151
|
Alayande AB, Chae S, Kim IS. Surface morphology-dependent spontaneous bacterial behaviors on graphene oxide membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
152
|
Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Soufi Zomorrod M, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109921. [DOI: 10.1016/j.msec.2019.109921] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
|
153
|
Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. NANOMATERIALS 2019; 9:nano9111548. [PMID: 31683612 PMCID: PMC6915381 DOI: 10.3390/nano9111548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.
Collapse
|
154
|
Zhang X, Cao F, Wu L, Jiang X. Understanding the Synergic Mechanism of Weak Interactions between Graphene Oxide and Lipid Membrane Leading to the Extraction of Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14098-14107. [PMID: 31594302 DOI: 10.1021/acs.langmuir.9b02536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Revealing how weak forces interact synergistically to induce differences in nanobio effects is critical to understanding the nature of the nanobio interface. Herein, graphene oxide (GO) and a lipid membrane are selected as a nanobio model, and interaction forces at the GO-biomembrane interface are modulated by varying the amounts and species of oxygenated functional groups on the surface of GO. A synergic mechanism of interfacial interaction forces is investigated by a combination of surface-enhanced infrared absorption (SEIRA) spectroscopy, confocal laser scanning microscopy (CLSM), and electrochemical impedance spectroscopy (EIS). The results reveal that after balancing with electrostatic repulsion, the moderate attraction between GO and lipid headgroups (such as electrostatic and/or hydrophobic interactions) is most favorable for lipid extraction, whereas lipid extraction is inhibited under an attraction that is too strong or too weak. Under moderate attraction between GO and the headgroups of lipids, the appropriate degree of rotation freedom is maintained for GO, which is beneficial to the hydrogen-bonding interaction between the C═O group in the phosphatide hydrophobic region and GO, thus triggering the insertion of GO into the lipid alkyl chain region, resulting in the rapid and significant extraction of lipids. Our results have important guiding significance for how to reveal the synergistic mechanism of weak interactions at the nanobio interface.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Anhui 230026 , China
| | - Fengjuan Cao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun , Jilin 130022 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun , Jilin 130022 , China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Anhui 230026 , China
| |
Collapse
|
155
|
Venkataprasanna KS, Prakash J, Vignesh S, Bharath G, Venkatesan M, Banat F, Sahabudeen S, Ramachandran S, Devanand Venkatasubbu G. Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int J Biol Macromol 2019; 143:744-762. [PMID: 31622704 DOI: 10.1016/j.ijbiomac.2019.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Wound healing is a common issue in our day to day life. Our immune system repairs the damaged tissue by itself and its a time-consuming process. The GO/CuO nanocomposite (NC) was synthesized through the sol-gel method. XRD, FT-IR, Raman, and TEM analysis were used to analysis the physico-chemical properties of the sample. The GO/CuO patches were prepared using chitosan (Cs)/poly vinyl alcohol (PVA) due to its biocompatibility and biodegradable nature. The obtained patches showed better antimicrobial and wound healing property than recently reported materials. The GO/CuO NC plays a major part in angiogenesis process and in the synthesis, stabilization of extracellular matrix skin proteins. Thus, GO/CuO NC enhance the wound healing mechanism by increasing cell proliferation, antimicrobial property and rapid initiation of inflammatory. Moreover, the antimicrobial activity of CuO, GO, GO/CuO and GO/CuO patch were tested against bacteria causing wound infections. Cs/PVA patch and Cs/PVA/GO/CuO patch were analyzed for swelling, evaporation and degradation behavior. Increase in cell viability and migration of NIH3t3 cells by NC patch shows a potential way for wound healing applications.
Collapse
Affiliation(s)
- K S Venkataprasanna
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram Dist, Tamil Nadu 603 203, India
| | - J Prakash
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram Dist, Tamil Nadu 603 203, India
| | - S Vignesh
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram Dist, Tamil Nadu, India
| | - G Bharath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Manigandan Venkatesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - S Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram Dist, Tamil Nadu, India
| | - Saravanan Ramachandran
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram Dist, Tamil Nadu 603 203, India.
| |
Collapse
|
156
|
Gusev A, Zakharova O, Muratov DS, Vorobeva NS, Sarker M, Rybkin I, Bratashov D, Kolesnikov E, Lapanje A, Kuznetsov DV, Sinitskii A. Medium-Dependent Antibacterial Properties and Bacterial Filtration Ability of Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1454. [PMID: 31614934 PMCID: PMC6835404 DOI: 10.3390/nano9101454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Toxicity of reduced graphene oxide (rGO) has been a topic of multiple studies and was shown to depend on a variety of characteristics of rGO and biological objects of interest. In this paper, we demonstrate that when studying the same dispersions of rGO and fluorescent Escherichia coli (E. coli) bacteria, the outcome of nanotoxicity experiments also depends on the type of culture medium. We show that rGO inhibits the growth of bacteria in a nutrition medium but shows little effect on the behavior of E. coli in a physiological saline solution. The observed effects of rGO on E. coli in different media could be at least partially rationalized through the adsorption of bacteria and nutrients on the dispersed rGO sheets, which is likely mediated via hydrogen bonding. We also found that the interaction between rGO and E. coli is medium-dependent, and in physiological saline solutions they form stable flocculate structures that were not observed in nutrition media. Furthermore, the aggregation of rGO and E. coli in saline media was observed regardless of whether the bacteria were alive or dead. Filtration of the aggregate suspensions led to nearly complete removal of bacteria from filtered liquids, which highlights the potential of rGO for the filtration and separation of biological contaminants, regardless of whether they include live or dead microorganisms.
Collapse
Affiliation(s)
- Alexander Gusev
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, Tambov 392000, Russia.
- National University of Science and Technology "MISIS", Moscow 119991, Russia.
| | - Olga Zakharova
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, Tambov 392000, Russia.
- National University of Science and Technology "MISIS", Moscow 119991, Russia.
| | - Dmitry S Muratov
- National University of Science and Technology "MISIS", Moscow 119991, Russia.
| | - Nataliia S Vorobeva
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Iaroslav Rybkin
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
| | - Daniil Bratashov
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
| | - Evgeny Kolesnikov
- National University of Science and Technology "MISIS", Moscow 119991, Russia.
| | - Aleš Lapanje
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Denis V Kuznetsov
- National University of Science and Technology "MISIS", Moscow 119991, Russia.
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
157
|
Aidun A, Safaei Firoozabady A, Moharrami M, Ahmadi A, Haghighipour N, Bonakdar S, Faghihi S. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering. Artif Organs 2019; 43:E264-E281. [PMID: 31013365 DOI: 10.1111/aor.13474] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 10/06/2024]
Abstract
This in vitro study aimed to evaluate the physicochemical and biological activity of the polycaprolactone/chitosan/collagen scaffolds incorporated with 0, 0.5, 3, and 6 wt% of graphene oxide (GO). Using standard tests and MG-63 cells, the characteristics of scaffolds were evaluated, and the behavior of osteoblasts were simulated, respectively. A non-significant decrease in nanofibers diameter was noted in scaffolds with a higher ratio of GO. The hydrophilicity and bioactivity of the scaffold surface, as well as cell attachment and proliferation, increased in correspondence to an increase in GO. The higher ratio of GO also improved the osteogenesis activity. GO increased the degradation rate, but it was negligible and seemed not enough to endanger stability. Modifying the scaffolds with GO did not make a significant change to the antibacterial effect.
Collapse
Affiliation(s)
- Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Safaei Firoozabady
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Moharrami
- Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
158
|
Lyu H, He Z, Chan YK, He X, Yu Y, Deng Y. Hierarchical ZnO Nanotube/Graphene Oxide Nanostructures Endow Pure Zn Implant with Synergistic Bactericidal Activity and Osteogenicity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
159
|
Guo J, Niaraki Asli AE, Williams KR, Lai PL, Wang X, Montazami R, Hashemi NN. Viability of Neural Cells on 3D Printed Graphene Bioelectronics. BIOSENSORS 2019; 9:E112. [PMID: 31547138 PMCID: PMC6955934 DOI: 10.3390/bios9040112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the United States after Alzheimer's disease (AD). To help understand the electrophysiology of these diseases, N27 neuronal cells have been used as an in vitro model. In this study, a flexible graphene-based biosensor design is presented. Biocompatible graphene was manufactured using a liquid-phase exfoliation method and bovine serum albumin (BSA) for further exfoliation. Raman spectroscopy results indicated that the graphene produced was indeed few-layer graphene (FLG) with ID/IGGraphene= 0.11. Inkjet printing of this few-layer graphene ink onto Kapton polyimide (PI) followed by characterization via scanning electron microscopy (SEM) showed an average width of ≈868 µm with a normal thickness of ≈5.20 µm. Neuronal cells were placed on a thermally annealed 3D printed graphene chip. A live-dead cell assay was performed to prove the biosensor biocompatibility. A cell viability of approximately 80% was observed over 96 h, which indicates that annealed graphene on Kapton PI substrate could be used as a neuronal cell biosensor. This research will help us move forward with the study of N27 cell electrophysiology and electrical signaling.
Collapse
Affiliation(s)
- Jingshuai Guo
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | - Kelli R Williams
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Pei Lun Lai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Xinwei Wang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
- Department of Biomedical Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
160
|
Forstner C, Orton TG, Wang P, Kopittke PM, Dennis PG. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:356-363. [PMID: 31125749 DOI: 10.1016/j.scitotenv.2019.05.162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs), reduced graphene oxide (rGO) and ammonia-functionalized graphene oxide (aGO), are nanomaterials with useful properties, such as high tensile strength, elasticity and thermal conductivity. However, following their use, their release into the environment is inevitable. While CNTs have been shown to influence soil bacterial diversity, albeit only at concentrations far exceeding predicted rates of release, the effects of rGO have only been examined using pure bacterial cultures, and those of aGO are unknown. Here, we investigated the effects of CNTs, rGO and aGO, at three time points (7, 14 and 30days), and over a range of concentrations (1ng, 1μg and 1mgkg dry soil-1), on soil bacterial diversity using 16S rRNA amplicon sequencing. Graphite was included to facilitate comparisons with a similar and naturally occurring carbon material, while the inclusion of GO allowed the effects of GO modification to be isolated. Bacterial community composition, but not alpha diversity, was altered by all treatments except the low GO, low rGO and high aGO treatments on day 14 only. In all cases, the nanomaterials led to shifts in community composition that were of similar magnitude to those induced by graphite and GO, albeit with differences in the taxa affected. Our study highlights that carbon nanomaterials can induce changes in soil bacterial diversity, even at doses that are environmentally realistic.
Collapse
Affiliation(s)
- Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Thomas G Orton
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
161
|
Lu H, Zhang T, Zhou Y, Zhou J, Wang J, Wang X. Enhanced dechlorination and biodegradation of 2-chloroaniline by a 2-aminoanthraquinone-graphene oxide composite under anaerobic conditions. Sci Rep 2019; 9:12376. [PMID: 31451740 PMCID: PMC6710426 DOI: 10.1038/s41598-019-48904-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/14/2019] [Indexed: 11/22/2022] Open
Abstract
The effect of a 2-aminoanthraquinone-graphene oxide (AQ-GO) composite on the anaerobic dechlorination and degradation of chloroanilines by an enriched bacterial consortium was investigated. The results showed that the maximal degradation efficiency of 20 mg/L 2-chloroaniline (2-CA) reached 91.4% at a dose of 20 mg/L AQ-GO in 30 d. Moreover, the pseudo-first-order rate constant of 2-CA degradation in the AQ-GO-mediated system was 2.9-fold higher than those in AQ- and GO-mediated systems alone. During this process, a synergetic effect between AQ and GO was observed, which was attributed to the increased intracellular and extracellular electron transfer pathways. GC-MS analysis showed that 2-CA could be degraded to hexanoic acid and ultimately mineralized to CO2. Illumina MiSeq sequencing revealed that additional AQ-GO significantly increased the relative abundance of Firmicutes. Further analysis showed that the populations of the genera Oscillospira, unclassified Lactobacillales, unclassified Veillonellaceae and Ruminococcus exhibited positive correlations with the rate constant of 2-CA degradation and the dehydrogenase activity of bacterial consortium. These findings indicated that AQ-GO promoted the enrichment of functional bacteria and increased the bacterial activity, resulting in the enhanced dechlorination and degradation of 2-chloroaniline.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Tiantian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
162
|
Wu Y, Jin JF. [Surface characteristics of pure titanium loaded graphene oxide: effect on bacteria adhesion and osteoblast structure]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:366-371. [PMID: 31512827 DOI: 10.7518/hxkq.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the process characterization of graphene oxide loaded on pure titanium surface and effect on the biological properties of Staphylococcus aureus and osteoblasts. METHODS Graphene oxide at four concentrations (20, 50, 80, and 100 µg·mL⁻¹) was loaded on the pure titanium surface via electroplating, and the morphology, properties, and hydrophilic properties were measured with a field emission scanning electron microscope, micro Raman spectrometer, and contact angle tester, respectively. In addition, Staphylococcus aureus and osteoblasts were used as models and cultured with pure titanium-graphene oxide. Then, field-emission scanning electron microscopy and laser confocal microscopy were utilized to observe the changes in the amount of bacteria and osteoblast morphology and structure, respectively. RESULTS Graphene oxide at the four concentrations was successfully loaded on pure titanium surface via electroplating. It improved the hydrophilic properties of pure titanium surface, which benefitted the adhesion and growth of Staphylococcus aureus and changed the morphology and structure of the osteoblasts. CONCLUSIONS The pure titanium-graphene oxide composite has no antibacterial properties and has good biocompatibility.
Collapse
Affiliation(s)
- Yue Wu
- Dept. of General Dentistry, Kunming Municipal Stomatological Hospital, Kunming 650110, China
| | - Jian-Feng Jin
- Dept. of General Dentistry, Kunming Municipal Stomatological Hospital, Kunming 650110, China
| |
Collapse
|
163
|
Fallatah H, Elhaneid M, Ali-Boucetta H, Overton TW, El Kadri H, Gkatzionis K. Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25057-25070. [PMID: 31250387 PMCID: PMC6689283 DOI: 10.1007/s11356-019-05688-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/04/2019] [Indexed: 05/29/2023]
Abstract
Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 μg/mL or 8.5 μg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.
Collapse
Affiliation(s)
- Hussam Fallatah
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Mohamad Elhaneid
- School of Pharmacy, University of Birmingham, B15 2TT, Birmingham, UK
| | | | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece.
| |
Collapse
|
164
|
Younes NA, Dawood MFA, Wardany AA. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. CHEMOSPHERE 2019; 228:318-327. [PMID: 31035170 DOI: 10.1016/j.chemosphere.2019.04.097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/28/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Due to limited knowledge of graphene nanosheets (GNS) on phyto-biological studies, GNS was sprayed to pepper and eggplants during the seasons 2016 and 2017 at doses 0.1, 0.2 and 0.3 GNS g L-1 to assess their biosafety on leaf ultrastructure and agro-physiological traits. GNS was localized on plastids, cell walls and intercellular spaces of both plants. GNS-sprayed peppers characterized by giant chloroplasts with large starch granules and increment of mitochondrial number adjacent to chloroplasts. Whilst, chloroplast ultrastructure of GNS-treated eggplants appeared to be ellipsoidal-shaped with few normal sized-starch granules compared to control. The localization of GNS inside chloroplast may be activated photosynthetic pigments; thereby stimulation of fructose, sucrose and starch was displayed. The rising of hydrogen peroxide of GNS-treated leaves had beneficial role on triggering the activity of catalase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase. Furthermore, the reduction of hydroxyl radical and superoxide anion reflected the involvement of GNS in induction of antioxidant molecules and superoxide dismutase for modulating cell oxidative status. Thus, the lipid peroxidation and electrolyte leakage of GNS-treated plants were kept below the baseline of water-sprayed plants. Moreover, the promotions of health-promoting secondary metabolites via GNS aerosol were in close association to exacerbation of phenylalanine ammonialyase actvity. This study conclusively demonstrated that GNS did not have cytotoxic properties in pepper and eggplant cells rather healthy growth and promoted yield in the terms of number of branches plant-1, number of fruits plant-1 and fruit yield (ton hectare-1) were the net result of GNS-induced metabolic regulation of the leaves physiological status.
Collapse
Affiliation(s)
- N A Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut, Egypt.
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - A A Wardany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
165
|
Lahiani MH, Gokulan K, Williams K, Khare S. Impact of Pristine Graphene on Intestinal Microbiota Assessed Using a Bioreactor-Rotary Cell Culture System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25708-25719. [PMID: 31260263 DOI: 10.1021/acsami.9b07635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The increased use of graphene in consumer products such as food contact materials requires a thorough understanding of its effects on the gastrointestinal commensal bacterial population. During the first phase of study, three representative commensal bacterial species (L. acidophilus, B. longum, and E. coli) were exposed to different concentrations (1, 10, and 100 μg/mL) of pristine graphene for 3, 6, and 24 h in the Bioreactor Rotary Cell Culture System (BRCCS) which allowed a continuous interaction of intestinal microbiota with the pristine graphene without precipitation of test material. The results showed that pristine graphene had dose-dependent effects on the growth of selective bacteria. To study the interaction of graphene with more diverse consortia of intestinal microbiota, fresh fecal samples from laboratory rats were used. Rat fecal slurry (3%) was maintained in an anaerobic environment and treated with different concentrations (1, 10, and 100 μg/mL) of pristine graphene for 3, 6, and 24 h. Counts of viable aerobic and anaerobic bacteria were assessed and fecal slurries were also collected for microbial population shift analysis using quantitative real-time PCR, as well as 16s rRNA sequencing. The results showed a significant two-fold increase in both aerobic and anaerobic bacterial counts (expressed as colony forming unit; CFU) during the first 3 h of exposure to all pristine graphene concentrations. However, 24 h of continuous exposure resulted in a 120% decrease in the CFU of aerobic bacteria at the highest concentration and the anaerobic bacteria CFU remained unchanged. Multivariate analysis of the q-PCR data showed that the exposure time, as well as the graphene concentrations, impacted the bacterial population abundance. Community analysis of graphene-treated fecal samples by 16S sequencing revealed significant alteration of 15 taxonomic groups, including 9 species. The increased abundance of butyrate-producing bacteria (Clostridium fimetarium, Clostridium hylemona, and Sutterella wadsworthensis) was correlated with an increase of the short-chain fatty acid, butyric acid after exposure to graphene. These results clearly indicate that graphene may cause adverse effects on the intestinal microbiome at the doses equal to 100 μg/mL. Further experiments using ex vivo intestinal explants (nonanimal model) could reveal the mechanisms by which graphene could perturb the microbe-host intestinal mucosa homeostasis.
Collapse
Affiliation(s)
- Mohamed H Lahiani
- Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Rd , Jefferson , Arkansas 72079 , United States
| | - Kuppan Gokulan
- Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Rd , Jefferson , Arkansas 72079 , United States
| | - Katherine Williams
- Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Rd , Jefferson , Arkansas 72079 , United States
| | - Sangeeta Khare
- Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Rd , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
166
|
Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens. Int J Mol Sci 2019; 20:ijms20143603. [PMID: 31340560 PMCID: PMC6678746 DOI: 10.3390/ijms20143603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. Methods: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. Results: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. Conclusions: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.
Collapse
|
167
|
Kitko KE, Zhang Q. Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Front Syst Neurosci 2019; 13:26. [PMID: 31379522 PMCID: PMC6646684 DOI: 10.3389/fnsys.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/24/2019] [Indexed: 12/02/2022] Open
Abstract
Graphene, a two-dimensional carbon crystal, has emerged as a promising material for sensing and modulating neuronal activity in vitro and in vivo. In this review, we provide a primer for how manufacturing processes to produce graphene and graphene oxide result in materials properties that may be tailored for a variety of applications. We further discuss how graphene may be composited with other bio-compatible materials of interest to make novel hybrid complexes with desired characteristics for bio-interfacing. We then highlight graphene's ever-widen utility and unique properties that may in the future be multiplexed for cross-modal modulation or interrogation of neuronal network. As the biological effects of graphene are still an area of active investigation, we discuss recent development, with special focus on how surface coatings and surface properties of graphene are relevant to its biological effects. We discuss studies conducted in both non-murine and murine systems, and emphasize the preclinical aspect of graphene's potential without undermining its tangible clinical implementation.
Collapse
Affiliation(s)
- Kristina E. Kitko
- Program in Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Qi Zhang
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
168
|
Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J Control Release 2019; 308:130-161. [PMID: 31310783 DOI: 10.1016/j.jconrel.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Graphene based nanocomposites have revolutionized cancer treatment, diagnosis and imaging owing to its good compatibility, elegant flexibility, high surface area, low mass density along with excellent combined additive effect of graphene with other nanomaterials. This review inculcates the type of graphene based nanocomposites and their fabrication techniques to improve its properties as photothermal and theranostic platform. With decades' efforts, many significant breakthroughs in the method of synthesis and characterization in addition to various functionalization options of graphene based nanocomposite have paved a solid foundation for their potential applications in the cancer therapy. This work intends to provide a thorough, up-to-date holistic discussion on correlation of breakthroughs with their biomedical applications and illustrate how to utilize these breakthroughs to address long-standing challenges in the clinical translation of nanomedicines. This review also emphasizes on graphene based nanocomposites based toxicity concerns pertaining to delivery platforms.
Collapse
Affiliation(s)
- Namdev Dhas
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushali Parekh
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Abhijeet Pandey
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ritu Kudarha
- The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
169
|
Liu X, Miller AL, Park S, George MN, Waletzki BE, Xu H, Terzic A, Lu L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23558-23572. [PMID: 31199116 PMCID: PMC8942345 DOI: 10.1021/acsami.9b04121] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) materials have emerged as a new promising research topic for tissue engineering because of their ability to alter the surface properties of tissue scaffolds and thus improve their biocompatibility and cell affinity. Multiple 2D materials, such as graphene and graphene oxide (GO), have been widely reported to enhance cell adhesion and proliferation. Recently, a newly emerged black phosphorus (BP) 2D material has attracted attention in biomedical applications because of its unique mechanical and electrochemical characteristics. In this study, we investigated the synergistic effect of these two types of 2D materials on cell osteogenesis for bone tissue engineering. BP was first wrapped in negatively charged GO nanosheets, which were then adsorbed together onto positively charged poly(propylene fumarate) three-dimensional (3D) scaffolds. The increased surface area provided by GO nanosheets would enhance cell attachment at the initial stage. In addition, slow oxidation of BP nanosheets wrapped within GO layers would generate a continuous release of phosphate, an important osteoblast differentiation facilitator designed to stimulate cell osteogenesis toward the new bone formation. Through the use of 3D confocal imaging, unique interactions between cells and BP nanosheets were observed, including a stretched cell shape and the development of filaments around the BP nanosheets, along with increased cell proliferation when compared with scaffolds incorporating only one of the 2D materials. Furthermore, the biomineralization of 3D scaffolds, as well as cellular osteogenic markers, was all measured and improved on scaffolds with both BP and GO nanosheets. All these results indicate that the incorporation of 2D BP and GO materials could effectively and synergistically stimulate cell proliferation and osteogenesis on 3D tissue scaffolds.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding Author: . Tel.: 507-284-2267. Fax: 507-284-5075
| |
Collapse
|
170
|
Alayande AB, Park HD, Vrouwenvelder JS, Kim IS. Implications of Chemical Reduction Using Hydriodic Acid on the Antimicrobial Properties of Graphene Oxide and Reduced Graphene Oxide Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901023. [PMID: 31148406 DOI: 10.1002/smll.201901023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The antimicrobial properties of graphene-based membranes such as single-layer graphene oxide (GO) and modified graphene oxide (rGO) on top of cellulose ester membrane are reported in this study. rGO membranes are made from GO by hydriodic acid (HI) vapor treatment. The antibacterial properties are tested after 3 h contact time with selected model bacteria. Complete bacterial cell inactivation is found only after contact with rGO membranes, while no significant bacterial inactivation is found for the control i) GO membrane, ii) the mixed cellulose ester support, and the iii) rGO membrane after additional washing that removes the remaining HI. This indicates that the antimicrobial effect is neither caused by the graphene nor the membrane support. The antimicrobial effect is found to be conclusively linked to the HI eliminating microbial growth, at concentrations from 0.005%. These findings emphasize the importance of caution in the reporting of antimicrobial properties of graphene-based surfaces.
Collapse
Affiliation(s)
- Abayomi Babatunde Alayande
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Johannes S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - In S Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| |
Collapse
|
171
|
Forstner C, Orton TG, Skarshewski A, Wang P, Kopittke PM, Dennis PG. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:140-148. [PMID: 30928743 DOI: 10.1016/j.scitotenv.2019.03.360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 05/25/2023]
Abstract
Graphene oxide (GO) is an oxidized form of graphene that is relatively cheap and easy to produce. This has heralded its widespread use in a range of industries, with its likelihood of release into the environment increasing accordingly. In pure culture, GO has been shown to influence bacteria and fungi, but its effects on environmental microbial communities remain poorly characterized, despite the important ecosystem services that these organisms underpin. Here, we characterized the effects of GO and graphite, over time (7, 14 and 30 days) and at three concentrations (1 ng, 1 μg and 1 mg kg dry soil-1), on soil bacterial and fungal diversity using 16S rRNA and ITS2 gene amplicon sequencing. Graphite was included as a reference material as it is widely distributed in the environment. Neither GO or graphite had significant effects on the alpha diversity of microbial communities. The composition of bacterial and fungal communities, however, was significantly influenced by both materials at all doses. With the exception of the lowest GO dose on day 14, these effects were apparent for all treatments over the course of the experiment. Nonetheless, the effects of GO and graphite were of similar magnitude, albeit with some differences in the taxa affected.
Collapse
Affiliation(s)
- Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Thomas G Orton
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Adam Skarshewski
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
172
|
Khorrami S, Abdollahi Z, Eshaghi G, Khosravi A, Bidram E, Zarrabi A. An Improved Method for Fabrication of Ag-GO Nanocomposite with Controlled Anti-Cancer and Anti-bacterial Behavior; A Comparative Study. Sci Rep 2019; 9:9167. [PMID: 31235712 PMCID: PMC6591237 DOI: 10.1038/s41598-019-45332-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
In this study, two green procedures for Silver-Graphene Oxide (Ag-GO) nanocomposite synthesis were investigated. As a common method, AgNO3 was first loaded on the GO surface and then was reduced and stabilized by walnut green husk extract, producing Ag-GO-І. As an innovative approach, GO was first exposed to the extract and then the AgNO3 was added as the second step, producing Ag-GO-П. Physicochemical properties, antibacterial and cytotoxicity activity of both nanocomposites were subsequently studied comparing with free silver nanoparticles (AgNPs) and pure GO. Based on the results, exposure of GO to the extract, as a reducing agent, at the first/last step of the synthesis process resulted in the fundamental differences in the final products. So that, high amounts of agglomerated silver nanoparticles were formed between the GO sheets, when using the common method, whereas in Ag-GO-П, small AgNPs were formed on the GO sheets without aggregation, entirely covering the sheets. Antibacterial and cytotoxic behavior of these nanomaterials could be compared as AgNPs > Ag-GO-П > Ag-GO-І. It is assumed that these differences are due to control of unwanted nucleation in the synthesis process that Ag nanoparticles are smaller with less agglomeration when the GO surfaces are pre-treated with reducing agent.
Collapse
Affiliation(s)
- Sadegh Khorrami
- Department of Biotechnology, Facullty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Zahra Abdollahi
- Department of Biotechnology, Facullty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ghazaleh Eshaghi
- Department of Biotechnology, Facullty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
| | - Elham Bidram
- Department of Biotechnology, Facullty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.,Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ali Zarrabi
- Department of Biotechnology, Facullty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran. .,Sabanci University, Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey.
| |
Collapse
|
173
|
Hong L, Luo SH, Yu CH, Xie Y, Xia MY, Chen GY, Peng Q. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm Nanotechnol 2019; 7:129-146. [PMID: 30894114 DOI: 10.2174/2211738507666190320160802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023]
Abstract
In the past decades, nanomaterials have shown great potential in biomedical fields, especially in drug delivery, imaging and targeted therapy. Recently, the development of novel functional nanomaterials for antibacterial application has attracted much attention. Compared to the traditional direct use of antibiotics, antibacterial nanomaterials either as drug delivery systems or active agents have a higher efficacy and lower side effects. Herein, we will focus on the antibacterial applications of four commonly used nanomaterials, including metal-based nanomaterials, polymeric nanoparticles, graphene oxides or carbon-based nanomaterials and nanogels.
Collapse
Affiliation(s)
- Le Hong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu-Han Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng-Ying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ge-Yun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
174
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|
175
|
Gusev A, Zakharova O, Vasyukova I, Muratov DS, Rybkin I, Bratashov D, Lapanje A, Il'inikh I, Kolesnikov E, Kuznetsov D. Effect of GO on bacterial cells: Role of the medium type and electrostatic interactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:275-281. [DOI: 10.1016/j.msec.2019.01.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/29/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
176
|
Yao J, Wang H, Chen M, Yang M. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Mikrochim Acta 2019; 186:395. [PMID: 31154528 DOI: 10.1007/s00604-019-3458-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
This review (with 239 refs.) summarizes the progress that has been made in applications of graphene-based nanomaterials (such as plain graphene, graphene oxides, doped graphene oxides, graphene quantums dots) in biosensing, imaging, drug delivery and diagnosis. Following an introduction into the field, a first large section covers the toxicity of graphene and its derivatives (with subsections on bacterial toxicity and tissue toxicity). The use of graphene-based nanomaterials in sensors is reviewed next, with subsections on electrochemical, FET-based, fluorescent, chemiluminescent and colorimetric sensors and probes. The large field of imaging is treated next, with subchapters on optical, PET-based, and magnetic resonance based methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Schematic presentation of the potential applications of graphene-based materials in life science and biomedicine, emphatically reflected in some vital areas such as DNA analysis, biological monitoring, drug delivery, in vitro labelling, in vivo imaging, tumor target, etc.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China. .,State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Heng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Min Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mei Yang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.
| |
Collapse
|
177
|
Zhang F, Zhang N, Meng HX, Liu HX, Lu YQ, Liu CM, Zhang ZM, Qu KY, Huang NP. Easy Applied Gelatin-Based Hydrogel System for Long-Term Functional Cardiomyocyte Culture and Myocardium Formation. ACS Biomater Sci Eng 2019; 5:3022-3031. [PMID: 33405656 DOI: 10.1021/acsbiomaterials.9b00515] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Harnessing biomaterials for in vitro tissue construction has long been a research focus because of its powerful potentials in tissue engineering and pharmaceutical industry. Myocardium is a critical cardiac tissue with complex multiple muscular layers. Considering the specific characters of native cardiac tissues, it is necessary to design a biocompatible and biomimetic platform for cardiomyocyte culture and myocardium formation with sustained physiological function. In this study, we developed gelatin-based hydrogels chemically cross-linked by genipin, a biocompatible cross-linker, as cell culture scaffolds. Moreover, to achieve and maintain the functionality of myocardium, for instance, well-organized cardiomyocytes and synchronized contractile behavior, we fabricated gelatin-based hydrogels with patterned microstructure using a microcontact printing technique. Furthermore, graphene oxide (GO), with unprecedented physical and chemical properties, has also been incorporated into gelatin for culturing cardiomyocytes. Our results show that micropatterned genipin-cross-linked gelatin hydrogels are very helpful to promote alignment and maturation of neonatal rat ventricular cardiomyocytes. More interestingly, the presence of GO significantly enhances the functional performance of cardiomyocytes, including an increase in contraction amplitude and cardiac gene expression. The cultured cardiomyocytes reach a well-synchronized contraction within 48 h of cell seeding and keep beating for up to 3 months. Our study provides a new and easy-to-use gelatin-based scaffold for improving physiological function of engineered cardiac tissues, exhibiting promising applications in cardiac tissue engineering and drug screening.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Ning Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Hong-Xu Meng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Hai-Xia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Ying-Qi Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Chao-Ming Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Zhao-Ming Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P.R.China
| |
Collapse
|
178
|
Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L, Zhu Y, Jiang D, Song B. Understanding the influence of carbon nanomaterials on microbial communities. ENVIRONMENT INTERNATIONAL 2019; 126:690-698. [PMID: 30875562 DOI: 10.1016/j.envint.2019.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) are widely used because of their unique advantages in recent years. At the same time, the influence of CNMs on the environment is becoming increasingly prominent. This review mainly introduces the research progress in the effects of fullerenes, multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs) and graphene on microorganisms and their toxicity mechanisms. On this basis, we have analyzed beneficial and adverse effects of fullerenes, graphene, MWCNTs and SWCNTs to microorganisms, and discussed the similarities of the toxicity mechanisms of different CNMs on microorganisms. This review helps provide ideas on how to protect microorganisms from the impacts of carbon nanomaterials, and it will be conductive to providing a strong theoretical basis for better application of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Danni Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
179
|
Wang J, Gao X, Yu H, Wang Q, Ma Z, Li Z, Zhang Y, Gao C. Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
180
|
De Maio F, Palmieri V, Salustri A, Perini G, Sanguinetti M, De Spirito M, Delogu G, Papi M. Graphene oxide prevents mycobacteria entry into macrophages through extracellular entrapment. NANOSCALE ADVANCES 2019; 1:1421-1431. [PMID: 36132595 PMCID: PMC9419007 DOI: 10.1039/c8na00413g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/14/2019] [Indexed: 05/08/2023]
Abstract
Tuberculosis (TB) remains a global threat and there is an urgent need for improved drugs and treatments, particularly against the drug-resistant strains of Mycobacterium tuberculosis (Mtb). Graphene oxide (GO) is an innovative bi-dimensional nanomaterial that when administered in vivo accumulates in the lungs. Further, GO is readily degraded by peroxidases and has a high drug loading capacity and antibacterial properties. In this study, we first evaluated the GO anti-mycobacterial properties using Mycobacterium smegmatis (Ms) as a model. We observed that GO, when administered with the bacteria, was able to trap Ms in a dose-dependent manner, reducing entry of bacilli into macrophages. However, GO did not show any anti-mycobacterial activity when used to treat infected cells or when macrophages were pre-treated before infection. Similar results were obtained when the virulent Mtb strain was used, showing that GO was able to trap Mtb and prevent entry into microphages. These results indicate that GO can be a promising tool to design improved therapies against TB.
Collapse
Affiliation(s)
- Flavio De Maio
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Roma Italy
| | - Valentina Palmieri
- Institute of Physics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Largo A. Gemelli, 8 00168 Roma Italy
| | - Alessandro Salustri
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Roma Italy
| | - Giordano Perini
- Institute of Physics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Largo A. Gemelli, 8 00168 Roma Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Roma Italy
| | - Marco De Spirito
- Institute of Physics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Largo A. Gemelli, 8 00168 Roma Italy
| | - Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Roma Italy
| | - Massimiliano Papi
- Institute of Physics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS Largo A. Gemelli, 8 00168 Roma Italy
| |
Collapse
|
181
|
Ali NH, Amin MCIM, Ng SF. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:629-645. [PMID: 30896336 DOI: 10.1080/09205063.2019.1595892] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms comprise bacteria attached to wound surfaces and are major contributors to non-healing wounds. It was found that the increased resistance of biofilms to antibiotics allows wound infections to persist chronically in spite of antibiotic therapy. In this study, the reduced form of graphene oxide (rGO) was explored as plausible antibiofilm agents. The rGO was synthesized via reducing the functional groups of GO. Then, rGO were characterized using zetasizer, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and FESEM. The rGO were then formulated into sodium carboxymethyl cellulose (NaCMC) hydrogels to form rGO hydrogel and tested for antibiofilm activities in vitro using XTT test, and in vivo biofilm formation assay using nematodes C. elegans. Reduced GO hydrogel was successfully formed by reducing the functional groups of GO, and a reduction of up to 95% of functional groups was confirmed with X-ray photoelectron spectroscopy analysis. XTT tests confirmed that rGO hydrogels reduced biofilm formation by S. aureus (81-84%) and P. aeruginosa (50-62%). Fluorescence intensity also confirmed that rGO hydrogel can inhibit biofilm bacteria in C. elegans experiments. This study implied that rGO hydrogel is an effective antibiofilm agent for infected wounds.
Collapse
Affiliation(s)
- Nor Hazwan Ali
- a Centre for Drug Delivery Research, Fakulti Farmasi , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- a Centre for Drug Delivery Research, Fakulti Farmasi , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Shiow-Fern Ng
- a Centre for Drug Delivery Research, Fakulti Farmasi , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
182
|
Patel DK, Seo YR, Lim KT. Stimuli-Responsive Graphene Nanohybrids for Biomedical Applications. Stem Cells Int 2019; 2019:9831853. [PMID: 31065286 PMCID: PMC6466862 DOI: 10.1155/2019/9831853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.
Collapse
Affiliation(s)
- Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Ri Seo
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
183
|
Salesa B, Martí M, Frígols B, Serrano-Aroca Á. Carbon Nanofibers in Pure Form and in Calcium Alginate Composites Films: New Cost-Effective Antibacterial Biomaterials against the Life-Threatening Multidrug-Resistant Staphylococcus epidermidis. Polymers (Basel) 2019; 11:polym11030453. [PMID: 30960437 PMCID: PMC6473926 DOI: 10.3390/polym11030453] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the current global health problem of antibiotic resistant recently announced by the World Health Organization, there is an urgent necessity of looking for new alternative antibacterial materials able to treat and impede multidrug-resistant infections which are cost-effective and non-toxic for human beings. In this regard, carbon nanofibers (CNFs) possess currently much lower cost than other carbon nanomaterials, such as graphene oxide, and exhibit excellent chemical, mechanical and electric properties. Furthermore, here, the first report on the antibacterial activity of CNFs was demonstrated. Thus, these nanomaterials, in pure form or incorporated in a minuscule amount into calcium alginate composite films to reduce production costs as much as possible, showed to be new weapons against a globally spreading multidrug-resistant pathogen, the methicillin-resistant Staphylococcus epidermidis (MRSE). This Gram-positive bacterium is becoming one of the most dangerous pathogens, due to its abundance on skin. In this study, these hollow filamentous materials, in direct contact with cells and loaded in the low-cost calcium alginate composite films, showed no cytotoxicity for human keratinocyte HaCaT cells, which render them very promising for biomedical applications. The CNFs used in this work were characterized by Raman spectroscopy and observed by high-resolution transmission electron with energy-disperse X-ray spectroscopy.
Collapse
Affiliation(s)
- Beatriz Salesa
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
184
|
Frígols B, Martí M, Salesa B, Hernández-Oliver C, Aarstad O, Teialeret Ulset AS, Inger Sӕtrom G, Aachmann FL, Serrano-Aroca Á. Graphene oxide in zinc alginate films: Antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity. PLoS One 2019; 14:e0212819. [PMID: 30845148 PMCID: PMC6405205 DOI: 10.1371/journal.pone.0212819] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation. Furthermore, the synergic effect of GO with other divalent cations with intrinsic antibacterial and cytotoxic activity such as Zn2+ has not been explored yet. Thus, here, two commercially available sodium alginates were characterised and utilized in the synthesis of zinc alginate films with GO following the same chemical route reported for the calcium alginate/GO composites. The results of this study showed that zinc release, water sorption/diffusion and wettability depended significantly on the type of alginate utilized. Furthermore, Zn2+ and GO produced alginate films with increased water diffusion, wettability and opacity. However, neither the combination of GO with Zn2+ nor the use of different types of sodium alginates modified the antibacterial activity and cytotoxicity of the zinc alginates against these Gram-positive pathogens and human cells respectively.
Collapse
Affiliation(s)
- Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Beatriz Salesa
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Carolina Hernández-Oliver
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Olav Aarstad
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann-Sissel Teialeret Ulset
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerd Inger Sӕtrom
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Lillelund Aachmann
- NOBIPOL, Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
185
|
Ghorbani F, Zamanian A, Aidun A. Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application. J Appl Polym Sci 2019. [DOI: 10.1002/app.47656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical EngineeringTehran Science and Research Branch, Islamic Azad University Tehran Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
- Department of BiomaterialsAprin Advanced Technologies Development Company Tehran Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran Tehran Iran
- Tissues and Biomaterial Research Group (TBRG)Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
186
|
Jin J, Fei D, Zhang Y, Wang Q. Functionalized titanium implant in regulating bacteria and cell response. Int J Nanomedicine 2019; 14:1433-1450. [PMID: 30863070 PMCID: PMC6390868 DOI: 10.2147/ijn.s193176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biological complications are an issue of critical interest in contemporary dental and orthopedic fields. Although titanium (Ti), graphene oxide (GO) or silver (Ag) particles are suitable for biomedical implants due to their excellent cytocompatibility, bioactivity, and antibacterial properties, the exact antibacterial mechanism is not understood when the three substances are combined (Ti-GO-Ag). MATERIALS AND METHODS In this work, the material characterization, antibacterial property, antibacterial mechanisms, and cell behavior of Ti-GO-Ag fabricated by electroplating and ultraviolet reduction methods respectively, were investigated in detail. RESULTS The material char acterization of Ti-GO-Ag tested by atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, nanoindentation, nanoscratch, inductively coupled plasma mass spectrometer, and contact angle tester revealed the importance of GO concentration and Ag content in the preparation process. The antibacterial tests of Ti-GO-Ag clearly demonstrated the whole process of bacteria interacting with materials, including reactive oxygen species, endocytosis, aggregation, perforation, and leakage. In addition, the behavior of Ti-GO-Ag showed that cell area, length, width, and fluorescence intensity were affected. CONCLUSION Briefly, Ti-GO-Ag nanocomposite was a dual-functionalized implant biomaterial with antibacterial and biocom patible characterization.
Collapse
Affiliation(s)
- Jianfeng Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China,
| | - Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China,
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China,
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China,
| |
Collapse
|
187
|
Vlček J, Lapčík L, Havrdová M, Poláková K, Lapčíková B, Opletal T, Froning JP, Otyepka M. Flow induced HeLa cell detachment kinetics show that oxygen-containing functional groups in graphene oxide are potent cell adhesion enhancers. NANOSCALE 2019; 11:3222-3228. [PMID: 30706925 DOI: 10.1039/c8nr08994a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A broader and quantitative understanding of cell adhesion to two-dimensional carbon-based materials is needed to expand the applications of graphene and graphene oxide (GO) in tissue engineering, prosthetics, biosensing, detection of circulating cancer cells, and (photo)thermal therapy. We therefore studied the detachment kinetics of human cancer cells HeLa adhered on graphene, GO, and glass substrates using stagnation point flow on an impinging jet apparatus. HeLa cells detached easily from graphene at a force of 9.4 nN but adhered very strongly to GO. The presence of hydrophilic functional groups thus apparently enhanced the HeLa cells' adherence to the GO surface. On graphene, smaller HeLa cells adhered more strongly and detached later than cells with larger projected areas, but the opposite behavior was observed on GO. These findings reveal GO to be a suitable platform for detecting cells or establishing contacts, e.g. between graphene-based circuits/electrodes and tissues. Our experiments also show that the impinging jet method is a powerful tool for studying cellular detachment mechanisms and adhesion strength, and could therefore be very useful for investigating interactions between cells and graphene-based materials.
Collapse
Affiliation(s)
- Jakub Vlček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Nguyen J, Conca DV, Stein J, Bovo L, Howard CA, Llorente Garcia I. Magnetic control of graphitic microparticles in aqueous solutions. Proc Natl Acad Sci U S A 2019; 116:2425-2434. [PMID: 30683726 PMCID: PMC6377480 DOI: 10.1073/pnas.1817989116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graphite is an inexpensive material with useful electrical, magnetic, thermal, and optical properties. It is also biocompatible and used universally as a substrate. Micrometer-sized graphitic particles in solution are therefore ideal candidates for novel lab-on-a-chip and remote manipulation applications in biomedicine, biophysics, chemistry, and condensed-matter physics. However, submerged graphite is not known to be amenable to magnetic manipulation, the optimal manipulation method for such applications. Here, we exploit the diamagnetism of graphite and demonstrate contactless magnetic positioning control of graphitic microflakes in diamagnetic aqueous solutions. We develop a theoretical model for magnetic manipulation of graphite microflakes and demonstrate experimentally magnetic transport of such particles over distances [Formula: see text] with peak velocities [Formula: see text] in inhomogeneous magnetic fields. We achieve fully biocompatible transport for lipid-coated graphite in NaCl aqueous solution, paving the way for previously undiscovered biomedical applications. Our results prove that micrometer-sized graphite can be magnetically manipulated in liquid media.
Collapse
Affiliation(s)
- Johnny Nguyen
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Dario Valter Conca
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Johannes Stein
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Laura Bovo
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1H 0AJ, United Kingdom
- Department of Innovation and Enterprise, University College London, London W1T 4TJ, United Kingdom
| | - Chris A Howard
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Isabel Llorente Garcia
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
189
|
Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Int J Nanomedicine 2019; 14:733-751. [PMID: 30705589 PMCID: PMC6342216 DOI: 10.2147/ijn.s187664] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Bone tissue engineering has become one of the most effective methods to treat bone defects. Silk fibroin (SF) is a natural protein with no physiological activities, which has features such as good biocompatibility and easy processing and causes minimal inflammatory reactions in the body. Scaffolds prepared by electrospinning SF can be used in bone tissue regeneration and repair. Graphene oxide (GO) is rich in functional groups, has good biocompatibility, and promotes osteogenic differentiation of stem cells, while bone morphogenetic protein-2 (BMP-2) polypeptide has an advantage in promoting osteogenesis induction. In this study, we attempted to graft BMP-2 polypeptide onto GO and then bonded the functionalized GO onto SF electrospun scaffolds through electrostatic interactions. The main purpose of this study was to further improve the biocompatibility of SF electrospun scaffolds, which could promote the osteogenic differentiation of bone marrow mesenchymal stem cells and the repair of bone tissue defects. Materials and methods The successful synthesis of GO and functionalized GO was confirmed by transmission electron microscope, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Scanning electron microscopy, atomic force microscopy, mechanical test, and degradation experiment confirmed the preparation of SF electrospun scaffolds and the immobilization of GO on the fibers. In vitro experiment was used to verify the biocompatibility of the composite scaffolds, and in vivo experiment was used to prove the repairing ability of the composite scaffolds for bone defects. Results We successfully fabricated the composite scaffolds, which enhanced biocompatibility, not only promoting cell adhesion and proliferation but also greatly enhancing in vitro osteogenic differentiation of bone marrow stromal cells using either an osteogenic or non-osteogenic medium. Furthermore, transplantation of the composite scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Conclusion These findings suggested that the incorporation of BMP-2 polypeptide-functionalized GO into chitosan-coated SF electrospun scaffolds was a viable strategy for fabricating excellent scaffolds that enhance the regeneration of bone defects.
Collapse
Affiliation(s)
- Jiannan Wu
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Ao Zheng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Delong Jiao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Deliang Zeng
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xiao Wang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Lingyan Cao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China, ; .,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China, ;
| |
Collapse
|
190
|
Syama S, Mohanan PV. Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. NANO-MICRO LETTERS 2019; 11:6. [PMID: 34137957 PMCID: PMC7770934 DOI: 10.1007/s40820-019-0237-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/25/2018] [Indexed: 05/03/2023]
Abstract
Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.
Collapse
Affiliation(s)
- S Syama
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India.
| |
Collapse
|
191
|
Tashan H, Khosravi-Darani K, Yazdian F, Omidi M, Sheikhpour M, Farahani M, Omri A. Antibacterial Properties of Graphene Based Nanomaterials: An Emphasis on Molecular Mechanisms, Surface Engineering and Size of Sheets. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180712120309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Graphene-based materials with their astonishing properties including exceptional thermal and
electrical conductivity, strong mechanical characteristics, as well as antibacterial characteristics have
many promising applications in industry and medicine. Graphene-based materials have been utilized in
different fields of medicine such as thermal therapy, drug delivery and cancer therapy. In addition, the
prevalence of bacterial multidrug resistance has attracted worldwide attention. Therefore, there is a
growing tendency to use nanomaterials, especially graphene family to overcome this problem. To date,
no specific mechanism for antibacterial activity of graphene-family has been reported. This review
briefly discusses the physiochemical properties of graphene nanomaterials with a focus on the different
antibacterial mechanisms, surface engineering and nanosheets size to provide a better insight for further
research and development.
Collapse
Affiliation(s)
- Hazhir Tashan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University, GC, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry/Biochemistry, Laurentian University, Sudbury, Ontario, P3E2C6, Canada
| |
Collapse
|
192
|
Chen P, Cheng Q, Wang LM, Liu YD, Choi HJ. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
193
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
194
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:206-211. [PMID: 30056228 DOI: 10.1016/j.scitotenv.2018.07.283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient process for nitrogen removal from wastewater, but its common use is limited by its relatively high optimal temperature (30 °C). One of the major bottlenecks of the implementation of mainstream PN/A process is the low activity of the anammox bacteria at low temperature. Due to this reason over the past years, numerous researchers have attempted to overcome this limitation. Recently it was shown that the reduced graphene oxide (RGO) can accelerate the anammox bacteria activity. However all these studies were performed at high temperatures (over 30 °C). Thus, in this study, supporting the anammox process at low temperatures (10-30 °C) by the RGO was investigated for the first time. The statistical analysis confirmed that RGO significantly affects the anammox activity. The stimulation effect of RGO on the anammox bacteria activity is of particular importance at low temperatures, when drastic decrease in process activity is observed at temperatures below 15 °C. The short-term experimental results demonstrated stimulation of the anammox activity at 13 °C, up to 28% by 15 mg RGO/L, but concentrations above 40 mg RGO/L caused the process inhibition, up to 30% with 50 mg RGO/L. However, the effect of RGO probably depends on the nanomaterial dose per biomass unit and the optimal range of this value was evaluated as 20 to 45 mg RGO/g VSS (volatile suspended solids).
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | | |
Collapse
|
195
|
El-Shafai N, El-Khouly ME, El-Kemary M, Ramadan M, Eldesoukey I, Masoud M. Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv 2019; 9:3704-3714. [PMID: 35518070 PMCID: PMC9060286 DOI: 10.1039/c8ra09788g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined. The fabricated nanocomposites were characterized by various techniques including X-ray diffraction, ultraviolet-visible light absorption and fluorescence spectroscopy, Brunauer–Emmett–Teller theory analysis, Fourier transform infrared, and scanning electron microscopy. The antibacterial activity of the GO–metal oxide nanocomposites against two Gram-positive and two Gram-negative bacteria was examined by using the standard counting plate methodology. The results showed that the fabricated nanocomposites on the surface of GO could inhibit the growth of microbial adhered cells, and consequently prevent the process of biofilm formation in food packaging and medical devices. To confirm the antibacterial activity of the examined GO-nanocomposites, we examined their interactions with bovine serum albumin (BSA) and circulating tumor DNA (ctDNA) by steady-state fluorescence spectroscopy. Upon addition of different amounts of fabricated GO-nanocomposites, the fluorescence intensities of the singlet states of BSA and ctDNA were considerably quenched. The higher quenching was observed in the case of GO–Ag–TiO2@ZnO nanocomposite compared with other control composites. The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined.![]()
Collapse
Affiliation(s)
- Nagi El-Shafai
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
- Institute of Nanoscience and Nanotechnology
| | - Mohamed E. El-Khouly
- Department of Chemistry
- Faculty of Science
- Kafrelsheikh University
- Egypt
- Institute of Basic and Applied Sciences
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology
- Kafrelsheikh University
- Egypt
- Department of Chemistry
- Faculty of Science
| | - Mohamed Ramadan
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| | - Ibrahim Eldesoukey
- Department of Bacteriology, Mycology and Immunology
- Faculty of Veterinary Medicine
- Kafrelsheikh University
- Egypt
| | - Mamdouh Masoud
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| |
Collapse
|
196
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|
197
|
Firouzjaei MD, Shamsabadi AA, Aktij SA, Seyedpour SF, Sharifian Gh M, Rahimpour A, Esfahani MR, Ulbricht M, Soroush M. Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework To Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42967-42978. [PMID: 30411881 DOI: 10.1021/acsami.8b12714] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Thin-film composite (TFC) membranes still suffer from fouling and biofouling. In this work, by incorporating a graphene oxide (GO)-silver-based metal-organic framework (Ag-MOF) into the TFC selective layer, we synthesized a thin-film nanocomposite (TFN) membrane that has notably improved anti-biofouling and antifouling properties. The TFN membrane has a more negative surface charge, higher hydrophilicity, and higher water permeability compared with the TFC membrane. Fluorescence imaging revealed that the GO-Ag-MOF TFN membrane kills Escherichia (E.) coli more than the Ag-MOF TFN, GO TFN, and pristine TFC membranes by 16, 30, and 92%, respectively. Forward osmosis experiments with E. coli and sodium alginate suspensions showed that the GO-Ag-MOF TFN membrane by far has the lowest water flux reduction among the four membranes, proving the exceptional anti-biofouling and antifouling properties of the GO-Ag-MOF TFN membrane.
Collapse
Affiliation(s)
- Mostafa Dadashi Firouzjaei
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Sadegh Aghapour Aktij
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol Mazandaran 4714871167 , Iran
| | - S Fatemeh Seyedpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol Mazandaran 4714871167 , Iran
| | - Mohammad Sharifian Gh
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Ahmad Rahimpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol Mazandaran 4714871167 , Iran
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , D-45117 Essen , Germany
| | - Masoud Soroush
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
198
|
Wu R, Zhao Q, Lu S, Fu Y, Yu D, Zhao W. Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries. J Appl Oral Sci 2018; 27:e20180042. [PMID: 30540069 PMCID: PMC6296285 DOI: 10.1590/1678-7757-2018-0042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
The use of antimicrobial agents is an efficient method to prevent dental caries. Also, nanometric antibacterial agents with wide antibacterial spectrum and strong antibacterial effects can be applied for prevention of dental caries.
Collapse
Affiliation(s)
- Ruixue Wu
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| | - Qi Zhao
- The First Affiliated Hospital Of Hubei University Of Science And Technology, Xianning Central Hospital, Xianning, China
| | - Shushen Lu
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuanxiang Fu
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Yu
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| | - Wei Zhao
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| |
Collapse
|
199
|
Pereyra JY, Cuello EA, Salavagione HJ, Barbero CA, Acevedo DF, Yslas EI. Photothermally enhanced bactericidal activity by the combined effect of NIR laser and unmodified graphene oxide against Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2018; 24:36-43. [DOI: 10.1016/j.pdpdt.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/09/2023]
|
200
|
Xiao Y, Zhang M, Fan Y, Zhang Q, Wang Y, Yuan W, Zhou N, Che J. Novel controlled drug release system engineered with inclusion complexes based on carboxylic graphene. Colloids Surf B Biointerfaces 2018; 175:18-25. [PMID: 30513470 DOI: 10.1016/j.colsurfb.2018.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
A novel drug carrier is constructed by compositing hydrophilic hydroxypropyl-β-cyclodextrins (HP-β-CD) and carboxylated graphene nanomaterial (GO-COOH). Fourier transform infrared spectroscopy confirms that the two materials are successfully combined via chemical bonds. Further, a crosslinking agent of glutaraldehyde is applied to fabricate composite GO-COO-HP-β-CD nanospheres, as demonstrated by an atomic force microscope. Dexamethasone (DEX) is selected as the model drug, and the drug loading efficiency and water solubility of the nanospheres greatly increased. Additionally, the achieved DEX/nanosphere inclusion complex exhibits better heat resistance compared with pure DEX, which is a desired property for drug processing. More importantly, different models are applied to different releasing durations to investigate in detail the release profile of DEX. The best fitting release kinetics model is given to reveal the release mechanism of the drug delivery system. The highest hemolysis rate of the DEX/nanosphere inclusion is 0.44%, far lower than the standard of 5% delivered by the American Society for Testing and Materials, ensuring its safety in practical applications. Meanwhile, recalcification tests indicate that DEX/nanosphere retains the normal blood coagulation function. In vitro cytotoxicity tests of the inclusion demonstrate that the nanospheres have no toxicity and are qualified for intravenous applications with good blood compatibility. Finally, the bioactivity of DEX after release from the carriers is investigated. Results corroborate that the drug anti-inflammation efficacy is not affected and that the biomedical function can be well retained. The engineered controlled drug release system represents a promising formulation platform for a broad range of therapeutic medicine in pharmaceutical technology.
Collapse
Affiliation(s)
- Yinghong Xiao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yunting Fan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenwen Yuan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jianfei Che
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|