151
|
Teng W, Jia F, Han H, Qin Z, Jin Q, Ji J. Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery. Polym Chem 2017; 8:2490-2498. [DOI: 10.1039/c7py00443e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
In the present study, we have successfully fabricated a biocompatible polyamino acid-based nanocarrier with reduction-sensitivity and targeting ability for gemcitabine (GEM) delivery.
Collapse
Affiliation(s)
- Wenzhuo Teng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhihui Qin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
152
|
Han H, Teng W, Chen T, Zhao J, Jin Q, Qin Z, Ji J. A cascade enzymatic reaction activatable gemcitabine prodrug with an AIE-based intracellular light-up apoptotic probe for in situ self-therapeutic monitoring. Chem Commun (Camb) 2017; 53:9214-9217. [DOI: 10.1039/c7cc04872f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A cascade enzymatic reaction activatable gemcitabine prodrug was designed as a theranostic platform for in situ self-therapeutic monitoring of pancreatic cancer cells.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Wenzhuo Teng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Tingting Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jue Zhao
- Department of Obstetrics
- Zhejiang Provincial People's Hospital of Hangzhou Medical College
- Hangzhou
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhihui Qin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
153
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
154
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
155
|
Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2016; 12:73-87. [PMID: 27876448 DOI: 10.2217/nnm-2016-0316] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.
Collapse
Affiliation(s)
- Lei Zhu
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyang Zhou
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Hui Mao
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Departments of Surgery & Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
156
|
Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI. Sci Rep 2016; 6:36650. [PMID: 27833124 PMCID: PMC5105135 DOI: 10.1038/srep36650] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.
Collapse
|
157
|
Sgarlata C, D’Urso L, Consiglio G, Grasso G, Satriano C, Forte G. pH sensitive functionalized graphene oxide as a carrier for delivering gemcitabine: A computational approach. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
158
|
Benito AB, Aiertza MK, Marradi M, Gil-Iceta L, Shekhter Zahavi T, Szczupak B, Jiménez-González M, Reese T, Scanziani E, Passoni L, Matteoli M, De Maglie M, Orenstein A, Oron-Herman M, Kostenich G, Buzhansky L, Gazit E, Grande HJ, Gómez-Vallejo V, Llop J, Loinaz I. Functional Single-Chain Polymer Nanoparticles: Targeting and Imaging Pancreatic Tumors in Vivo. Biomacromolecules 2016; 17:3213-3221. [PMID: 27608431 DOI: 10.1021/acs.biomac.6b00941] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of tools for the early diagnosis of pancreatic adenocarcinoma is an urgent need in order to increase treatment success rate and reduce patient mortality. Here, we present a modular nanosystem platform integrating soft nanoparticles with a targeting peptide and an active imaging agent for diagnostics. Biocompatible single-chain polymer nanoparticles (SCPNs) based on poly(methacrylic acid) were prepared and functionalized with the somatostatin analogue PTR86 as the targeting moiety, since somatostatin receptors are overexpressed in pancreatic cancer. The gamma emitter 67Ga was incorporated by chelation and allowed in vivo investigation of the pharmacokinetic properties of the nanoparticles using single photon emission computerized tomography (SPECT). The resulting engineered nanosystem was tested in a xenograph mouse model of human pancreatic adenocarcinoma. Imaging results demonstrate that accumulation of targeted SCPNs in the tumor is higher than that observed for nontargeted nanoparticles due to improved retention in this tissue.
Collapse
Affiliation(s)
- Ana B Benito
- IK4-CIDETEC, P° Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Miren K Aiertza
- IK4-CIDETEC, P° Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Marco Marradi
- IK4-CIDETEC, P° Miramón 196, 20014 Donostia-San Sebastián, Spain
| | | | - Talia Shekhter Zahavi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | - Torsten Reese
- CIC biomaGUNE, P° Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Eugenio Scanziani
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano , Via Celoria 10, 20133, Milan, Italy
| | - Lorena Passoni
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Marcella De Maglie
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano , Via Celoria 10, 20133, Milan, Italy
| | - Arie Orenstein
- The Advanced Technologies Center, Sheba Medical Center , Tel Hashomer 52621, Israel
| | - Mor Oron-Herman
- The Advanced Technologies Center, Sheba Medical Center , Tel Hashomer 52621, Israel
| | - Gennady Kostenich
- The Advanced Technologies Center, Sheba Medical Center , Tel Hashomer 52621, Israel
| | - Ludmila Buzhansky
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | - Jordi Llop
- CIC biomaGUNE, P° Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- IK4-CIDETEC, P° Miramón 196, 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
159
|
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-Targeted Nanotheranostics: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4936-4954. [PMID: 27150247 DOI: 10.1002/smll.201600635] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/22/2016] [Indexed: 05/10/2023]
Abstract
Cancer-targeted nanotechnology is experiencing the trend of finding new materials with multiple functions for imaging and therapeutic applications. With the rapid development of the related fields, there exists a large number of reports regarding theranostic nanomedicine, decreasing the gap between cancer diagnosis and treatment with minimized separate comprehensions. In order to present an overview on the cancer-targeted nanotheranostics, we first describe their essential building blocks, including platforms, therapeutic agents and imaging agents, and then the recently rapidly developed multimodal theranostic systems. Finally we discuss the major challenges and the perspectives of future development of nanotheranostics toward clinical translations and personalized nanomedicine.
Collapse
Affiliation(s)
- Yufei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Saijie Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
160
|
Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016; 13:750-765. [PMID: 27531700 DOI: 10.1038/nrclinonc.2016.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer- related deaths. PDAC remains one of the most difficult-to-treat cancers, owing to its unique pathobiological features: a nearly impenetrable desmoplastic stroma, and hypovascular and hypoperfused tumour vessels render most treatment options largely ineffective. Progress in understanding the pathobiology and signalling pathways involved in disease progression is helping researchers to develop novel ways to fight PDAC, including improved nanotechnology-based drug-delivery platforms that have the potential to overcome the biological barriers of the disease that underlie persistent drug resistance. So-called 'nanomedicine' strategies have the potential to enable targeting of the Hedgehog-signalling pathway, the autophagy pathway, and specific RAS-mutant phenotypes, among other pathological processes of the disease. These novel therapies, alone or in combination with agents designed to disrupt the pathobiological barriers of the disease, could result in superior treatments, with increased efficacy and reduced off-target toxicities compared with the current standard-of-care regimens. By overcoming drug-delivery challenges, advances can be made in the treatment of PDAC, a disease for which limited improvement in overall survival has been achieved over the past several decades. We discuss the approaches to nanomedicine that have been pursued to date and those that are the focus of ongoing research, and outline their potential, as well as the key challenges that must be overcome.
Collapse
|
161
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|
162
|
Oz Y, Arslan M, Gevrek TN, Sanyal R, Sanyal A. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19813-19826. [PMID: 27406320 DOI: 10.1021/acsami.6b04664] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Mehmet Arslan
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Tugce N Gevrek
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| |
Collapse
|
163
|
Herranz-Blanco B, Shahbazi MA, Correia AR, Balasubramanian V, Kohout T, Hirvonen J, Santos HA. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Adv Healthc Mater 2016; 5:1904-16. [PMID: 27245691 DOI: 10.1002/adhm.201600160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Indexed: 11/10/2022]
Abstract
Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP.
Collapse
Affiliation(s)
- Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Alexandra R. Correia
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Tomáš Kohout
- Department of Physics; University of Helsinki; Gustaf Hällströmin katu 2a (P. O. Box 64) 00560 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| |
Collapse
|
164
|
Li L, Huang Q, Wang C, Wang X, Xiao J, Zhang Q, Cheng Y. Bone and metal targeted polymeric nanoparticles (US20150125391 A1): a patent evaluation. Expert Opin Ther Pat 2016; 26:987-91. [PMID: 27414194 DOI: 10.1080/13543776.2016.1212840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Delivery of therapeutic agents to bone is crucial for the treatment of bone metastasis and other bone diseases. The present invention patent relates to bone- and metal-targeted polymeric nanoparticles for targeting delivery of therapeutic molecules to the pathological tissues in bone or the surgical metal implant-bone tissue interface. AREAS COVERED The nanoparticles for drug delivery were fabricated via the assembly of amphiphilic polymers, in which the hydrophilic outer layer was minimal to prolong the circulation time, and the hydrophobic insider core was biodegradable and loaded with therapeutic agents. Bone-targeted elements were conjugated on the nanoparticle surface to enhance their affinity to bone and/or metal implant surface. EXPERT OPINION A prolonged, sustained release of therapeutic agents was observed by using the delivery system targeting to bone. The described invention provides a bone-targeted vector to deliver diverse therapeutic agents to bone.
Collapse
Affiliation(s)
- Lin Li
- a Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai , P.R. China
| | - Quan Huang
- a Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai , P.R. China
| | - Changping Wang
- b Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai , P.R. China
| | - Xinyu Wang
- b Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai , P.R. China
| | - Jianru Xiao
- a Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai , P.R. China
| | - Qiang Zhang
- b Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai , P.R. China
| | - Yiyun Cheng
- b Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai , P.R. China
| |
Collapse
|
165
|
Huang J, Qian W, Wang L, Wu H, Zhou H, Wang AY, Chen H, Yang L, Mao H. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine 2016; 11:3087-99. [PMID: 27462153 PMCID: PMC4939990 DOI: 10.2147/ijn.s92722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Engineered nanocarriers have emerged as a promising platform for cancer therapy. However, the therapeutic efficacy is limited by low drug loading efficiency, poor passive targeting to tumors, and severe systemic side effects. Herein, we report a new class of nanoconstructs based on milk protein (casein)-coated magnetic iron oxide (CNIO) nanoparticles for targeted and image-guided pancreatic cancer treatment. The tumor-targeting amino-terminal fragment (ATF) of urokinase plasminogen activator and the antitumor drug cisplatin (CDDP) were engineered on this nanoplatform. High drug loading (~25 wt%) and sustained release at physiological conditions were achieved through the exchange and encapsulation strategy. These ATF-CNIO-CDDP nanoparticles demonstrated actively targeted delivery of CDDP to orthotopic pancreatic tumors in mice. The effective accumulation and distribution of ATF-CNIO-CDDP was evidenced by magnetic resonance imaging, based on the T2-weighted contrast resulting from the specific accumulation of ATF-CNIO-CDDP in the tumor. Actively targeted delivery of ATF-CNIO-CDDP led to improved therapeutic efficacy in comparison with free CDDP and nontargeted CNIO-CDDP treatment. Meanwhile, less systemic side effects were observed in the nanocarrier-treated groups than that in the group treated with free CDDP. Hematoxylin and Eosin and Sirius Red staining of tumor sections revealed the possible disruption of stroma during the treatment with ATF-CNIO-CDDP. Overall, our results suggest that ATF-CNIO-CDDP can be an effective theranostic platform for active targeting-enhanced and image-guided cancer treatment while simultaneously reducing the systemic toxicity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Imaging Sciences; Center for Systems Imaging
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences; Center for Systems Imaging
| | - Hui Wu
- Department of Radiology and Imaging Sciences
| | - Hongyu Zhou
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences; Center for Systems Imaging
| |
Collapse
|
166
|
Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3818-3836. [PMID: 27790080 PMCID: PMC5077153 DOI: 10.1002/adfm.201504185] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With rapid advances in nanomedicine, magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool in biomedical applications, including diagnostic imaging, drug delivery and novel therapeutics. Significant preclinical and clinical research has explored their functionalization, targeted delivery, controllable drug release and image-guided capabilities. To further develop MNPs for theranostic applications and clinical translation in the future, we attempt to provide an overview of the recent advances in the development and application of MNPs for drug delivery, specifically focusing on the topics concerning the importance of biomarker targeting for personalized therapy and the unique magnetic and contrast-enhancing properties of theranostic MNPs that enable image-guided delivery. The common strategies and considerations to produce theranostic MNPs and incorporate payload drugs into MNP carriers are described. The notable examples are presented to demonstrate the advantages of MNPs in specific targeting and delivering under image guidance. Furthermore, current understanding of delivery mechanisms and challenges to achieve efficient therapeutic efficacy or diagnostic capability using MNP-based nanomedicine are discussed.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anamaria Orza
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Peng Guo
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA. Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
167
|
Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M, Andersson R. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol 2016; 12:1929-46. [PMID: 27246628 DOI: 10.2217/fon-2016-0010] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of our most lethal malignancies. Despite substantial improvements in the survival rates for other major cancer forms, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Pancreatic cancer is usually detected at an advanced stage and most treatment regimens are ineffective, contributing to the poor overall prognosis. Herein, we review the current understanding of pancreatic cancer, focusing on central aspects of disease management from radiology, surgery and pathology to oncology.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Bobby Tingstedt
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Bodil Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Fredrik Holmquist
- Department of Radiology, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Christian Sturesson
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Caroline Williamsson
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - David Borg
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| |
Collapse
|
168
|
Zhou H, Qian W, Uckun FM, Zhou Z, Wang L, Wang A, Mao H, Yang L. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9836. [PMID: 27313332 DOI: 10.1117/12.2224914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Surgery and Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Weiping Qian
- Department of Surgery and Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Fatih M Uckun
- University of Southern California Norris Comprehensive Cancer Center, Children's Hospital Los Angeles, Los Angeles, CA
| | - Zhiyang Zhou
- Department of Surgery and Radiology, Emory University School of Medicine, Atlanta, Georgia; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China
| | - Liya Wang
- Department of Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Hui Mao
- Department of Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lily Yang
- Department of Surgery and Radiology, Emory University School of Medicine, Atlanta, Georgia; Department of Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
169
|
Zhu G, Liu JT, Wang Y, Zhang D, Guo Y, Tasciotti E, Hu Z, Liu X. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11881-11891. [PMID: 27123698 DOI: 10.1021/acsami.6b03008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application.
Collapse
Affiliation(s)
- Guixian Zhu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences , Beijing 100049, China
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Jen-Tsai Liu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuzhen Wang
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Dechen Zhang
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Yi Guo
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| |
Collapse
|
170
|
Holbrook RJ, Rammohan N, Rotz MW, MacRenaris KW, Preslar AT, Meade TJ. Gd(III)-Dithiolane Gold Nanoparticles for T1-Weighted Magnetic Resonance Imaging of the Pancreas. NANO LETTERS 2016; 16:3202-9. [PMID: 27050622 PMCID: PMC5045863 DOI: 10.1021/acs.nanolett.6b00599] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pancreatic adenocarcinoma has a 5 year survival of approximately 3% and median survival of 6 months and is among the most dismal of prognoses in all of medicine. This poor prognosis is largely due to delayed diagnosis where patients remain asymptomatic until advanced disease is present. Therefore, techniques to allow early detection of pancreatic adenocarcinoma are desperately needed. Imaging of pancreatic tissue is notoriously difficult, and the development of new imaging techniques would impact our understanding of organ physiology and pathology with applications in disease diagnosis, staging, and longitudinal response to therapy in vivo. Magnetic resonance imaging (MRI) provides numerous advantages for these types of investigations; however, it is unable to delineate the pancreas due to low inherent contrast within this tissue type. To overcome this limitation, we have prepared a new Gd(III) contrast agent that accumulates in the pancreas and provides significant contrast enhancement by MR imaging. We describe the synthesis and characterization of a new dithiolane-Gd(III) complex and a straightforward and scalable approach for conjugation to a gold nanoparticle. We present data that show the nanoconjugates exhibit very high per particle values of r1 relaxivity at both low and high magnetic field strengths due to the high Gd(III) payload. We provide evidence of pancreatic tissue labeling that includes MR images, post-mortem biodistribution analysis, and pancreatic tissue evaluation of particle localization. Significant contrast enhancement was observed allowing clear identification of the pancreas with contrast-to-noise ratios exceeding 35:1.
Collapse
Affiliation(s)
- Robert J. Holbrook
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Nikhil Rammohan
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew W. Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Keith W. MacRenaris
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam T. Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
171
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
172
|
Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc Natl Acad Sci U S A 2016; 113:E2104-13. [PMID: 27036008 DOI: 10.1073/pnas.1603455113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.
Collapse
|
173
|
Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater 2016; 33:34-9. [PMID: 26826531 DOI: 10.1016/j.actbio.2016.01.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. STATEMENT OF SIGNIFICANCE Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities.
Collapse
|
174
|
Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M. Small is Smarter: Nano MRI Contrast Agents - Advantages and Recent Achievements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:556-76. [PMID: 26680328 DOI: 10.1002/smll.201502309] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Indexed: 05/23/2023]
Abstract
Many challenges for advanced sensitive and noninvasive clinical diagnostic imaging remain unmatched. In particular, the great potential of magnetic nano-probes is intensively discussed to further improve the performance of magnetic resonance imaging (MRI), especially for cancer diagnosis. Based on recent achievements, here the concepts of magnetic nanoparticle-based MRI contrast agents and tumor-specific imaging probes are critically summarized. Advances in their synthesis, biocompatible chemical and biofunctional surface modifications, and current strategies for further developing them into multimodality imaging probes are discussed. In addition, how engineered versus unintended surface coatings such as protein coronas affect the biocompatibility and performance of MRI nano-probes is also considered. To stimulate progress in the field, future strategies and relevant challenges that still need to be resolved in the field conclude this review.
Collapse
Affiliation(s)
- Zhenyu Gao
- College of Chemistry, Jilin University, Changchun, 130012, China
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Tiancong Ma
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Enyu Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Dominic Docter
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Roland H Stauber
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| |
Collapse
|
175
|
Hudlikar MS, Li X, Gagarinov IA, Kolishetti N, Wolfert MA, Boons GJ. Controlled Multi-functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells. Chemistry 2016; 22:1415-23. [PMID: 26683093 PMCID: PMC4819120 DOI: 10.1002/chem.201503999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/22/2022]
Abstract
A major objective of nanomedicine is to combine in a controlled manner multiple functional entities into a single nanoscale device to target particles with great spatial precision, thereby increasing the selectivity and potency of therapeutic drugs. A multifunctional nanoparticle is described for controlled conjugation of a cytotoxic drug, a cancer cell targeting ligand, and an imaging moiety. The approach is based on the chemical synthesis of polyethylene glycol that at one end is modified by a thioctic acid for controlled attachment to a gold core. The other end of the PEG polymers is modified by a hydrazine, amine, or dibenzocyclooctynol moiety for conjugation with functional entities having a ketone, activated ester, or azide moiety, respectively. The conjugation approach allowed the controlled attachment of doxorubicin through an acid-labile hydrazone linkage, an Alexa Fluor dye through an amide bond, and a glycan-based ligand for the cell surface receptor CD22 of B-cells using strain promoted azide-alkyne cycloaddition. The incorporation of the ligand for CD22 led to rapid entry of the nanoparticle by receptor-mediated endocytosis. Covalent attachment of doxorubicin via hydrazone linkage caused pH-responsive intracellular release of doxorubicin and significantly enhanced the cytotoxicity of nanoparticles. A remarkable 60-fold enhancement in cytotoxicity of CD22 (+) lymphoma cells was observed compared to non- targeted nanoparticles.
Collapse
Affiliation(s)
- Manish S Hudlikar
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Ivan A Gagarinov
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Nagesh Kolishetti
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
176
|
Han H, Wang H, Chen Y, Li Z, Wang Y, Jin Q, Ji J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. NANOSCALE 2016; 8:283-291. [PMID: 26608864 DOI: 10.1039/c5nr06734k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Haibo Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuhong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
177
|
Lim EK, Chung BH. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 2016; 11:236-51. [DOI: 10.1038/nprot.2015.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
178
|
Abstract
Molecular therapy using small interfering RNA (siRNA) shows great promise in the development of novel therapeutics for cancer. Although various approaches have been developed for in vivo delivery of siRNAs into tumors, stability of siRNA in blood circulation, and low efficiency of siRNA delivery into tumor cells are the major obstacles for further translation into cancer therapeutics. In this protocol, we describe methods of the production of shRNA expressing DNA nanocassettes by PCR amplification of double-stranded DNA fragments containing a U6 promoter and a shRNA gene. Those DNA nanocassettes can be conjugated to the polymer coating of nanoparticles that are targeted to cellular receptors highly expressed in tumor cells, such as urokinase plasminogen activator receptor (uPAR), for targeted delivery and receptor mediated internalization of shRNA expressing DNA nanocassettes. Methods for in vitro and in vivo evaluation of target specificity and gene-knockdown effect are also provided.
Collapse
Affiliation(s)
- Wei Chen
- Department of Surgery, Emory University School of Medicine, Clinic C, Room C-4088, 1365 C Clifton Road, NE, Atlanta, GA, 30322, USA
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Clinic C, Room C-4088, 1365 C Clifton Road, NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
179
|
Kang H, Mintri S, Menon AV, Lee HY, Choi HS, Kim J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. NANOSCALE 2015; 7:18848-62. [PMID: 26528835 PMCID: PMC4648690 DOI: 10.1039/c5nr05264e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Homan Kang
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. Phone: 617-667-6024, Fax: 617-667-0214
| | - Shrutika Mintri
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| | - Archita Venugopal Menon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| | - Hea Yeon Lee
- Department of Nanotechnology, Detroit R&D, Inc., Detroit, MI 48201, USA
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. Phone: 617-667-6024, Fax: 617-667-0214
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| |
Collapse
|
180
|
Ma H, Liu Y, Shi M, Shao X, Zhong W, Liao W, Xing MMQ. Theranostic, pH-Responsive, Doxorubicin-Loaded Nanoparticles Inducing Active Targeting and Apoptosis for Advanced Gastric Cancer. Biomacromolecules 2015; 16:4022-31. [DOI: 10.1021/acs.biomac.5b01039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huanrong Ma
- Department
of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuqing Liu
- Department
of Mechanical Engineering, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Min Shi
- Department
of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuebing Shao
- Department
of Mechanical Engineering, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada
| | - Wen Zhong
- Department
of Biosystem Engineering, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada
| | - Wangjun Liao
- Department
of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Malcolm M. Q. Xing
- Department
of Mechanical Engineering, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada
- Department
of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg Manitoba R3T 2N2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
181
|
Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, Shao W. Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 2015; 24:475-91. [DOI: 10.3109/1061186x.2015.1108324] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Minglu Chang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting Wei
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tiantian Zuo
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuanyuan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guimei Lin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Shao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
182
|
Chen Y, Gong L, Gao N, Liao J, Sun J, Wang Y, Wang L, Zhu P, Fan Q, Wang YA, Zeng W, Mao H, Yang L, Gao F. Preclinical evaluation of a urokinase plasminogen activator receptor-targeted nanoprobe in rhesus monkeys. Int J Nanomedicine 2015; 10:6689-98. [PMID: 26604745 PMCID: PMC4630189 DOI: 10.2147/ijn.s90587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose To translate a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator receptor-targeted magnetic iron oxide (IO) nanoparticles (uPAR-targeted human ATF-IONPs) into clinical applications, we conducted a pilot study to evaluate the toxicity and pharmacokinetics of this nanoparticle in normal rhesus monkeys. Methods We assessed the changes in the following: magnetic resonance imaging (MRI) signals from pretreatment stage to 14 days posttreatment, serum iron concentrations from 5 minutes posttreatment to 12 weeks posttreatment, routine blood examination and serum chemistry analysis results from pretreatment stage to 12 weeks after administration, and results of staining of the liver with Perls’ Prussian Blue and hematoxylin–eosin at 24 hours and 3 months posttreatment in two rhesus monkeys following an intravenous administration of the targeted nanoparticles either with a polyethylene glycol (ATF-PEG-IONP) or without a PEG (ATF-IONP) coating. Results The levels of alkaline phosphatase, alanine transaminase, and direct bilirubin in the two monkeys increased immediately after the administration of the IONPs but returned to normal within 20 days and stayed within the normal reference range 3 months after the injection. The creatinine levels of the two monkeys stayed within the normal range during the study. In addition, red blood cells, white blood cells, hemoglobin level, and platelets remained normal during the 3 months of the study. Conclusion All of the results suggest that a transient injury in terms of normal organ functions, but no microscopic necrotic lesions, was observed at a systemic delivery dose of 5 mg/kg of iron equivalent concentration in the acute phase, and that no chronic toxicity was found 3 months after the injection. Therefore, we conclude that uPAR-targeted IONPs have the potential to be used as receptor-targeted MRI contrasts as well as theranostic agents for the detection and treatment of human cancers in future studies.
Collapse
Affiliation(s)
- Yushu Chen
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Gong
- Sichuan Primed Bio-Tech Group Co, Ltd, Chengdu, People's Republic of China
| | - Ning Gao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jichun Liao
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiayu Sun
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuqing Wang
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lei Wang
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pengjin Zhu
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qing Fan
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | - Wen Zeng
- Sichuan Primed Bio-Tech Group Co, Ltd, Chengdu, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabao Gao
- Molecular Imaging Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
183
|
Chen C, Wu CQ, Chen TW, Tang MY, Zhang XM. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624074. [PMID: 26579537 PMCID: PMC4633535 DOI: 10.1155/2015/624074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| |
Collapse
|
184
|
Lin M, Wang D, Liu S, Huang T, Sun B, Cui Y, Zhang D, Sun H, Zhang H, Sun H, Yang B. Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20801-20812. [PMID: 26339804 DOI: 10.1021/acsami.5b05866] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electron transition materials on the basis of transition metal ions usually possess higher photothermal transduction efficiency but lower extinction ability, which have not been considered as efficient photothermal agents for therapeutic applications. In this work, we demonstrate a facile and feasible approach for enhancing 808 nm photothermal conversion effect of d orbits transition Cu(II) ions by forming Cu-carboxylate complexes. The coordination with carboxylate groups greatly enlarges the splitting energy gap of Cu(II) and the capability of electron transition, thus enhancing the extinction ability in near-infrared region. The cupreous complexes are further loaded in biocompatible and biodegradable polymer nanoparticles (NPs) of chitosan to temporarily lower the toxicity, which allows the photothermal therapy of human oral epithelial carcinoma (KB) cells in vitro and KB tumors in vivo. Animal experiments indicate the photothermal tumor inhibition rate of 100%. In addition, the gradual degradation of chitosan NPs leads to the release of cupreous complexes, thus exhibiting additional chemotherapeutic behavior in KB tumor treatment. Onefold chemotherapy experiments indicate the tumor inhibition rate of 93.1%. The combination of photothermal therapy and chemotherapy of cupreous complex-loaded chitosan NPs indicates the possibility of inhibiting tumor recurrence.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Dandan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Yan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Daqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Hongchen Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Hui Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, ‡Department of Oral Pathology, School and Hospital of Stomatology, and §Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|
185
|
Prospects for Using Gold, Silver, and Iron Oxide Nanoparticles for Increasing the Efficacy of Chemotherapy. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1260-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
186
|
Zhou H, Qian W, Uckun FM, Wang L, Wang YA, Chen H, Kooby D, Yu Q, Lipowska M, Staley CA, Mao H, Yang L. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer. ACS NANO 2015; 9:7976-91. [PMID: 26242412 PMCID: PMC4908958 DOI: 10.1021/acsnano.5b01288] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Fatih M. Uckun
- University of Southern California Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Liya Wang
- Departments of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Y. Andrew Wang
- Ocean Nanotech, LLC, San Diego, California 92126, United States
| | - Hongyu Chen
- Ocean Nanotech, LLC, San Diego, California 92126, United States
| | - David Kooby
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Qian Yu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Malgorzata Lipowska
- Departments of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Charles A. Staley
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hui Mao
- Departments of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Departments of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Address correspondence to .
| |
Collapse
|
187
|
Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int J Pharm 2015; 492:80-91. [DOI: 10.1016/j.ijpharm.2015.07.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/21/2022]
|
188
|
Zhang G, Gao J, Qian J, Zhang L, Zheng K, Zhong K, Cai D, Zhang X, Wu Z. Hydroxylated Mesoporous Nanosilica Coated by Polyethylenimine Coupled with Gadolinium and Folic Acid: A Tumor-Targeted T(1) Magnetic Resonance Contrast Agent and Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14192-200. [PMID: 26084052 DOI: 10.1021/acsami.5b04294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A pH-responsive nanoplatform, hydroxylated mesoporous nanosilica (HMNS) coated by polyethylenimine (PEI) coupled with gadolinium and folic acid (FA) (Gd-FA-Si), was designed to deliver anticancer drug targeting and to promote contrast effect for tumor cells using magnetic resonance (MR) spectrometer. Doxorubicin (DOX) was chosen as the anticancer drug and loaded into nanopores of HMNS, then its release in simulated body fluid could be controlled through adjusting the pH. This nanoplatform could significantly enhance the MR contrast effect, and the highest theoretical relaxivity per nanoplatform could even be approximately 1.28 × 10(6) mm(-1)s(-1) because of the high Gd payload (2.61 × 10(5) per nanoplatform). The entire system possessed a high targeting performance to Hela and MDA-MB-231 cells because the FA located in the system could specifically bind to the folate-receptor sites on the surface of cell. Compared with free DOX, the nanoplatform presented a higher cell inhibition effect on the basis of cell assay. Therefore, this nanoplatform could be potentially applied as a tumor-targeted T1 MR contrast agent and pH-sensitive drug carrier system.
Collapse
Affiliation(s)
- Guilong Zhang
- §Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
- ⊥University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Junlan Gao
- #School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | - Lele Zhang
- #School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | - Dongqing Cai
- §Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Xin Zhang
- #School of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Zhengyan Wu
- §Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
189
|
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36:5727-42. [PMID: 26142733 DOI: 10.1007/s13277-015-3706-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023] Open
Abstract
The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Collapse
|
190
|
Wolfe T, Guidelli EJ, Gómez JA, Baffa O, Nicolucci P. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry. Phys Med Biol 2015; 60:4465-80. [PMID: 25988912 DOI: 10.1088/0031-9155/60/11/4465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material.We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves.Dose enhancements were observed to present an amplified behavior for small doses (between 0.1-0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5-5 Gy, dose-independent trends were observed for both beams, stable around (2.1 ± 0.7) and (1.3 ± 0.4) for kV and MV beams, respectively. We found DEFs of (1.62 ± 0.04) or (1.27 ± 0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals.2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both kilo or megavoltage beams.
Collapse
Affiliation(s)
- T Wolfe
- Experimental Radiation Oncology Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
191
|
Kačenka M, Kaman O, Kikerlová S, Pavlů B, Jirák Z, Jirák D, Herynek V, Černý J, Chaput F, Laurent S, Lukeš I. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell. J Colloid Interface Sci 2015; 447:97-106. [PMID: 25702866 DOI: 10.1016/j.jcis.2015.01.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications.
Collapse
Affiliation(s)
- Michal Kačenka
- Institute of Physics AS CR, Cukrovarnická 10, 162 00 Praha 6, Czech Republic; Department of Inorganic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Ondřej Kaman
- Institute of Physics AS CR, Cukrovarnická 10, 162 00 Praha 6, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Soňa Kikerlová
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Barbora Pavlů
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Zdeněk Jirák
- Institute of Physics AS CR, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Daniel Jirák
- Institute of Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Praha 4, Czech Republic; Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Praha 2, Czech Republic
| | - Vít Herynek
- Institute of Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Praha 4, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Frédéric Chaput
- Laboratoire de Chimie, UMR 5182 ENS-CNRS-UCBL, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | - Sophie Laurent
- Department of General, Organic and Biomedicinal Chemistry, NMR and Molecular Imaging Lab, University of Mons, B-7000 Mons, Belgium
| | - Ivan Lukeš
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| |
Collapse
|
192
|
Zhao Z, Wang X, Zhang Z, Zhang H, Liu H, Zhu X, Li H, Chi X, Yin Z, Gao J. Real-time monitoring of arsenic trioxide release and delivery by activatable T(1) imaging. ACS NANO 2015; 9:2749-59. [PMID: 25688714 DOI: 10.1021/nn506640h] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Delivery of arsenic trioxide (ATO), a clinical anticancer drug, has drawn much attention to improve its pharmacokinetics and bioavailability for efficient cancer therapy. Real-time and in situ monitoring of ATO behaviors in vivo is highly desirable for efficient tumor treatment. Herein, we report an ATO-based multifunctional drug delivery system that efficiently delivers ATO to treat tumors and allows real-time monitoring of ATO release by activatable T1 imaging. We loaded water-insoluble manganese arsenite complexes, the ATO prodrug, into hollow silica nanoparticles to form a pH-sensitive multifunctional drug delivery system. Acidic stimuli triggered the simultaneous release of manganese ions and ATO, which dramatically increased the T1 signal (bright signal) and enabled real-time visualization and monitoring of ATO release and delivery. Moreover, this smart multifunctional drug delivery system significantly improved ATO efficacy and strongly inhibited the growth of solid tumors without adverse side effects. This strategy has great potential for real-time monitoring of theranostic drug delivery in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenghuan Zhao
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaomin Wang
- ‡Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, P. R. China
| | - Zongjun Zhang
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Zhang
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanyu Liu
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xianglong Zhu
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Li
- ‡Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, P. R. China
| | - Xiaoqin Chi
- ‡Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, P. R. China
| | - Zhenyu Yin
- ‡Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Xiamen 361004, P. R. China
| | - Jinhao Gao
- †State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
193
|
Yu G, Yu W, Mao Z, Gao C, Huang F. A pillararene-based ternary drug-delivery system with photocontrolled anticancer drug release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:919-925. [PMID: 25318658 DOI: 10.1002/smll.201402236] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/26/2014] [Indexed: 06/04/2023]
Abstract
A novel ternary drug delivery system (DDS) is constructed using a photodegradable anticancer prodrug (Py-Cbl), a water-soluble pillararene supramolecular container (WP6), and the diblock copolymer methoxy-poly(ethylene glycol)114 -block-poly(L -lysine hydrochloride)200. This DDS successfully addresses three important issues: enhancement of the water solubility of the anticancer prodrug; controlled release of the anticancer drug; accurate and quantitative measurement of the drug release.
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | | | | | | | | |
Collapse
|
194
|
Chang Y, Li Y, Yu S, Mao J, Liu C, Li Q, Yuan C, He N, Luo W, Dai L. Fluorescent polymeric assemblies as stimuli-responsive vehicles for drug controlled release and cell/tissue imaging. NANOTECHNOLOGY 2015; 26:025103. [PMID: 25526236 DOI: 10.1088/0957-4484/26/2/025103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.
Collapse
Affiliation(s)
- Ying Chang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Yang E, Qian W, Cao Z, Wang L, Bozeman EN, Ward C, Yang B, Selvaraj P, Lipowska M, Wang YA, Mao H, Yang L. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery. Am J Cancer Res 2015; 5:43-61. [PMID: 25553097 PMCID: PMC4265747 DOI: 10.7150/thno.10350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 12/23/2022] Open
Abstract
Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.
Collapse
|
196
|
Arosio P, Orsini F, Piras AM, Sandreschi S, Chiellini F, Corti M, Masa M, Múčková M, Schmidtová Ľ, Ravagli C, Baldi G, Nicolato E, Conti G, Marzola P, Lascialfari A. MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra04880j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate decorated organic nanocarriers loaded with magnetite nanoparticles and paclitaxel provide a specific and prolonged negative contrast of breast cancers on T2-weighted MR images.
Collapse
|
197
|
Cruje C, Yang C, Uertz J, van Prooijen M, Chithrani BD. Optimization of PEG coated nanoscale gold particles for enhanced radiation therapy. RSC Adv 2015. [DOI: 10.1039/c5ra19104a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To enhance PEG uptake for radiation therapy, a peptide containing an integrin binding domain (RGD) was conjugated to PEG. Nanoparticles functionalized with both the RGD peptide and PEG had a higher uptake than NPs functionalized with PEG alone.
Collapse
Affiliation(s)
- C. Cruje
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
| | - C. Yang
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
| | | | | | - B. D. Chithrani
- Dept. of Physics
- Ryerson University
- Toronto
- Canada
- Keenan Research Centre
| |
Collapse
|
198
|
Han H, Jin Q, Wang Y, Chen Y, Ji J. The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chem Commun (Camb) 2015; 51:17435-8. [DOI: 10.1039/c5cc06654a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enzyme and reduction-activatable gemcitabine prodrug with AIE properties was designed for targeted and image-guided pancreatic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
199
|
Satpathy M, Zielinski R, Lyakhov I, Yang L. Optical imaging of ovarian cancer using HER-2 affibody conjugated nanoparticles. Methods Mol Biol 2015; 1219:171-85. [PMID: 25308269 DOI: 10.1007/978-1-4939-1661-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computed Tomography (CT), Ultrasound (US), and Magnetic Resonance Imaging (MRI) have been the mainstay of clinical imaging regimens for the detection of ovarian cancer. However, without tumor specific contrast enhancement, these imaging modalities lack specificity and sensitivity in the detection of small primary and disseminated tumors in the peritoneal cavity. Herein, we illustrate a fairly new near infrared (NIR) optical imaging approach developed in our laboratory for the noninvasive detection of ovarian tumors using a HER-2 targeted nanoparticle-based imaging agent in an orthotopic mouse model of ovarian cancer. We used multimodal imaging approaches to detect the disease accurately and rapidly by utilizing a single imaging agent, NIR dye-labeled HER-2 affibody conjugated iron oxide nanoparticles. This agent targets HER-2 receptors, which are overexpressed in ovarian tumors. This chapter outlines materials and methods for the: (1) production of HER-2 targeted nanoparticles; (2) establishment of an orthotopic human ovarian cancer xenograft model; (3) monitoring of tumor growth by bioluminescence imaging; (4) administration of targeted nanoparticles followed by NIR optical imaging for the detection of orthotopic ovarian cancers with targeted accumulation of the nanoparticle imaging probes.
Collapse
Affiliation(s)
- Minati Satpathy
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA,
| | | | | | | |
Collapse
|
200
|
Sun J, Kim DH, Guo Y, Teng Z, Li Y, Zheng L, Zhang Z, Larson AC, Lu G. A c(RGDfE) conjugated multi-functional nanomedicine delivery system for targeted pancreatic cancer therapy. J Mater Chem B 2014; 3:1049-1058. [PMID: 32261983 DOI: 10.1039/c4tb01402b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is one of the five most lethal malignancies and has a poor prognosis due to its abundant stromal barriers and lack of effective available therapies. Although gemcitabine has been used as a standard therapy for several decades, there has been little progress in the improvement of the 5 year survive rate due to the low targeting efficiency for pancreatic cancer cells. To achieve a targeted delivery of gemcitabine to pancreatic cancer cells, we have developed a c(RGDfE) [cyclic (Arg-Gly-Asp-d-Phe-Glu)] conjugated multi-functional nanomedicine delivery system composed of a magnetic core and mesoporous silica shell. These magnetic mesoporous nanoparticles demonstrated sufficient relaxivity properties for detection with magnetic resonance imaging (MRI). These c(RGDfE) peptide conjugated magnetic mesoporous silica nanoparticles [c(RGDfE)-pMMSNs] can target pancreatic cancer cells and increase cellular uptake in human pancreatic cancer cell lines that overexpress integrin ανβ3. Gemcitabine loaded c(RGDfE)-pMMSNs were most efficiently targeted to pancreatic cancer cells (BxPC-3). Growth inhibition of the BxPC-3 cell line was achieved in a time dependent manner consistent with observed drug release behavior. Intracellular targeted gemcitabine delivery using c(RGDfE)-pMMSNs offers a promising approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jing Sun
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|