|
Hwang GT. Single-Labeled Oligonucleotides Showing Fluorescence Changes Upon Hybridization with Target Nucleic Acids. Molecules 2018; 23:E124. [PMID: 29316733 PMCID: PMC6017082 DOI: 10.3390/molecules23010124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs) is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.
Collapse
Affiliation(s)
- Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
193
|
Oladepo SA. Design and Characterization of a Singly Labeled Fluorescent Smart Probe for In Vitro Detection of miR-21. APPLIED SPECTROSCOPY 2018; 72:79-88. [PMID: 28946749 DOI: 10.1177/0003702817736527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A sensitive hairpin smart probe (SP) has been developed and tested for its sequence-specificity and sensitivity for detecting microRNAs (miRNAs). The loop sequence of this SP is perfectly complementary to microRNA-21 (miR-21) sequence. This miRNA regulates certain biological processes and has been implicated in certain forms of cancer. The stem of the new SP consists of a fluorophore on one end and multiple guanine bases on the opposing end are used as quenchers. The fluorescence of the SP is significantly quenched by the guanine bases at room temperature and in the absence of the miR-21 target. The presence of miR-21 switches on the fluorescence due to spontaneous hybridization of the SP with this target, which also forces the stem hybrid of the SP apart. This new SP successfully discriminated between the perfect miR-21 target and two closely similar single-base mismatch sequences. When the SP was incubated with the miR-21 at 37 ℃, the hybridization kinetics increased seven times, compared to room temperature hybridization. Overall, this new SP shows good detection sensitivity and gives a limit of detection and limit of quantitation of 14.0 nM and 46.7 nM, respectively. This detection platform represents a simple, fast, mix-and-read homogeneous assay for sequence-specific detection of miR-21, and it can be adapted for other related diagnostic applications.
Collapse
Affiliation(s)
- Sulayman A Oladepo
- 108765 Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| |
Collapse
|
194
|
Yang Y, Yang W, Su H, Fang W, Chen X. Mechanistic insights into the photogeneration and quenching of guanine radical cation via one-electron oxidation of G-quadruplex DNA. Phys Chem Chem Phys 2018; 20:13598-13606. [DOI: 10.1039/c8cp01718b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Selectivity of activation site for the photogeneration and quenching of guanine radical cation was elucidated by the analysis of the relaxation paths of one-electron oxidation of G-quadruplex DNA.
Collapse
Affiliation(s)
- Yumei Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Wenjing Yang
- College of Material Science & Engineering
- Taiyuan University of Technology
- People's Republic of China
| | - Hongmei Su
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
195
|
Kim HY, Li T, Jung C, Fu R, Cho DY, Park KS, Park HG. Universally applicable, quantitative PCR method utilizing fluorescent nucleobase analogs. RSC Adv 2018; 8:37391-37395. [PMID: 35557795 PMCID: PMC9089284 DOI: 10.1039/c8ra06675b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022] Open
Abstract
We herein describe a novel quantitative PCR (qPCR) method, which operates in both signal-off and on manners, by utilizing a unique property of fluorescent nucleobase analogs. The first, signal-off method is developed by designing the primers to contain pyrrolo-dC (PdC), one of the most common fluorescent nucleobase analogs. The specially designed single-stranded primer is extended to form double-stranded DNA during PCR and the fluorescence signal from the PdCs incorporated in the primer is accordingly reduced due to its conformation-dependent fluorescence properties. In addition, the second, signal-on method is devised by designing the primers to contain 5′-overhang sequences complementary to the PdC-incorporated DNA probes. At the initial phase, the PdC-incorporated DNA probes are hybridized to the 5′-overhang sequences of the primer, exhibiting the significantly quenched fluorescence signal, but are detached by either hydrolysis or strand displacement reaction during PCR, leading to the highly enhanced fluorescence signal. This method is more advanced than the first one since it produces signal-on fluorescence response and permits the use of a single PdC-incorporated DNA probe for the detection of multiple target nucleic acids, remarkably decreasing the assay cost. With these novel qPCR methods, we successfully quantified target nucleic acids derived from sexually transmitted disease (STD) pathogens with high accuracy. Importantly, the proposed strategies overcome the major drawbacks in the current SYBR Green and TaqMan probe-based qPCR methods such as low specificity and high assay cost. A novel quantitative PCR (qPCR) method was developed by utilizing a unique property of fluorescent nucleobase analogs (PdCs).![]()
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Taihua Li
- College of Biology and the Environment
- Co-Innovation Centre for Sustainable Forestry in Southern China
- Nanjing Forestry University
- Nanjing
- China
| | - Cheulhee Jung
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Rongzhan Fu
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Dae-Yeon Cho
- Labgenomics Clinical Research Institute
- Labgenomics Co. Ltd
- Yong-In
- Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
196
|
Wang J, Jia R, Wang J, Sun Z, Wu Z, Liu R, Zong W. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/29/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering; Yantai University; Yantai 264005 People's Republic of China
| | - Rui Jia
- School of Environmental and Material Engineering; Yantai University; Yantai 264005 People's Republic of China
| | - Jiaxi Wang
- Research Center of Hydrobiology; Jinan University; Guangzhou 510632 People's Republic of China
| | - Zhiqiang Sun
- School of Environmental Science and Engineering, China - America CRC for Environment & Health; Shandong University; Shandong Province Jinan 250100 People's Republic of China
| | - Zitao Wu
- School of Environmental and Material Engineering; Yantai University; Yantai 264005 People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health; Shandong University; Shandong Province Jinan 250100 People's Republic of China
| | - Wansong Zong
- College of Population, Resources and Environment; Shandong Normal University; Jinan 250014 People's Republic of China
| |
Collapse
|
197
|
Dang A, Nguyen HTH, Ruiz H, Piacentino E, Ryzhov V, Tureček F. Experimental Evidence for Noncanonical Thymine Cation Radicals in the Gas Phase. J Phys Chem B 2017; 122:86-97. [DOI: 10.1021/acs.jpcb.7b09872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andy Dang
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Huong T. H. Nguyen
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Heather Ruiz
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Elettra Piacentino
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Victor Ryzhov
- Department
of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - František Tureček
- Department
of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
198
|
Synthesis and properties of microenvironment-sensitive oligonucleotides containing a small fluorophore, 3-aminobenzonitrile or 3-aminobenzoic acid. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
199
|
Sciscione F, Manoli F, Viola E, Wankar J, Ercolani C, Donzello MP, Manet I. Photoactivity of New Octacationic Magnesium(II) and Zinc(II) Porphyrazines in a Water Solution and G-Quadruplex Binding Ability of Differently Sized Zinc(II) Porphyrazines. Inorg Chem 2017; 56:12795-12808. [DOI: 10.1021/acs.inorgchem.7b01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabiola Sciscione
- Dipartimento di Chimica, Università La Sapienza, Piazzale
A. Moro 5, 00185 Roma, Italy
| | - Francesco Manoli
- Istituto per la Sintesi
Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Viola
- Dipartimento di Chimica, Università La Sapienza, Piazzale
A. Moro 5, 00185 Roma, Italy
| | - Jitendra Wankar
- Istituto per la Sintesi
Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
| | - Claudio Ercolani
- Dipartimento di Chimica, Università La Sapienza, Piazzale
A. Moro 5, 00185 Roma, Italy
| | - Maria Pia Donzello
- Dipartimento di Chimica, Università La Sapienza, Piazzale
A. Moro 5, 00185 Roma, Italy
| | - Ilse Manet
- Istituto per la Sintesi
Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
200
|
Jiang S, Hong F, Hu H, Yan H, Liu Y. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly. ACS NANO 2017; 11:9370-9381. [PMID: 28813590 DOI: 10.1021/acsnano.7b04845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.
Collapse
Affiliation(s)
- Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Fan Hong
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Huiyu Hu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|