151
|
Cho S, Knox KS, Kohli LM, He JJ, Exley MA, Wilson SB, Brutkiewicz RR. Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex. Virology 2005; 337:242-52. [PMID: 15916790 DOI: 10.1016/j.virol.2005.04.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/07/2005] [Accepted: 04/16/2005] [Indexed: 11/20/2022]
Abstract
The HIV-1 Nef protein causes a decrease in major histocompatibility complex (MHC) class I and CD4 molecule expression on the cell surface. To determine if Nef can affect components of the innate immune response, we assessed the ability of Nef to alter the cell surface expression of human CD1d. In cells co-expressing CD1d and Nef, a substantial reduction in the cell surface level of CD1d was observed, with a concomitant reduction in the activation of CD1d-restricted NKT cells. Nef had a minimal effect on the cell surface expression of a mutant CD1d molecule in which the last 6 or 10 amino acids of the cytoplasmic tail were deleted. Additionally, it was found that Nef physically interacted with wild-type (but not tail-deleted) CD1d. Therefore, one means by which HIV-1 may be able to establish a foothold in an infected individual is by directly interfering with the functional cell surface expression of CD1d.
Collapse
Affiliation(s)
- Sungyoo Cho
- Department of Microbiology and Immunology, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Chakraborty R, Morel AS, Sutton JK, Appay V, Ripley RM, Dong T, Rostron T, Ogola S, Palakudy T, Musoke R, D'Agostino A, Ritter M, Rowland-Jones SL. Correlates of delayed disease progression in HIV-1-infected Kenyan children. THE JOURNAL OF IMMUNOLOGY 2005; 174:8191-9. [PMID: 15944328 DOI: 10.4049/jimmunol.174.12.8191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Without treatment most HIV-1-infected children in Africa die before their third birthday (>89%) and long-term nonprogressors are rare. The mechanisms underlying nonprogression in HIV-1-infected children are not well understood. In the present study, we examined potential correlates of delayed HIV disease progression in 51 HIV-1-infected African children. Children were assigned to progression subgroups based on clinical characterization. HIV-1-specific immune responses were studied using a combination of ELISPOT assays, tetramer staining, and FACS analysis to characterize the magnitude, specificity, and functional phenotype of HIV-1-specific CD8(+) and CD4(+) T cells. Host genetic factors were examined by genotyping with sequence-specific primers. HIV-1 nef gene sequences from infecting isolates from the children were examined for potential attenuating deletions. Thymic output was measured by T cell rearrangement excision circle assays. HIV-1-specific CD8(+) T cell responses were detected in all progression groups. The most striking attribute of long-term survivor nonprogressors was the detection of HIV-1-specific CD4(+) Th responses in this group at a magnitude substantially greater than previously observed in adult long-term nonprogressors. Although long-term survivor nonprogressors had a significantly higher percentage of CD45RA(+)CD4(+) T cells, nonprogression was not associated with higher thymic output. No protective genotypes for known coreceptor polymorphisms or large sequence deletions in the nef gene associated with delayed disease progression were identified. In the absence of host genotypes and attenuating mutations in HIV-1 nef, long-term surviving children generated strong CD4(+) T cell responses to HIV-1. As HIV-1-specific helper cells support anti-HIV-1 effector responses in active disease, their presence may be important in delaying disease progression.
Collapse
Affiliation(s)
- Rana Chakraborty
- Pediatric Infectious Diseases Unit, St. George's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Su G, Min W, Taylor EW. An HIV-1 encoded peptide mimics the DNA binding loop of NF-kappaB and binds thioredoxin with high affinity. Mutat Res 2005; 579:133-48. [PMID: 16054658 DOI: 10.1016/j.mrfmmm.2005.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-kappaB), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-kappaB via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-kappaB/Rel family of transcription factors by the putative HIV-1 pro-fs protein.
Collapse
Affiliation(s)
- Guoping Su
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA.
| | | | | |
Collapse
|
154
|
Yang P, Henderson AJ. Nef enhances c-Cbl phosphorylation in HIV-infected CD4+ T lymphocytes. Virology 2005; 336:219-28. [PMID: 15892963 DOI: 10.1016/j.virol.2005.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/16/2004] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The multifunctional HIV-1 protein Nef possesses several motifs that interact with signaling molecules in infected T cells. In order to determine whether Nef influences T cell activation, cells were infected with Nef-positive and Nef-negative clones of HIV. CD28 expression and changes in tyrosine phosphorylation were monitored. We observed no Nef-dependent changes in CD28 expression or function. However, infection with Nef-positive virus led to changes in tyrosine phosphorylation. This Nef-induced phosphorylation was observed in unstimulated cells, and c-Cbl was identified as one of the proteins whose phosphorylation was upregulated by Nef. Furthermore, Lck is required for Nef-mediated c-Cbl tyrosine phosphorylation. These results suggest that Nef modifies T cell signaling in the absence of T cell receptor engagement and co-stimulation.
Collapse
Affiliation(s)
- Polung Yang
- Integrated Bioscience Graduate Program in Immunobiology, Department of Veterinary Science, Immunology Research Laboratories, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
155
|
Wang YY, Ouyang DY, Huang H, Chan H, Tam SC, Zheng YT. Enhanced apoptotic action of trichosanthin in HIV-1 infected cells. Biochem Biophys Res Commun 2005; 331:1075-80. [PMID: 15882987 DOI: 10.1016/j.bbrc.2005.03.230] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Indexed: 11/27/2022]
Abstract
Trichosanthin (TCS) is a type 1 ribosome-inactivating protein (RIP) effective against HIV-1 replication. The mechanism is not clear. Present results suggested that the antiviral action may be partly mediated through enhanced apoptosis on infected cells. TCS induced apoptosis in normal H9 cells and this action was more potent in those infected with HIV-1. In flow cytometry study, TCS induced larger population of apoptotic H9 cells chronically infected with HIV-1 in a dose-dependent manner. At TCS concentration of 25 microg/ml, 8.4% of normal H9 cells were found to be apoptotic whereas the same concentration induced 24.5% in HIV-1 chronically infected cells. Such difference was not found in the control experiments without TCS treatment. Two other studies supported this action. Cytotoxic study showed that cell viability was always lower in HIV-1 infected cells after TCS treatment, and DNA fragmentation study confirmed more laddering in infected cells. The mechanism of TCS induced apoptosis in normal or infected H9 cells is not clear. Results in this study demonstrated that TCS is more effective in inducing apoptosis in HIV-1 infected cells. This may explain in part the antiviral action of TCS.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Laboratory of Molecular Immunopharmacology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | | | | | | | | |
Collapse
|
156
|
Brown A, Gartner S, Kawano T, Benoit N, Cheng-Mayer C. HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus. J Leukoc Biol 2005; 78:675-85. [PMID: 16000390 DOI: 10.1189/jlb.0505237] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multiple mechanisms are used by the human immunodeficiency virus type 1 (HIV-1) to interfere with host-cell immune effector functions. The 27-kD Nef protein has been shown to down-modulate specific genes of the major histocompatibility complex class I (MHC-I) on the surface of infected primary T cells, facilitating their escape from lysis by cytolytic T lymphocytes. Macrophages, as the other major immune cell type targeted by the virus, also contribute to the transmission, persistence, and pathogenesis of HIV-1. Yet, whether Nef modulates MHC-I expression on HIV-infected primary macrophages remains unclear. Currently available infectious HIV-1 molecular clones, which express a reporter gene, only infect T cells and/or do not express Nef. To overcome these limitations, we generated macrophage-tropic green fluorescent protein (GFP)-tagged HIV-1 viruses, which express the complete viral genome, and used these to assess the expression of human leukocyte antigen (HLA)-A2 on the surface of productively infected macrophages. The reporter viral genomes were replication-competent and stable, as Nef, p24 antigen, and GFP expression could be detected by immunostaining of infected, monocyte-derived macrophages (MDM) after more than 2 months postinfection. Fluorescence-activated cell sorter analyses of infected macrophages and T cells revealed that although wild-type reporter virus infection induced a statistically significant decrease in the density of surface HLA-A2, down-regulation of HLA-A2 was not seen in cells infected with reporter viruses encoding a frameshift or a single point mutation in Nef at prolines 74P and P80. The impact of Nef on HLA-A2 surface expression in MDM was also confirmed by confocal microscopy. These results suggest that the mechanisms of HLA-A2 down-modulation are similar in primary T cells and macrophages.
Collapse
Affiliation(s)
- Amanda Brown
- Department of Neurology, Meyer 6-181, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
157
|
Cluet D, Bertsch C, Beyer C, Gloeckler L, Erhardt M, Gut JP, Galzi JL, Aubertin AM. Detection of human immunodeficiency virus type 1 Nef and CD4 physical interaction in living human cells by using bioluminescence resonance energy transfer. J Virol 2005; 79:8629-36. [PMID: 15956605 PMCID: PMC1143710 DOI: 10.1128/jvi.79.13.8629-8636.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 02/21/2005] [Indexed: 11/20/2022] Open
Abstract
CD4 down-regulation by human immunodeficiency virus type 1 (HIV-1) Nef protein is a key function for virus virulence. This activity may be mediated by a direct Nef-CD4 interaction. We investigated the formation, in situ, of such a complex between proteins using bioluminescence resonance energy transfer technology and co-immunoprecipitations. Our data clearly demonstrate that Nef and CD4 interact in intact human cells. Moreover, our results clearly indicate that the dileucine motif of the CD4 cytoplasmic domain, critical for the Nef-induced CD4 down-regulation, is not implicated in the Nef/CD4 complex formation in the cellular context.
Collapse
Affiliation(s)
- David Cluet
- INSERM-ULP U544, Université Louis Pasteur, Institut de Virologie, 3 Rue Koeberlé, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Apoptosis has been suggested to cause severe CD4+ T cell depletion in patients infected with HIV. This review focuses on the biological events involved in death ligand-induced apoptosis during HIV infection. Among these ligands, TRAIL appears critical in HIV-infection. Death ligand-induced apoptosis might be a major pathogenic event in many virus-induced diseases including AIDS and the clarification of its mechanism will aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yoshiharu Miura
- Laboratory of Viral Pathogenesis, Research Center for AIDS, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|
159
|
Holm GH, Gabuzda D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus type 1 virions. J Virol 2005; 79:6299-311. [PMID: 15858014 PMCID: PMC1091688 DOI: 10.1128/jvi.79.10.6299-6311.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4(+) and CD8(+) T cells. Infection of primary T-cell cultures with ELI6 induced CD4(+) T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4(+) and CD8(+) T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4(+) T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8(+) T cells was triggered by a soluble factor(s) secreted by CD4(+) T cells. HIV-1 virions activated CD4(+) and CD8(+) T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25(+)HLA-DR(+) T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4(+) and CD8(+) T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Dana-Farber Cancer Institute, JFB 816, 44 Binney St., Boston, MA 02115, USA
| | | |
Collapse
|
160
|
Jeeninga RE, Jan B, van der Linden B, van den Berg H, Berkhout B. Construction of a minimal HIV-1 variant that selectively replicates in leukemic derived T-cell lines: towards a new virotherapy approach. Cancer Res 2005; 65:3347-55. [PMID: 15833868 DOI: 10.1158/0008-5472.can-04-4280] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell acute lymphoblastic leukemia is a high-risk type of blood-cell cancer. We analyzed the possibility of developing virotherapy for T-cell acute lymphoblastic leukemia. Virotherapy is based on the exclusive replication of a virus in leukemic cells, leading to the selective removal of these malignant cells. We constructed a minimized derivative of HIV-1, a complex lentivirus encoding multiple accessory functions that are essential for virus replication in untransformed cells, but dispensable in leukemic T cells. This mini-HIV virus has five deletions (vif, vpR, vpU, nef, and U3) and replicated in the SupT1 cell line, but did not replicate in normal peripheral blood mononuclear cells. The stripped down mini-HIV variant was also able to efficiently remove leukemic cells from a mixed culture with untransformed control cells. In contrast to wild-type HIV-1, we did not observe bystander killing in mixed culture experiments with the mini-HIV variant. Furthermore, viral escape was not detected in long-term cultures. The mini-HIV variant that uses CD4 and CXCR4 for cell entry could potentially be used against CXCR4-expressing malignancies such as T-lymphoblastic leukemia/lymphoma, natural killer leukemia, and some myeloid leukemias.
Collapse
Affiliation(s)
- Rienk E Jeeninga
- Department of Human Retrovirology, Emma Children Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
161
|
Schindler M, Münch J, Kirchhoff F. Human immunodeficiency virus type 1 inhibits DNA damage-triggered apoptosis by a Nef-independent mechanism. J Virol 2005; 79:5489-98. [PMID: 15827163 PMCID: PMC1082752 DOI: 10.1128/jvi.79.9.5489-5498.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is controversial whether the accessory human immunodeficiency virus type 1 (HIV-1) Nef protein inhibits or enhances apoptosis. To address this issue, we investigated the effect of Nef on programmed cell death with vectors or proviral HIV-1 constructs coexpressing Nef and green fluorescent protein from single bicistronic RNAs. This approach allows us to readily identify transfected or infected cells and to correlate cell death directly with Nef expression levels. We demonstrate that Nef does not significantly affect apoptosis in transfected or HIV-1-infected Jurkat T cells or primary human peripheral blood mononuclear cells. Unexpectedly, however, both nef+ and nef-defective HIV-1 infection blocked apoptosis in cells treated with UV light or etoposide but not cell death induced by CD95 antibody, TRAIL, Ly294002, or serum starvation. Our results show that HIV-1 infection inhibits DNA damage-induced but not death receptor-dependent cell death by a Nef-independent mechanism.
Collapse
Affiliation(s)
- Michael Schindler
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | |
Collapse
|
162
|
Muthumani K, Choo AY, Hwang DS, Premkumar A, Dayes NS, Harris C, Green DR, Wadsworth SA, Siekierka JJ, Weiner DB. HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood 2005; 106:2059-68. [PMID: 15928037 PMCID: PMC1895138 DOI: 10.1182/blood-2005-03-0932] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The human immunodeficiency virus (HIV) has been reported to target noninfected CD4 and CD8 cells for destruction. This effect is manifested in part through up-regulation of the death receptor Fas ligand (FasL) by HIV-1 negative factor (Nef), leading to bystander damage. However, the signal transduction and transcriptional regulation of this process remains elusive. Here, we provide evidence that p38 mitogen-activated protein kinase (MAPK) is required for this process. Loss-of-function experiments through dominant-negative p38 isoform, p38 siRNA, and chemical inhibitors of p38 activation suggest that p38 is necessary for Nef-induced activator protein-1 (AP-1) activation, as inhibition leads to an attenuation of AP-1-dependent transcription. Furthermore, mutagenesis of the FasL promoter reveals that its AP-1 enhancer element is required for Nef-mediated transcriptional activation. Therefore, a linear pathway for Nef-induced FasL expression that encompasses p38 and AP-1 has been elucidated. Furthermore, chemical inhibition of the p38 pathway attenuates HIV-1-mediated bystander killing of CD8 cells in vitro.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- University of Pennsylvania School of Medicine, Department of Pathology & Laboratory Medicine 422 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Acheampong EA, Parveen Z, Muthoga LW, Kalayeh M, Mukhtar M, Pomerantz RJ. Human Immunodeficiency virus type 1 Nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. J Virol 2005; 79:4257-69. [PMID: 15767427 PMCID: PMC1061575 DOI: 10.1128/jvi.79.7.4257-4269.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The lentiviral protein Nef plays a major role in the pathogenesis of human immunodeficiency virus type I (HIV-1) infection. Although the exact mechanisms of its actions are not fully understood, Nef has been shown to be essential for the maintenance of high-titer viral replication and disease pathogenesis in in vivo models of simian immunodeficiency virus infection of monkeys. Nef has also been suggested to play a pivotal role in the depletion of T cells by promoting apoptosis in bystander cells. In this context, we investigated the ability of extracellular and endogenously expressed HIV-1 Nef to induce apoptosis in primary human brain microvascular endothelial cells (MVECs). Human brain MVECs were exposed to baculovirus-expressed HIV-1 Nef protein, an HIV-1-based vector expressing Nef, spleen necrosis virus (SNV)-Nef virus (i.e., SNV vector expressing HIV-1 Nef as a transgene), and the HIV-1 strain ADA and its Nef deletion mutant, ADADeltaNef. We observed that ADA Nef, the HIV-1 vector expressing Nef, and SNV-Nef were able to induce apoptosis in a dose-dependent manner. The mutant virus with a deletion in Nef was able to induce apoptosis in MVECs to modest levels, but the effects were not as pronounced as with the wild-type HIV-1 strain, ADA, the HIV-1-based vector expressing Nef, or SNV-Nef viruses. We also demonstrated that relatively high concentrations of exogenous HIV-1 Nef protein were able to induce apoptosis in MVECs. Gene microarray analyses showed increases in the expression of several specific proapoptotic genes. Western blot analyses revealed that the various caspases involved with Nef-induced apoptosis are processed into cleavage products, which occur only during programmed cell death. The results of this study demonstrate that Nef likely contributes to the neuroinvasion and neuropathogenesis of HIV-1, through its effects on select cellular processes, including various apoptotic cascades.
Collapse
Affiliation(s)
- Edward A Acheampong
- Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
164
|
Lee SB, Park J, Jung JU, Chung J. Nef induces apoptosis by activating JNK signaling pathway and inhibits NF-kappaB-dependent immune responses in Drosophila. J Cell Sci 2005; 118:1851-9. [PMID: 15827086 DOI: 10.1242/jcs.02312] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nef gene encodes a 27-kDa protein that plays a crucial role during AIDS pathogenesis, but its exact functional mechanism has not been fully elucidated and remains controversial. The present study illuminated the in vivo functions of Nef using Drosophila, in which genetic analyses can be conveniently conducted. Using Drosophila transgenic lines for wild-type Nef, we demonstrated that Nef is not involved in the regulation of cell proliferation but rather specifically induces caspase-dependent apoptosis in wings in a cell-autonomous manner. Interestingly, myristoylation-defective Nef completely failed to induce the apoptotic wing phenotypes, consistent with previous reports demonstrating a crucial role for membrane localization of Nef in vivo. Further genetic and immunohistochemical studies revealed that Nef-dependent JNK activation is responsible for apoptosis. Furthermore, we found that ectopic expression of Nef inhibits Drosophila innate immune responses including Relish NF-kappaB activation with subsequent induction of an antimicrobial peptide, diptericin. The in vivo functions of Nef in Drosophila are highly consistent with those found in mammals and so we propose that Nef regulates evolutionarily highly conserved signaling molecules of the JNK and NF-kappaB signaling pathways at the plasma membrane, and consequently modulates apoptosis and immune responses in HIV target cells.
Collapse
Affiliation(s)
- Sung Bae Lee
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | |
Collapse
|
165
|
Petrovas C, Mueller YM, Katsikis PD. Apoptosis of HIV-specific CD8+ T cells: an HIV evasion strategy. Cell Death Differ 2005; 12 Suppl 1:859-70. [PMID: 15818412 DOI: 10.1038/sj.cdd.4401595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- C Petrovas
- Department of Microbiology and Immunology, and Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
166
|
Parreira R, Pádua E, Piedade J, Venenno T, Paixão MT, Esteves A. Genetic analysis of human immunodeficiency virus type 1nef in portugal: Subtyping, identification of mosaic genes, and amino acid sequence variability. J Med Virol 2005; 77:8-16. [PMID: 16032733 DOI: 10.1002/jmv.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extending our previous genetic characterization of human immunodeficiency virus type 1 (HIV-1) strains circulating in Portugal, we here report the first phylogenetic and putative amino acid sequence variability analyses of nef accessory gene. Viral sequences (n = 53) were amplified by nested PCR from proviral DNA purified from peripheral blood mononuclear cells of HIV-1 infected individuals (n = 49). Phylogenetic inference analysis demonstrated a distribution of the viral sequences between subtypes A (sub-subtype A1), B, D, F (sub-subtype F1), G, H, and J, with subtypes G and B accounting altogether for more than half of the genotypes found. A significant number of the proviral DNA sequences analyzed (18.4%) were shown to correspond to intragenic nef recombinants, with the majority having the typical CRF02_AG nef structure. In addition, three novel intragenic recombinant structures were found (B/G/B, CRF02_AG/H, and D/G). From phylogenetic analysis, it was concluded that part of the non-recombinant nef genes might have actually been amplified from mosaic viruses: CRF06_cpx, CRF14_BG, and a new envA/nefJ recombinant. While comparing all the putative Nef sequences, significant amino acid sequence variability was observed. However, most of the described nef functional motifs were relatively well conserved in the majority of the sequences analyzed and numerous amino acid changes fell outside these regions. The results presented unambiguously endorse the high level of complexity of HIV-1 epidemics in Portugal.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Virologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
167
|
Ye L, Bu Z, Vzorov A, Taylor D, Compans RW, Yang C. Surface stability and immunogenicity of the human immunodeficiency virus envelope glycoprotein: role of the cytoplasmic domain. J Virol 2004; 78:13409-19. [PMID: 15564451 PMCID: PMC533911 DOI: 10.1128/jvi.78.24.13409-13419.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of two functional domains, the membrane-proximal YXXPhi motif and the membrane-distal inhibitory sequence in the long cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env), on immunogenicity of the envelope protein were investigated. Genes with codons optimized for mammalian expression were synthesized for the HIV 89.6 Env and a truncated Env with 50 amino acids in the cytoplasmic domain to delete the membrane distal inhibitory sequence for surface expression. Additional genes were generated in which the tyrosine residue in the YXXPhi motif was changed into a serine. Pulse-chase radioactive labeling and immunoprecipitation studies indicated that both domains can mediate endocytosis of the HIV Env, and removal of both domains is required to enhance HIV Env protein surface stability. Analysis of immune responses induced by DNA immunization of mice showed that the DNA construct for the mutant Env exhibiting enhanced surface stability induced significantly higher levels of antibody responses against the HIV Env protein. Our results suggest that the HIV Env cytoplasmic domain may play important roles in virus infection and pathogenesis by modulating its immunogenicity.
Collapse
Affiliation(s)
- Ling Ye
- Department of Microbiology and Immunology and Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Room 3033, Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
168
|
Cosenza MA, Zhao ML, Lee SC. HIV-1 expression protects macrophages and microglia from apoptotic death. Neuropathol Appl Neurobiol 2004; 30:478-90. [PMID: 15488024 DOI: 10.1111/j.1365-2990.2004.00563.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrophages and microglia are the predominant cells infected with HIV-1 in the brain, yet the effects of productive HIV infection on the fate of these cells are poorly understood. In this study, we tested the hypothesis that HIV-1 expression influences cell death in infected macrophages and microglial cells. We detected apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) in the cerebral white matter of control and HIV encephalitis (HIVE) brains, and quantitatively analysed apoptotic cells with respect to their location (vessel-associated vs. parenchymal), CD68 expression, and HIV-1 p24 expression. There were more vessel-associated, but not more parenchymal, TUNEL+ cells in HIVE cases as compared to controls. Vessel-associated TUNEL+ cells were primarily endothelial cells (von Willebrand factor+) or macrophages (CD68+). TUNEL+/CD68+ cells were present in both control and HIVE cases in similar frequencies (2.1 +/- 0.7% vs. 1.9 +/- 0.7% of total CD68+ populations, respectively). In HIVE, TUNEL+/p24+ cells were 0.4 +/- 0.2% of the total p24+ cell population, which was lower than the frequency of TUNEL+/CD68+ cells (1.9 +/- 0.7%) in the total CD68+ macrophage population. These results suggest that HIV-1-infected macrophages and microglia are resistant to apoptosis, and may contribute to the formation of a central nervous system viral reservoir.
Collapse
Affiliation(s)
- M A Cosenza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
169
|
Swigut T, Alexander L, Morgan J, Lifson J, Mansfield KG, Lang S, Johnson RP, Skowronski J, Desrosiers R. Impact of Nef-mediated downregulation of major histocompatibility complex class I on immune response to simian immunodeficiency virus. J Virol 2004; 78:13335-44. [PMID: 15542684 PMCID: PMC525019 DOI: 10.1128/jvi.78.23.13335-13344.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional activities that have been ascribed to the nef gene product of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) include CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, downregulation of other plasma membrane proteins, and lymphocyte activation. Monkeys were infected experimentally with SIV containing difficult-to-revert mutations in nef that selectively eliminated MHC downregulation but not these other activities. Monkeys infected with these mutant forms of SIV exhibited higher levels of CD8(+) T-cell responses 4 to 16 weeks postinfection than seen in monkeys infected with the parental wild-type virus. Furthermore, unusual compensatory mutations appeared by 16 to 32 weeks postinfection which restored some or all of the MHC-downregulating activity. These results indicate that nef does serve to limit the virus-specific CD8 cellular response of the host and that the ability to downregulate MHC class I contributes importantly to the totality of nef function.
Collapse
Affiliation(s)
- Tomek Swigut
- New England Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL, Blackett J, Choudhary SK, Camerini D, Nghiem P, Planelles V. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 2004; 24:9286-94. [PMID: 15485898 PMCID: PMC522272 DOI: 10.1128/mcb.24.21.9286-9294.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G(2) phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G(2) arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G(2) arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4(+)-lymphocyte cell cycle and apoptosis induction in the progressive CD4(+)-lymphocyte depletion characteristic of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Erik S Zimmerman
- Department of Pathology, School of Medicine, University of Utah, 30 N. 1900 East, SOM 5C210, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zhang J, Zhu J, Bu X, Cushion M, Kinane TB, Avraham H, Koziel H. Cdc42 and RhoB activation are required for mannose receptor-mediated phagocytosis by human alveolar macrophages. Mol Biol Cell 2004; 16:824-34. [PMID: 15574879 PMCID: PMC545914 DOI: 10.1091/mbc.e04-06-0463] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human alveolar macrophages (AMs) phagocytose Pneumocystis (Pc) organisms predominantly through mannose receptors, although the molecular mechanism mediating this opsonin-independent process is not known. In this study, using AMs from healthy individuals, Pc phagocytosis was associated with focal F-actin polymerization and Cdc42, Rac1, and Rho activation in a time-dependent manner. Phagocytosis was primarily dependent on Cdc42 and RhoB activation (as determined by AM transfection with Cdc42 and RhoB dominant-negative alleles) and mediated predominantly through mannose receptors (as determined by siRNA gene silencing of AM mannose receptors). Pc also promoted PAK-1 phosphorylation, which was also dependent on RhoGTPase activation. HIV infection of AMs (as a model for reduced mannose receptor expression and function) was associated with impaired F-actin polymerization, reduced Cdc42 and Rho activation, and markedly reduced PAK-1 phosphorylation in response to Pc organisms. In healthy AMs, Pc phagocytosis was partially dependent on PAK activation, but dependent on the Rho effector molecule ROCK. These data provide a molecular mechanism for AM mannose receptor-mediated phagocytosis of unopsonized Pc organisms that appears distinct from opsonin-dependent phagocytic receptors. Reduced AM mannose receptor-mediated Cdc42 and Rho activation in the context of HIV infection may represent a mechanism that contributes to the pathogenesis of opportunistic pneumonia.
Collapse
MESH Headings
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoscopy
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cytoskeletal Proteins
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- Fluorescein-5-isothiocyanate
- Fluorescent Dyes
- Gene Silencing
- HIV Infections/complications
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/isolation & purification
- Humans
- Immunity, Innate
- Lectins, C-Type/metabolism
- Macrophage Activation
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Microscopy, Confocal
- Phagocytosis/drug effects
- Phagocytosis/physiology
- Pneumocystis/physiology
- Precipitin Tests
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Cell Surface/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Zymosan/pharmacology
- cdc42 GTP-Binding Protein/genetics
- cdc42 GTP-Binding Protein/metabolism
- p21-Activated Kinases
- rho GTP-Binding Proteins
- rhoB GTP-Binding Protein/genetics
- rhoB GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Jianmin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Bu Z, Ye L, Vzorov A, Taylor D, Compans RW, Yang C. Enhancement of immunogenicity of an HIV Env DNA vaccine by mutation of the Tyr-based endocytosis motif in the cytoplasmic domain. Virology 2004; 328:62-73. [PMID: 15380359 DOI: 10.1016/j.virol.2004.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 04/16/2004] [Accepted: 06/28/2004] [Indexed: 11/17/2022]
Abstract
We investigated the effect of the conserved tyrosine-based endocytosis motif (YXXPhi) in the cytoplasmic domain of the human immunodeficiency viruses (HIV) envelope protein (Env) on its immunogenicity. Genes with codons optimized for mammalian expression were synthesized for the HIV 89.6 Env with a truncated cytoplasmic domain and a mutant Env in which the tyrosine residue in the YXXPhi motif was changed into a serine. Mutation of the Tyr residue enhanced surface expression of the Env protein. Analysis of immune responses induced by DNA immunization of mice showed that the DNA construct for the Tyr mutant Env induced moderately higher levels of T cell responses. More interestingly, the DNA construct for the mutant Env induced significantly higher levels of antibody responses against the Env protein in comparison to the construct for the wild type Env. Our results suggest that the YXXPhi motif in the HIV Env cytoplasmic domain may play a role in virus evasion of host immune responses through affecting its immunogenicity.
Collapse
Affiliation(s)
- Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, P.R. China
| | | | | | | | | | | |
Collapse
|
173
|
Huang MB, Jin LL, James CO, Khan M, Powell MD, Bond VC. Characterization of Nef-CXCR4 interactions important for apoptosis induction. J Virol 2004; 78:11084-96. [PMID: 15452229 PMCID: PMC521796 DOI: 10.1128/jvi.78.20.11084-11096.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 Nef protein was analyzed for apoptotic structural motifs that interact with the CXCR4 receptor and induce apoptosis in CD4(+) lymphocytes. Two apoptotic motifs were identified. One centered on Nef amino acids (aa) 50 to 60, with the overlapping 20-mer peptides retaining about 82% of the activity of the full Nef protein. The second centered on aa 170 to 180, with the overlapping 20-mer peptides retaining about 30% of the activity of the full protein. Significant apoptotic abilities were observed for 11-mer motif peptides spanning aa 50 to 60 and aa 170 to 180, with a scrambled version of the 11-mer motif peptide corresponding to aa 50 to 60 showing no apoptotic ability. Hallmarks of apoptosis, such as the formation of DNA ladders and caspase activation, that were observed with the full-length protein were equally evident upon exposure of cells to these motif peptides. A CXCR4 antibody and the endogenous ligand SDF-1alpha were effective in blocking Nef peptide-induced apoptosis as well as the physical binding of a fluorescently tagged Nef protein, while CCR5 antibodies were ineffective. The CXCR4-negative cell line MDA-MB-468 was resistant to the apoptotic peptides and became sensitive to the apoptotic peptides upon transfection with a CXCR4-expressing vector. A fluorescently tagged motif peptide and Nef protein displayed physical binding to CXCR4-transfected MDA-MB-468 cells, but not to CCR5-transfected cells. The removal of the apoptotic motif sequences from the full-length protein completely eliminated the ability of Nef to induce apoptosis. However, these modified Nef proteins still retained the ability to enhance viral infectivity. Thus, specific sequences in the Nef protein appear to be necessary for Nef protein-induced apoptosis as well as for physical interaction with CXCR4 receptors.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Drive S.W., Atlanta, GA 30310, USA
| | | | | | | | | | | |
Collapse
|
174
|
Abstract
Dendritic cells are critical for host immunity and are involved both in the innate and adaptive immune responses. They are among the first cells targeted by HIV-1 in vivo at mucosal sites. Dendritic cells can sequester HIV-1 in endosomal compartments for several days and transmit infectious HIV-1 to interacting T cells in the lymph node, which is the most important site for viral replication and spread. Initially, the cellular immune response developed against HIV-1 is strong, but eventually it fails to control and resolve the infection. The most dramatic effect seen on the immune system during untreated HIV-1 infection is the destruction of helper CD4(+) T cells, which leads to subsequent immune deficiency. However, the immunomodulatory effects of HIV-1 on different dendritic cell subpopulations may also play an important role in the pathogenesis of HIV-1. This review discusses the effects HIV-1 exerts on dendritic cells in vivo and in vitro, including the binding and uptake of HIV by dendritic cells, the formation of infectious synapses, infection, and the role of dendritic cells in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Larsson
- New York University, School of Medicine, 550 First Avenue, MSB 507, New York, NY 10016, USA.
| |
Collapse
|
175
|
Aikin R, Maysinger D, Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 2004; 145:4522-31. [PMID: 15242986 DOI: 10.1210/en.2004-0488] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Therapeutic strategies aimed at the inhibition of specific cell death mechanisms may increase islet yield and improve cell viability and function after routine isolation. The aim of the current study was to explore the possibility of AKT-JNK cross-talk in islets after isolation and the relevance of c-jun NH2-terminal kinases (JNK) suppression on islet survival. After routine isolation, increased AKT activity correlated with suppression of JNK activation, suggesting that they may be related events. Indeed, the increase in AKT activation after isolation correlated with suppression of apoptosis signal-regulating kinase 1 (ASK1), a kinase acting upstream of JNK, by phosphorylation at Ser83. We therefore examined whether modulators of phosphatidylinositol 3-kinase (PI3K)/AKT signaling affected JNK activation. PI3K inhibition led to increased JNK phosphorylation and islet cell death, which could be reversed by the specific JNK inhibitor SP600125. In addition, IGF-I suppressed cytokine-mediated JNK activation in a PI3K-dependent manner. We also demonstrate that inhibition of PI3K rendered islets more susceptible to cytokine-mediated cell death. SP600125 transiently protected islets from cytokine-mediated cell death, suggesting that JNK may not be necessary for cytokine-induced cell death. When administered immediately after isolation, SP600125 improved islet survival and function, even 48 h after removal of SP600125, suggesting that JNK inhibition by SP600125 may be a viable strategy for improving isolated islet survival. Taken together, these results demonstrate that PI3K/AKT suppresses the JNK pathway in islets, and this cross-talk represents an important antiapoptotic consequence of PI3K/AKT activation.
Collapse
Affiliation(s)
- Reid Aikin
- Department of Surgery, Montréal General Hospital, Room C9-128, 1650 Cedar Avenue, Montréal, Québec, Canada H3G 1A4
| | | | | |
Collapse
|
176
|
Choi HJ, Smithgall TE. HIV-1 Nef promotes survival of TF-1 macrophages by inducing Bcl-XL expression in an extracellular signal-regulated kinase-dependent manner. J Biol Chem 2004; 279:51688-96. [PMID: 15459189 DOI: 10.1074/jbc.m410068200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Nef protein of human immunodeficiency virus-1 (HIV-1) is essential for the progression from human and simian immunodeficiency virus infection to full-blown AIDS. Recent studies indicate that Nef generates anti-apoptotic signals in HIV-infected T cells, suppressing cell death early in infection to allow productive viral replication. Previous work from our laboratory has shown that Nef also promotes proliferation of myeloid cells through a signal transducer and activator of transcription 3-dependent pathway. Here we demonstrate that Nef suppresses cell death induced by cytokine deprivation in the human macrophage precursor cell line, TF-1. Nef selectively induced up-regulation of Bcl-XL, an anti-apoptotic gene that is also regulated by granulocyte/macrophage-colony stimulating factor in this cell line. Activation of the extracellular signal-regulated kinase (Erk) mitogen-activated protein kinase pathway also correlated with the survival of TF-1/Nef cells. Using the selective mitogen-activated protein kinase kinase inhibitor PD98059, we found that Nef-induced Erk signaling is essential for Bcl-XL up-regulation and cell survival. In contrast, expression of Bcl-XL and TF-1 survival was not affected by dominant-negative signal transducer and activator of transcription 3. These data suggest that Nef produces survival signals in myeloid cells through Erk-mediated Bcl-XL induction, a pathway distinct from Nef survival pathways recently reported in T lymphocytes.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
177
|
Abstract
Human retroviruses, such as HTLV-1 and HIV-1, encode accessory proteins, which regulate viral pathogenesis. The p12 protein of HTLV-1 is encoded from the pX-I open reading frame, and is critical for efficient virus replication in rabbits. Although dispensable for infection, replication, and immortalization of activated lymphocytes in culture, p12 expression is important for infection of quiescent lymphocytes. Similar to HTLV-1 p12, Nef is important for virus infectivity in SIV animal models. We questioned whether p12 could replace Nef in HIV-1, and reconstitute virus replication in culture. We found that p12 could complement for effects of Nef on HIV-1 infection of Magi-CCR5 cells or macrophages.
Collapse
Affiliation(s)
- Tomonori Tsukahara
- Division of Molecular Oncology, Departments of Medicine, Pathology and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
178
|
Quaranta MG, Mattioli B, Giordani L, Viora M. HIV‐1 Nef equips dendritic cells to reduce survival and function of CD8
+
T cells: a mechanism of immune evasion. FASEB J 2004; 18:1459-61. [PMID: 15240562 DOI: 10.1096/fj.04-1633fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The accessory HIV-1 Nef protein is a crucial determinant for viral replication and pathogenesis. During HIV infection, loss of immune control in the setting of a strong and broad HIV-specific T-lymphocyte response, leads to a lethal outcome through AIDS. Moreover, dysfunction of dendritic cells (DCs) may contribute to the immune suppression associated with AIDS progression. We recently demonstrated that exogenous Nef selectively activates immature DCs manipulating their phenotypical, morphological, and functional developmental program. Here, we tracked whether Nef, targeting DCs, could be involved in the dysregulation of CD8+ T cell responses. We found that Nef inhibits the capacity of DCs to prime alloreactive CD8+ T cell responses down-regulating their proliferation and functional competence. This coincides with the induction of CD8+ T cell apoptosis. Nef oversees apoptotic killing of CD8+ T cells up-regulating TNF-alpha and FasL production by DCs and interfering with the death receptor pathway in CD8+ T cells and thus activating caspase 8. Our findings suggest that Nef may contribute to the immune evasion associated with HIV-1 infection, subverting DC biology. This may help explain the pleiotropic function that Nef plays during infection and makes this protein an attractive target for preventive and therapeutic intervention.
Collapse
|
179
|
Brown A, Moghaddam S, Kawano T, Cheng-Mayer C. Multiple human immunodeficiency virus type 1 Nef functions contribute to efficient replication in primary human macrophages. J Gen Virol 2004; 85:1463-1469. [PMID: 15166429 DOI: 10.1099/vir.0.79946-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Nef protein has been shown to accelerate viral growth kinetics in primary human T-lymphocytes and macrophages; however, the specific function(s) of Nef responsible for this phenotype in macrophages is unknown. To address this issue, mutants of a molecularly cloned macrophage-tropic isolate, HIV-1(SF162), were generated expressing single point mutations that abrogate the ability of Nef to interact with cellular kinases or mediate CD4 down-regulation. Infection of primary monocyte-derived macrophages (MDM) with these mutant viruses revealed that residues in the PXXP motif contribute to efficient replication. Interestingly, viruses expressing alleles of Nef defective in CD4 down-modulation activity retain wild-type levels of infectivity in single-round assays but exhibited delayed replication kinetics and grew to lower titres compared to the wild-type virus in MDM. These data suggest that efficient HIV-1 replication is dependent on the ability of Nef to interact with cellular kinases and remove CD4 from the surface of infected macrophages.
Collapse
Affiliation(s)
- Amanda Brown
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA
| | - Shaghayegh Moghaddam
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA
| | - Thomas Kawano
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA
| |
Collapse
|
180
|
Holm GH, Zhang C, Gorry PR, Peden K, Schols D, De Clercq E, Gabuzda D. Apoptosis of bystander T cells induced by human immunodeficiency virus type 1 with increased envelope/receptor affinity and coreceptor binding site exposure. J Virol 2004; 78:4541-51. [PMID: 15078935 PMCID: PMC387714 DOI: 10.1128/jvi.78.9.4541-4551.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Sol-Foulon N, Esnault C, Percherancier Y, Porrot F, Metais-Cunha P, Bachelerie F, Schwartz O. The effects of HIV-1 Nef on CD4 surface expression and viral infectivity in lymphoid cells are independent of rafts. J Biol Chem 2004; 279:31398-408. [PMID: 15133044 DOI: 10.1074/jbc.m401621200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication.
Collapse
|
182
|
Lelièvre JD, Mammano F, Arnoult D, Petit F, Grodet A, Estaquier J, Ameisen JC. A novel mechanism for HIV1-mediated bystander CD4+ T-cell death: neighboring dying cells drive the capacity of HIV1 to kill noncycling primary CD4+ T cells. Cell Death Differ 2004; 11:1017-27. [PMID: 15118766 DOI: 10.1038/sj.cdd.4401441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD4+ T-cell death is a crucial feature of AIDS pathogenesis, but the mechanisms involved remain unclear. Here, we present in vitro findings that identify a novel process of HIV1 mediated killing of bystander CD4+ T cells, which does not require productive infection of these cells but depends on the presence of neighboring dying cells. X4-tropic HIV1 strains, which use CD4 and CXCR4 as receptors for cell entry, caused death of unstimulated noncycling primary CD4+ T cells only if the viruses were produced by dying, productively infected T cells, but not by living, chronically infected T cells or by living HIV1-transfected HeLa cells. Inducing cell death in HIV1-transfected HeLa cells was sufficient to obtain viruses that caused CD4+ T-cell death. The addition of supernatants from dying control cells, including primary T cells, allowed viruses produced by living HIV1-transfected cells to cause CD4+ T-cell death. CD4+ T-cell killing required HIV1 fusion and/or entry into these cells, but neither HIV1 envelope-mediated CD4 or CXCR4 signaling nor the presence of the HIV1 Nef protein in the viral particles. Supernatants from dying control cells contained CD95 ligand (CD95L), and antibody-mediated neutralization of CD95L prevented these supernatants from complementing HIV1 in inducing CD4+ T-cell death. Our in vitro findings suggest that the very extent of cell death induced in vivo during HIV1 infection by either virus cytopathic effects or immune activation may by itself provide an amplification loop in AIDS pathogenesis. More generally, they provide a paradigm for pathogen-mediated killing processes in which the extent of cell death occurring in the microenvironment might drive the capacity of the pathogen to induce further cell death.
Collapse
Affiliation(s)
- J D Lelièvre
- EMI-U 9922 INSERM/Université Paris 7, IFR02, AP-HP, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
183
|
Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, Branlant C, Stévenin J. Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. J Biol Chem 2004; 279:29963-73. [PMID: 15123677 DOI: 10.1074/jbc.m404452200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing is a crucial step for human immunodeficiency virus, type 1 (HIV-1) multiplication; eight acceptor sites are used in competition to produce the vif, vpu, vpr, nef, env, tat, and rev mRNAs. The effects of SR proteins have only been investigated on a limited number of HIV-1 splicing sites by using small HIV-1 RNA pieces. To understand how SR proteins influence the use of HIV-1 splicing sites, we tested the effects of overproduction of individual SR proteins in HeLa cells on the splicing pattern of an HIV-1 RNA that contained all the splicing sites. The steady state levels of the HIV-1 mRNAs produced were quantified by reverse transcriptase-PCR. For interpretation of the data, transcripts containing one or several of the HIV-1 acceptor sites were spliced in vitro in the presence or the absence of one of the tested SR proteins. Both in vivo and in vitro, acceptor sites A2 and A3 were found to be strongly and specifically regulated by SR proteins. ASF/SF2 strongly activates site A2 and to a lesser extent site A1. As a result, upon ASF/SF2 overexpression, the vpr mRNA steady state level is specifically increased. SC35 and SRp40, but not 9G8, strongly activate site A3, and their overexpression ex vivo induces a dramatic accumulation of the tat mRNA, to the detriment of most of the other viral mRNAs. Here we showed by Western blot analysis that the Nef protein synthesis is strongly decreased by overexpression of SC35, SRp40, and ASF/SF2. Finally, activation by ASF/SF2 and 9G8 was found to be independent of the RS domain. This is the first investigation of the effects of variations of individual SR protein concentrations that is performed ex vivo on an RNA containing a complex set of splicing sites.
Collapse
Affiliation(s)
- Delphine Ropers
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR CNRS 7567, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
184
|
James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol 2004; 78:3099-109. [PMID: 14990729 PMCID: PMC353732 DOI: 10.1128/jvi.78.6.3099-3109.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of soluble Nef protein on CD4(+) T cells were examined. CD4(+)-T-cell cultures exposed to soluble Nef were analyzed for apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and hallmarks of apoptosis including cytoplasmic shrinkage, nuclear fragmentation, DNA laddering, and caspase activation. We observed dose- and time-dependent inductions of apoptosis. DNA laddering and activated caspase 3 were also evident. Cells treated with Nef/protein kinase inhibitor complexes were protected from Nef-induced apoptosis, suggesting possible roles for protein kinases in the apoptosis pathway. Similarly, cells treated with Nef/anti-Nef antibody complexes were protected from Nef-induced apoptosis. The cellular receptor responsible for Nef-induced apoptosis was identified through antibody- and ligand-blocking experiments as a receptor commonly involved in viral entry. CXCR4 antibodies, as well as the endogenous ligand SDF-1alpha, were effective in blocking Nef-induced apoptosis, while CCR5 and CD4 antibodies were ineffective. Moreover, a CXCR4-deficient cell line, MDA-MB-468, which was resistant to Nef-induced apoptosis, became sensitive upon transfection with a CXCR4-expressing vector. This study suggests that extracellular Nef protein could contribute to the decline of CD4 counts prior to and during the onset of AIDS in patients with human immunodeficiency virus type 1 infections.
Collapse
Affiliation(s)
- Cleve O James
- Department of Microbiology/Immunology/Biochemistry. Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
185
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Yin J, Chen MF, Finkel TH. Differential gene expression during HIV-1 infection analyzed by suppression subtractive hybridization. AIDS 2004; 18:587-96. [PMID: 15090763 DOI: 10.1097/00002030-200403050-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Characterization of the effects of HIV-1 infection and apoptosis on cellular and viral gene expression. METHODS Flow cytometry was used to analyze infection and apoptosis concurrently in HIV-1IIIB-infected CEM-SS T cells. Suppression subtractive hybridization (SSH) was applied to cells from different time points of infection to construct subtracted complementary DNA (cDNA) libraries. Differential screening and Northern blots confirmed differential gene expression and these genes were sequenced and compared with database. RESULTS T cells undergo apoptosis at early stages of HIV-1IIIB infection (days 5-7 post-infection). Surprisingly, cells begin to recover after day 9 and by day 18 almost all infected cells are viable, even though they maintain the same level of infection. By SSH, differential gene expression profiles between day 7 and day 18 after HIV-1IIIB infection were characterized. SSH yielded two subtracted cDNA libraries; differential screening of the subtracted cDNA libraries suggested that 200 out of 864 colonies were highly expressed at their respective time points. DNA sequence analysis identified specific apoptosis-related genes, HIV-1 viral genes, and other candidate genes of interest. Northern blot analysis confirmed that some of these genes were expressed predominantly at the 'apoptotic' or 'non-apoptotic' time points. CONCLUSIONS Known and novel cellular gene products have been identified that are directly (or inversely) correlated with apoptosis and may regulate cell death in HIV-1 infection. These results provide a framework for functional studies on the differentially expressed genes and may suggest novel therapeutic approaches for treatment of HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jiyi Yin
- Division of Rheumatology, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
187
|
Goldman EH, Chen L, Fu H. Activation of Apoptosis Signal-regulating Kinase 1 by Reactive Oxygen Species through Dephosphorylation at Serine 967 and 14-3-3 Dissociation. J Biol Chem 2004; 279:10442-9. [PMID: 14688258 DOI: 10.1074/jbc.m311129200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress has been indicated in a variety of pathological processes such as atherosclerosis, diabetes, and neurodegenerative diseases. Understanding how intracellular signaling pathways respond to oxidative insults such as hydrogen peroxide (H(2)O(2)) would have significant therapeutic implications. Recent genetic studies have placed apoptosis signal-regulating kinase 1 (ASK1) in a pivotal position in transmitting H(2)O(2)-initiated signals. How ASK1 is activated by H(2)O(2), though, remains a subject of intense investigation. Here we report a mechanism by which H(2)O(2) induces ASK1 activation through dynamic control of its phosphorylation at serine 967. We found that treatment of COS7 cells with H(2)O(2) triggers dephosphorylation of Ser-967 through an okadaic acid-sensitive phosphatase, resulting in dissociation of the ASK1.14-3-3 complex with concomitant increase of ASK1 catalytic activity and ASK1-mediated activation of JNK and p38 pathways.
Collapse
Affiliation(s)
- Erinn H Goldman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
188
|
Kim CH, Chiplunkar S, Gupta S. Chronic HIV type 1 infection down-regulates expression of DAP kinase and p19ARF-p53 checkpoint and is associated with resistance to CD95-mediated apoptosis in HUT78 T cells. AIDS Res Hum Retroviruses 2004; 20:183-9. [PMID: 15018706 DOI: 10.1089/088922204773004905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Death-associated protein kinase (DAP kinase) is a proapoptotic serine/threonine kinase that has been shown to play a role in both death-receptor signaling and mitochondrial signaling pathways of apoptosis. DAP kinase activates the p19ARF-p53 apoptotic checkpoint. In this study we report that the expression of DAP kinase, p19ARF, p53, and p21WAF1 was significantly down-regulated in the chronically HIV-1SF2-infected HUT78 T cells (HUT78/HIV-1SF2) as compared to uninfected HUT78 cells. An increased proportion of HUT78/HIV1SF2 cells was detected in S phase and a decreased proportion in G0/G1 phase indicating that more HUT78/HIV1SF2 cells progressed through the G1/S transition. Furthermore, HUT78/HIV-1SF2 cells showed increased resistance to CD95-mediated apoptosis as compared to HIV-1SF2-uninfected HUT78 cells and activation of caspase-3, -8, and -9 was significantly reduced in HUT78/HIV-1SF2 cells. These data suggest that down-regulation of DAP kinase and downstream signaling factors may be one of the mechanism that HIV-1 may employ to protect the infected host cells from cell death and to allow persistent HIV-1 replication.
Collapse
Affiliation(s)
- Choong H Kim
- Molecular Biology Laboratory, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
189
|
Abstract
Fas ligand (FasL) is a type II transmembrane protein that plays a critical role in immune homeostasis by binding to its receptor Fas (CD95) and inducing apoptosis. Fas/FasL dysregulation contributes to infectious disease pathogenesis. Microorganisms may inhibit Fas signal transduction to prolong intracellular survival and prevent killing by immune effector cells. FasL may be upregulated in directly infected cells to enhance killing of responding immune cells and facilitate immune evasion. The host response to infection may aim to induce apoptosis in directly infected cells, but immune cells that target directly infected cells can induce Fas-mediated apoptosis of uninfected bystander cells. FasL also contributes to the generation and regulation of the inflammatory response in infection. The multiple roles of FasL in infectious disease pathogenesis are discussed in the context of viral, bacterial and parasitic infections.
Collapse
Affiliation(s)
- D H Dockrell
- Division of Genomic Medicine, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK.
| |
Collapse
|
190
|
Gil J, Bermejo M, Alcamí J. HIV and apoptosis: a complex interaction between cell death and virus survival. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:117-49. [PMID: 15171610 DOI: 10.1007/978-3-540-74264-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Gil
- Wolfson Institute for Biomedical Research, University College, London, UK
| | | | | |
Collapse
|
191
|
Percario Z, Olivetta E, Fiorucci G, Mangino G, Peretti S, Romeo G, Affabris E, Federico M. Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol 2003; 74:821-32. [PMID: 12960275 DOI: 10.1189/jlb.0403161] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence indicates that the expression of the human immunodeficiency virus-1 (HIV-1) Nef protein significantly influences the activation state of the host cell. Here we report that Nef specifically activates STAT3 in primary human monocyte-derived macrophages (MDM). This was demonstrated by both single-cycle infection experiments driven by Vesicular Stomatitis virus glycoprotein (VSV-G) pseudotyped HIV-1 and treatment with exogenous recombinant Nef. The analysis of the effects of Nef mutants revealed that domains of the C-terminal flexible loop interacting with the cell endocytotic machinery are involved in the STAT3 activation. In particular, our data suggest that the Nef-dependent STAT3 activation relies on the targeting of Nef to the late endosome/lysosome compartment. In addition, we found that Nef activates STAT3 through a mechanism mediated by the release of soluble factor(s), including MIP-1alpha, that requires de novo protein synthesis but appears independent from the activation of src tyrosine kinases. The results presented here support the idea that the first intervention of Nef in the intracellular signaling of monocyte-macrophages could generate, by means of the release of soluble factor(s), a secondary wave of activation that could be of a potential pathogenetic significance.
Collapse
|
192
|
Feuer R, Mena I, Pagarigan RR, Harkins S, Hassett DE, Whitton JL. Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1379-93. [PMID: 14507646 PMCID: PMC1868316 DOI: 10.1016/s0002-9440(10)63496-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neonates are particularly susceptible to coxsackievirus infections of the central nervous system (CNS), which can cause meningitis, encephalitis, and long-term neurological deficits. However, viral tropism and mechanism of spread in the CNS have not been examined. Here we investigate coxsackievirus B3 (CVB3) tropism and pathology in the CNS of neonatal mice, using a recombinant virus expressing the enhanced green fluorescent protein (eGFP). Newborn pups were extremely vulnerable to coxsackievirus CNS infection, and this susceptibility decreased dramatically by 7 days of age. Twenty-four hours after intracranial infection of newborn mice, viral genomic RNA and viral protein expression were detected in the choroid plexus, the olfactory bulb, and in cells bordering the cerebral ventricles. Many of the infected cells bore the anatomical characteristics of type B stem cells, which can give rise to neurons and astrocytes, and expressed the intermediate filament protein nestin, a marker for progenitor cells. As the infection progressed, viral protein was identified in the brain parenchyma, first in cells expressing neuron-specific class III beta-tubulin, an early marker of neuronal differentiation, and subsequently in cells expressing NeuN, a marker of mature neurons. At later time points, viral protein expression was restricted to neurons in specific regions of the brain, including the hippocampus, the entorhinal and temporal cortex, and the olfactory bulb. Extensive neuronal death was visible, and appeared to result from virus-induced apoptosis. We propose that the increased susceptibility of the neonatal CNS to CVB infection may be explained by the virus' targeting neonatal stem cells; and that CVB is carried into the brain parenchyma by developing neurons, which continue to migrate and differentiate despite the infection. On full maturation, some or all of the infected neurons undergo apoptosis, and the resulting neuronal loss can explain the longer-term clinical picture.
Collapse
Affiliation(s)
- Ralph Feuer
- Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
193
|
Jian H, Zhao LJ. Pro-apoptotic activity of HIV-1 auxiliary regulatory protein Vpr is subtype-dependent and potently enhanced by nonconservative changes of the leucine residue at position 64. J Biol Chem 2003; 278:44326-30. [PMID: 14506268 DOI: 10.1074/jbc.c300378200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Destruction of CD4+ T cells, the hallmark of AIDS, is caused in part by HIV-1-induced apoptosis of both infected cells and noninfected "bystander" cells. The HIV-1 auxiliary regulatory protein Vpr has been shown to harbor a pro-apoptotic activity that may contribute to cellular and tissue damage during AIDS pathogenesis. The biochemical mechanism of this Vpr function remains unclear. In this report, substitutions of a single amino acid residue Leu64 with Pro, Ala, or Arg are shown to dramatically enhance the pro-apoptotic activity of Vpr, as evidenced by the degradation of cellular DNA into fragments of 200-bp increments. Substitutions of Leu64 with conservative residues have no effect. The pro-apoptotic activity of the VprL64P mutant also requires activation of caspase(s) and is inhibited by the secondary mutation I61A, indicating a high specificity for Vpr-induced apoptosis. Among the three HIV-1 subtypes examined, a subtype B Vpr and an A/G subtype recombinant Vpr have a moderate level of pro-apoptotic activity, whereas a subtype D Vpr has no detectable activity. However, the L64P mutation efficiently enhances the pro-apoptotic potential of the subtype B and subtype D Vpr molecules but not that of the A/G recombinant Vpr. It is hypothesized that Vpr molecules from different HIV-1 subtypes as well as Vpr variants that emerge during HIV-1 infection may have different pro-apoptotic potentials and contribute to the diversity of AIDS pathogenesis.
Collapse
Affiliation(s)
- Heng Jian
- Institute for Molecular Virology, St. Louis University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
194
|
Maruoka S, Hashimoto S, Gon Y, Nishitoh H, Takeshita I, Asai Y, Mizumura K, Shimizu K, Ichijo H, Horie T. ASK1 regulates influenza virus infection-induced apoptotic cell death. Biochem Biophys Res Commun 2003; 307:870-6. [PMID: 12878192 DOI: 10.1016/s0006-291x(03)01283-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis occurs in influenza virus (IV)-infected cells. There are a number of mechanisms for the regulation of apoptosis. However, the molecular mechanism of IV infection-induced apoptosis is still controversial. Apoptosis signal-regulating kinase1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the SEK1-c-Jun N-terminal kinase (JNK) and MKK3/MKK6-p38 MAPK signaling cascades. ASK1 has been implicated in cytokine- and stress-induced apoptosis. Here, we show the following: (1) IV infection activated ASK1 and concomitantly phosphorylated JNK and p38 MAPK in human bronchial epithelial cells; (2) the activation of JNK and p38 MAPK but not extracellular-regulated kinase (ERK) in embryonic fibroblasts (MEFs) derived from ASK1 knockout mice (ASK1(-/-) MEFs) was depressed compared to MEFs derived from wild type mice (ASK1(+/+) MEFs); and (3) ASK1(-/-) MEFs were defective in IV infection-induced caspase-3 activation and cell death. These results indicate that apoptosis in IV-infected BEC is mediated through ASK1-dependent cascades.
Collapse
Affiliation(s)
- Shuichiro Maruoka
- First Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Fujino M, Adachi K, Kawasaki M, Kitazawa Y, Funeshima N, Okuyama T, Kimura H, Li XK. Prolonged survival of rat liver allograft with adenoviral gene transfection of human immunodeficiency virus type 1 nef. Liver Transpl 2003; 9:805-13. [PMID: 12884192 DOI: 10.1053/jlts.2003.50149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HIV-1 nef is believed to allow immune evasion by modifying cell surface molecules because of certain mechanisms such as downregulation of the major histocompatibility complex (MHC) class I molecule complex as well as upregulation of FasL. In the present study, we successfully generated a recombinant adenovirus vector containing HIV-1 nef. We detected the expression of nef in liver infected with AxCANef by immune staining and Western blotting, and confirmed its expression as persistent for more than 4 weeks. Furthermore, the surface expression of MHC class I was downregulated in AxCANef-infected hepatic cells. In addition, we also observed nef-induced FasL upregulation of gene-transfected hepatic cells. Using a DA-to-Lewis orthotopic liver transplantation model, we transfected AxCANef to a liver graft to determine whether nef expression could have an effect on recipient survival. AxCANef significantly prolonged recipient survival time (14.5 days) compared with the uninfected group (11 days) (P <.001) and the AxCALacZ-infected group (11 days) (P <.001). Histologic analysis showed reduction in the number of accumulated inflammatory cells and an increase in apoptotic cells in grafts expressing nef. In conclusion, we showed that the nef gene could prolong survival of rat liver allografts, and this result suggested the potential clinical use of its transfection.
Collapse
Affiliation(s)
- Masayuki Fujino
- Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Joseph AM, Ladha JS, Mojamdar M, Mitra D. Human immunodeficiency virus-1 Nef protein interacts with Tat and enhances HIV-1 gene expression. FEBS Lett 2003; 548:37-42. [PMID: 12885404 DOI: 10.1016/s0014-5793(03)00725-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human immunodeficiency virus (HIV-1) Nef protein is now regarded as a regulatory protein responsible not only for establishment of infection and increased pathogenesis but also for enhancement of viral replication. However, the mechanism of Nef-induced activation of viral replication remains to be clearly understood. Using transient transfection assay, co-immunoprecipitation and pull-down analysis, we demonstrate in this report that the HIV-1 Nef protein physically interacts with Tat, the principal transactivating protein of HIV-1. Our observations with single cycle replication experiments further indicate that this interaction results not only in enhancement of Tat-induced HIV-1 long terminal repeat-mediated gene expression but also in virus production.
Collapse
|
197
|
Swingler S, Brichacek B, Jacque JM, Ulich C, Zhou J, Stevenson M. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 2003; 424:213-9. [PMID: 12853962 PMCID: PMC9524218 DOI: 10.1038/nature01749] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 04/08/2003] [Indexed: 11/09/2022]
Abstract
All primate lentiviruses (HIV-1, HIV-2, SIV) encode Nef proteins, which are important for viral replication and pathogenicity in vivo. It is not known how Nef regulates these processes. It has been suggested that Nef protects infected cells from apoptosis and recognition by cytotoxic T lymphocytes. Other studies suggest that Nef influences the activation state of the infected cell, thereby enhancing the ability of that cell to support viral replication. Here we show that macrophages that express Nef or are stimulated through the CD40 receptor release a paracrine factor that renders T lymphocytes permissive to HIV-1 infection. This activity requires the upregulation of B-cell receptors involved in the alternative pathway of T-lymphocyte stimulation. T lymphocytes stimulated through this pathway become susceptible to viral infection without progressing through the cell cycle. We identify two proteins, soluble CD23 and soluble ICAM, that are induced from macrophages by Nef and CD40L, and which mediate their effects on lymphocyte permissivity. Our results reveal a mechanism by which Nef expands the cellular reservoir of HIV-1 by permitting the infection of resting T lymphocytes.
Collapse
Affiliation(s)
- Simon Swingler
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
198
|
Swigut T, Greenberg M, Skowronski J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2, and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol 2003; 77:8116-26. [PMID: 12829850 PMCID: PMC161955 DOI: 10.1128/jvi.77.14.8116-8126.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef proteins of human immunodeficiency virus and simian immunodeficiency virus (SIV) bind the AP-1 and AP-2 clathrin adaptors to downmodulate the expression of CD4 and CD28 by recruiting them to sites of AP-2 clathrin-dependent endocytosis. Additionally, SIV Nef directly binds the CD3-zeta subunit of the CD3 complex and downmodulates the T-cell receptor (TCR)-CD3 complex. We report here that SIV mac239 Nef induces the endocytosis of TCR-CD3 in Jurkat T cells. SIV Nef also induces the endocytosis of a chimeric CD8-CD3-zeta protein containing only the CD3-zeta cytoplasmic domain (8-zeta), in the absence of other CD3 subunits. Thus, the interaction of SIV Nef with CD3-zeta likely mediates the induction of TCR-CD3 endocytosis. In cells expressing SIV Nef and 8-zeta, both proteins colocalize with AP-2, indicating that Nef induces 8-zeta internalization via this pathway. Surprisingly, deletion of constitutively strong AP-2 binding determinants (CAIDs) in SIV Nef had little effect on its ability to induce TCR-CD3, or 8-zeta endocytosis, even though these determinants are required for the induction of CD4 and CD28 endocytosis via this pathway. Fluorescent microscopic analyses revealed that while neither the mutant SIV Nef protein nor 8-zeta colocalized with AP-2 when expressed independently, both proteins colocalized with AP-2 when coexpressed. In vitro binding studies using recombinant SIV Nef proteins lacking CAIDs and recombinant CD3-zeta cytoplasmic domain demonstrated that SIV Nef and CD3-zeta cooperate to bind AP-2 via a novel interaction. The fact that Nef uses distinct AP-2 interaction surfaces to recruit specific membrane receptors demonstrates how Nef independently selects distinct types of target receptors and recruits them to AP-2 for endocytosis.
Collapse
Affiliation(s)
- Tomek Swigut
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
199
|
Abstract
Despite considerable advances in HIV science in the past 20 years, the reason why HIV-1 infection is pathogenic is still debated and the goal of eradicating HIV-1 infection remains elusive. A deeper understanding of the interplay between HIV-1 and its host and why simian immunodeficiency virus (SIV) is nonpathogenic in some natural hosts may provide a few answers.
Collapse
Affiliation(s)
- Mario Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
200
|
Casartelli N, Di Matteo G, Argentini C, Cancrini C, Bernardi S, Castelli G, Scarlatti G, Plebani A, Rossi P, Doria M. Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children. AIDS 2003; 17:1291-301. [PMID: 12799550 DOI: 10.1097/00002030-200306130-00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. DESIGN We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). METHODS Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. RESULTS The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). CONCLUSIONS Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.
Collapse
Affiliation(s)
- Nicoletta Casartelli
- Division of Immunology and Infectious Disease, Children's Hospital 'Bambino Gesù', Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|