151
|
Luteolin-Enriched Artichoke Leaf Extract Alleviates the Metabolic Syndrome in Mice with High-Fat Diet-Induced Obesity. Nutrients 2018; 10:nu10080979. [PMID: 30060507 PMCID: PMC6115887 DOI: 10.3390/nu10080979] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022] Open
Abstract
This current study aimed to elucidate the effects and possible underlying mechanisms of long-term supplementation with dietary luteolin (LU)-enriched artichoke leaf (AR) in high-fat diet (HFD)-induced obesity and its complications (e.g., dyslipidemia, insulin resistance, and non-alcoholic fatty liver disease) in C57BL/6N mice. The mice were fed a normal diet, an HFD, or an HFD plus AR or LU for 16 weeks. In the HFD-fed mice, AR decreased the adiposity and dyslipidemia by decreasing lipogenesis while increasing fatty acid oxidation, which contributed to better hepatic steatosis. LU also prevented adiposity and hepatic steatosis by suppressing lipogenesis while increasing biliary sterol excretion. Moreover, AR and LU prevented insulin sensitivity by decreasing the level of plasma gastric inhibitory polypeptide and activity of hepatic glucogenic enzymes, which may be linked to the lowering of inflammation as evidenced by the reduced plasma interleukin (IL)-6, IL-1β, and plasminogen activator inhibitor-1 levels. Although the anti-metabolic syndrome effects of AR and LU were similar, the anti-adiposity and anti-dyslipidemic effects of AR were more pronounced. These results in mice with diet-induced obesity suggest that long-term supplementation with AR can prevent adiposity and related metabolic disorders such as dyslipidemia, hepatic steatosis, insulin resistance, and inflammation.
Collapse
|
152
|
Abstract
Insulin-like growth factors (IGFs) bind specifically to the IGF1 receptor on the cell surface of targeted tissues. Ligand binding to the α subunit of the receptor leads to a conformational change in the β subunit, resulting in the activation of receptor tyrosine kinase activity. Activated receptor phosphorylates several substrates, including insulin receptor substrates (IRSs) and Src homology collagen (SHC). Phosphotyrosine residues in these substrates are recognized by certain Src homology 2 (SH2) domain-containing signaling molecules. These include, for example, an 85 kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase (PI 3-kinase), growth factor receptor-bound 2 (GRB2) and SH2-containing protein tyrosine phosphatase 2 (SHP2/Syp). These bindings lead to the activation of downstream signaling pathways, PI 3-kinase pathway and Ras-mitogen-activated protein kinase (MAP kinase) pathway. Activation of these signaling pathways is known to be required for the induction of various bioactivities of IGFs, including cell proliferation, cell differentiation and cell survival. In this review, the well-established IGF1 receptor signaling pathways required for the induction of various bioactivities of IGFs are introduced. In addition, we will discuss how IGF signals are modulated by the other extracellular stimuli or by themselves based on our studies.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
153
|
Arias de la Rosa I, Escudero-Contreras A, Rodríguez-Cuenca S, Ruiz-Ponce M, Jiménez-Gómez Y, Ruiz-Limón P, Pérez-Sánchez C, Ábalos-Aguilera MC, Cecchi I, Ortega R, Calvo J, Guzmán-Ruiz R, Malagón MM, Collantes-Estevez E, Vidal-Puig A, López-Pedrera C, Barbarroja N. Defective glucose and lipid metabolism in rheumatoid arthritis is determined by chronic inflammation in metabolic tissues. J Intern Med 2018. [PMID: 29532531 DOI: 10.1111/joim.12743] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) patients are at increased risk of insulin resistance (IR); however, the specific mechanisms mediating this association are currently unknown. OBJECTIVE To investigate whether the inflammatory activity associated with RA accounts for the observed defective glucose metabolism and lipid metabolism in these patients. METHODS We followed two main strategies: (i) extensive metabolic profiling of a RA cohort of 100 patients and 50 healthy control subjects and (ii) mechanistic studies carried out in both a collagen-induced arthritis mouse model and 3T3-L1 adipocytes treated with conditioned serum from RA patients. RESULTS Following the exclusion of obese and diabetic subjects, data from RA patients demonstrated a strong link between the degree of systemic inflammation and the development of IR. These results were strengthened by the observation that induction of arthritis in mice resulted in a global inflammatory state characterized by defective carbohydrate and lipid metabolism in different tissues. Adipose tissue was most susceptible to the RA-induced metabolic alterations. These metabolic effects were confirmed in adipocytes treated with serum from RA patients. CONCLUSIONS Our results show that the metabolic disturbances associated with RA depend on the degree of inflammation and identify inflammation of adipose tissue as the initial target leading to IR and the associated molecular disorders of carbohydrate and lipid homeostasis. Thus, we anticipate that therapeutic strategies based on tighter control of inflammation and flares could provide promising approaches to normalize and/or prevent metabolic alterations associated with RA.
Collapse
Affiliation(s)
- I Arias de la Rosa
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - A Escudero-Contreras
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - S Rodríguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbroke's Hospital, University of Cambridge, Cambridge, UK
| | - M Ruiz-Ponce
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Y Jiménez-Gómez
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - P Ruiz-Limón
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - C Pérez-Sánchez
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - M C Ábalos-Aguilera
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - I Cecchi
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - R Ortega
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - J Calvo
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - R Guzmán-Ruiz
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - M M Malagón
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - E Collantes-Estevez
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbroke's Hospital, University of Cambridge, Cambridge, UK
| | - Ch López-Pedrera
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - N Barbarroja
- Rheumatology Service, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
154
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
155
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
156
|
Kitamoto T, Sakurai K, Lee EY, Yokote K, Accili D, Miki T. Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism 2018; 82:100-110. [PMID: 29320716 PMCID: PMC7391221 DOI: 10.1016/j.metabol.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Pancreatic β-cell mass and function are critical in glucose homeostasis. Their regulatory mechanisms have been studied principally under experimental conditions of reduced β-cell numbers, such as β-cell ablation and partial pancreatectomy. In the present study, we generated an opposite mouse model with an excessive amount of ectopic β-cells, and analyzed its consequence on β-cell mass and survival. METHODS Mice underwent sub-renal transplantation (SRT) of pseudo-islets generated from a pancreatic β-cell line MIN6 or intra-pancreatic transplantation (IPT) of MIN6 cells, and morphological and functional changes of their endocrine pancreata were analyzed. Cellular fate of pancreatic β-cells after transplantation was traced using RipCre:Rosa26-tdTomato mice. By using MIN6 cells, we evaluated the roles of extracellular glucose, membrane potential, and insulin signaling on β-cell survival. RESULTS SRT mice developed severe, progressive hypoglycemia associated with marked reduction in insulin-positive (Ins+) cell mass and apparent increase in apoptotic Ins+ cells. In in vitro experiments of MIN6 cells, insulin signaling blockade potently induced cell death, suggesting that local insulin action is required for β-cell survival. In fact, IPT (i.e. transplantation close to endogenous β-cells) resulted in fewer apoptotic Ins+ cells compared with those induced by SRT. On the other hand, β-cell mass was decreased in proportion to the decrease in blood glucose levels in both SRT and IPT mice, suggesting a contribution of hypoglycemia induced by systemic hyperinsulinemia. CONCLUSION Insulin plays distinct roles in β-cell survival and β-cell mass regulation through its local and systemic actions on β-cells, respectively.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Eun Young Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
157
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
158
|
He X, Fang J, Ruan Y, Wang X, Sun Y, Wu N, Zhao Z, Chang Y, Ning N, Guo H, Huang L. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem 2018; 245:899-910. [DOI: 10.1016/j.foodchem.2017.11.084] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
159
|
Rabiee A, Krüger M, Ardenkjær-Larsen J, Kahn CR, Emanuelli B. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 2018; 47:1-15. [PMID: 29550500 DOI: 10.1016/j.cellsig.2018.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1-/- and IRS-2-/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.
Collapse
Affiliation(s)
- Atefeh Rabiee
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob Ardenkjær-Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
160
|
Abstract
OBJECTIVE Glucosamine (GlcN), which has been reported to induce insulin resistance (IR), is a popular nutritional supplement used to treat osteoarthritis in menopausal women. We previously demonstrated that GlcN treatment caused IR in ovariectomized rats by reducing the expression of glucose transport protein subtype 4 (GLUT-4) in skeletal muscle. In the present study, we hypothesized that endurance exercise training can reverse GlcN-induced IR. METHODS Fifty female rats were randomly divided into five groups with 10 rats in each group: (1) sham-operated group; (2) sham-operated group with GlcN treatment for 14 days; (3) ovariectomy (OVX) group; (4) OVX with GlcN treatment; and (5) OVX with GlcN treatment followed by exercise training (running program) for 8 weeks. RESULTS Fasting plasma glucose increased in the OVX + GlcN group, and fasting plasma insulin and the homeostasis model assessment-insulin resistance (HOMA-IR) were significantly higher only in this group. After the rats received exercise training for 8 weeks, no increase in the fasting plasma glucose, insulin, or HOMA-IR was observed. In an intraperitoneal glucose tolerance test, the plasma glucose, plasma insulin, HOMA-IR, and glucose-insulin index were significantly elevated only in the OVX with GlcN treatment group. However, the plasma glucose, plasma insulin, HOMA-IR, and glucose-insulin index decreased after exercise training for 8 weeks, implying that GlcN-induced IR in OVX rats could be reversed through exercise. A histological analysis revealed that exercise training can reduce islet hypertrophy and maintain GLUT-4 in skeletal muscle. CONCLUSIONS Exercise training can alleviate IR in OVX rats treated with GlcN. Islet hyperplasia was subsequently prevented. Preserving GLUT-4 expression may be one of the mechanisms by which exercise prevents IR.
Collapse
|
161
|
De Sousa RAL. Gestational diabetes is associated to the development of brain insulin resistance in the offspring. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
162
|
Gao Z, Wang B, Gong X, Yao C, Ren D, Shao L, Pang Y, Liu J. Effect of gastric bypass combined with ileal transportation on type 2 diabetes mellitus. Exp Ther Med 2018; 15:4571-4577. [PMID: 29725390 DOI: 10.3892/etm.2018.5928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 12/08/2017] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic progressive disease, which manifests as an endocrine disorder. Among the different methods of surgery available to treat patients with T2DM, Roux-en-Y gastric bypass (RYGBP) and ileal transposition (IT) are the most commonly performed. The aim of the present study was to investigate the effects of RYGBP combined with IT on rats with T2DM. A total of 8 healthy male rats were used as a control group and 40 GK rats were randomly divided into 5 groups: A diabetes mellitus (DM) group, a sham operative group (SO), a RYGBP group, an IT group and a RYGBP+IT group. The results demonstrated that fasting blood glucose, triglyceride, total cholesterol and gastric inhibitory polypeptide levels in all treatment groups were significantly lower than those of the SO and DM groups. Furthermore, levels TC and TG in the RYGBP+IT group were significantly lower than in the RYGBP and IT groups. Levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNA and IRS-2 protein in all treatment groups were also significantly lower than those of the SO group; and they were significantly lower in the RYGBP+IT group compared with the RYGBP and IT groups. The expression of phosphorylated Akt in the treatment groups was significantly higher than the SO group and was significantly higher in the RYGBP+IT group compared with the RYGBP and IT groups. These results indicate that RYGBP and IT surgical treatment can induce T2DM remission by mediating the expression of insulin-related factors to reverse insulin resistance. The current study also indicated that the effect of RYGBP combined with IT may be developed as a novel first-line method of treating T2DM.
Collapse
Affiliation(s)
- Zhaoxia Gao
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Bin Wang
- Department of Ear-Nose-Throat, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Xiaojun Gong
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Chun Yao
- Department of Endocrinology, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Defa Ren
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Liwei Shao
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Yan Pang
- Department of Clinical Laboratory, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Jinxiu Liu
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| |
Collapse
|
163
|
Zhang J, Song W, Sun Y, Cheng B, Shan A. Changes in glucose metabolism and mRNA expression of IRS-2 in rats exposed to phoxim and the protective effects of vitamin E. Toxicol Res (Camb) 2018; 7:201-210. [PMID: 30090575 PMCID: PMC6061297 DOI: 10.1039/c7tx00243b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Research has shown that organophosphorus pesticides impair glucose homeostasis and cause insulin resistance and type 2 diabetes. The current study investigates the influence of phoxim on insulin signaling pathways and the protective effects of vitamin E. Phoxim (180 mg kg-1) and VE (200 mg kg-1) were administered orally to Sprague-Dawley rats over a period of 28 consecutive days. After exposure to phoxim, the animals showed glucose intolerance and hyperinsulinemia during glucose tolerance tests, and insulin tolerance tests demonstrated an impaired glucose-lowering effect of insulin. Phoxim increases the fasting glucose, insulin and cholesterol levels, as well as the liver hexokinase activity (HK) significantly while decreasing the high density lipoprotein (HDL) cholesterol, and glycogen content in the liver and skeletal muscles observably. Furthermore, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The insulin receptor substrate (IRS)-2 mRNA expressions of liver and skeletal muscles were down-regulated by phoxim, while the expression of IRS-1 showed no difference. There were no differences in triglycerides, LDL-cholesterol, and fasting glucose treated with phoxim. On the basis of biochemical and molecular findings, phoxim has been determined to impair glucose homeostasis through insulin resistance and insulin signaling pathway disruptions resulting in a reduced function of insulin in hepatocytes and muscles. VE supplementation reduced the fasting glucose, increased the glycogen content and HDL-cholesterol, but did not reduce the insulin resistance indices, when phoxim-treated rats were compared to VE supplemented rats. Overall, this study shows that vitamin E modifies the phoxim toxicity in rats only to a moderate degree.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Wentao Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Yuecheng Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Baojing Cheng
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| |
Collapse
|
164
|
Torii S, Kubota C, Saito N, Kawano A, Hou N, Kobayashi M, Torii R, Hosaka M, Kitamura T, Takeuchi T, Gomi H. The pseudophosphatase phogrin enables glucose-stimulated insulin signaling in pancreatic β cells. J Biol Chem 2018; 293:5920-5933. [PMID: 29483197 DOI: 10.1074/jbc.ra117.000301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Autocrine insulin signaling is critical for pancreatic β-cell growth and activity and is at least partially controlled by protein-tyrosine phosphatases (PTPs) that act on insulin receptors (IRs). The receptor-type PTP phogrin primarily localizes on insulin secretory granules in pancreatic β cells. We recently reported that phogrin knockdown decreases the protein levels of insulin receptor substrate 2 (IRS2), whereas high-glucose stimulation promotes formation of a phogrin-IR complex that stabilizes IRS2. However, the underlying molecular mechanisms by which phogrin affects IRS2 levels are unclear. Here, we found that relative to wildtype mice, IRS2 levels in phogrin-knockout mice islets decreased by 44%. When phogrin was silenced by shRNA in pancreatic β-cell lines, glucose-induced insulin signaling led to proteasomal degradation of IRS2 via a negative feedback mechanism. Phogrin overexpression in a murine hepatocyte cell line consistently prevented chronic insulin treatment-induced IRS2 degradation. In vitro, phogrin directly bound the IR without the assistance of other proteins and protected recombinant PTP1B from oxidation to potentiate its activity toward the IR. Furthermore, phogrin expression suppressed insulin-induced local generation of hydrogen peroxide and subsequent PTP1B oxidation, which allowed progression of IR dephosphorylation. Together, these results suggest that a transient interaction of phogrin with the IR enables glucose-stimulated autocrine insulin signaling through the regulation of PTP1B activity, which is essential for suppressing feedback-mediated IRS2 degradation in pancreatic β cells.
Collapse
Affiliation(s)
| | | | | | | | - Ni Hou
- From the Biosignal Research Center and
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | - Masahiro Hosaka
- the Department of Biotechnology, Akita Prefectural University, Akita 010-0195, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Toshiyuki Takeuchi
- From the Biosignal Research Center and.,the Administration Office, Gunma University, Maebashi, Gunma 371-8512, Japan, and
| | - Hiroshi Gomi
- the Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| |
Collapse
|
165
|
Philbrook NA, Restivo VE, Belanger CL, Winn LM. Gestational triphenyl phosphate exposure in C57Bl/6 mice perturbs expression of insulin-like growth factor signaling genes in maternal and fetal liver. Birth Defects Res 2018; 110:483-494. [PMID: 29316351 DOI: 10.1002/bdr2.1185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
Abstract
Triphenyl phosphate (TPhP) is an organophosphorus flame retardant and plasticizer that has been added to numerous consumer products in recent years. TPhP is not overtly toxic, however recent studies have suggested that it may have metabolic disrupting effects following developmental exposure. The present study aimed to investigate the developmental and potential metabolic effects of TPhP in a murine model. C57Bl/6 dams were exposed on gestational days (GD) 8, 10, 12, and 14 to 0, 5, 25, or 50 mg/kg TPhP via intraperitoneal injection. Dams were euthanized on GD19, maternal organs excised and weighed, fetal measurements taken, and maternal and fetal livers retained for analysis. A significant increase in placenta size of TPhP exposed mice was found. Maternal and fetal liver gene expression of insulin-like growth factor (Igf) 1 and 2, as well as downstream genes involved in Igf signaling were measured. Additionally, Igf1 protein levels were measured in both maternal and fetal liver. A significant decrease in transcript levels of Igf1 and Irs2 was detected in maternal livers, whereas a significant increase in transcript levels of all genes measured was detected in fetal liver. A significant decrease in Igf1 protein levels was detected in maternal liver, however the increase in Igf1 protein levels in fetal livers was not found to be statistically significant. These results support previous findings that TPhP does not cause overt structural developmental toxicity. These data also support the hypothesis that TPhP could disrupt maternal and fetal metabolism, justifying the need for follow-up studies to investigate further.
Collapse
Affiliation(s)
- Nicola A Philbrook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Victoria E Restivo
- School of Environmental Studies, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Christine L Belanger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada.,School of Environmental Studies, Queen's University, Kingston, ON, K7L3N6, Canada
| |
Collapse
|
166
|
Oliveira AG, Araújo TG, Carvalho BDM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) 2018; 9:503. [PMID: 30214428 PMCID: PMC6125308 DOI: 10.3389/fendo.2018.00503] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.
Collapse
Affiliation(s)
- Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- *Correspondence: Alexandre G. Oliveira
| | - Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Mario J. A. Saad
| |
Collapse
|
167
|
Mechanick JI, Zhao S, Garvey WT. Leptin, An Adipokine With Central Importance in the Global Obesity Problem. Glob Heart 2017; 13:113-127. [PMID: 29248361 DOI: 10.1016/j.gheart.2017.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Leptin has central importance in the global obesity and cardiovascular disease problem. Leptin is principally secreted by adipocytes and acts in the hypothalamus to suppress appetite and food intake, increase energy expenditure, and regulate body weight. Based on clinical translation of specific and networked actions, leptin affects the cardiovascular system and may be a marker and driver of cardiometabolic risk factors with interventions that are actionable by cardiologists. Leptin subnetwork analysis demonstrates a statistically significant role for ethnoculturally and socioeconomically appropriate lifestyle intervention in cardiovascular disease. Emergent mechanistic components and potential diagnostic or therapeutic targets include hexokinase 3, urocortins, clusterin, sialic acid-binding immunoglobulin-like lectin 6, C-reactive protein, platelet glycoprotein VI, albumin, pentraxin 3, ghrelin, obestatin prepropeptide, leptin receptor, neuropeptide Y, and corticotropin-releasing factor receptor 1. Emergent associated symptoms include weight change, eating disorders, vascular necrosis, chronic fatigue, and chest pain. Leptin-targeted therapies are reported for lipodystrophy and leptin deficiency, but they are investigational for leptin resistance, obesity, and other chronic diseases.
Collapse
Affiliation(s)
- Jeffrey I Mechanick
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shan Zhao
- Basepaws Inc., Redondo Beach, CA, USA
| | - W Timothy Garvey
- Department of Nutritional Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Geriatric Research Education and Clinical Center, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
168
|
Garratt M, Nakagawa S, Simons MJP. Life-span Extension With Reduced Somatotrophic Signaling: Moderation of Aging Effect by Signal Type, Sex, and Experimental Cohort. J Gerontol A Biol Sci Med Sci 2017; 72:1620-1626. [PMID: 28207064 PMCID: PMC5861954 DOI: 10.1093/gerona/glx010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/17/2022] Open
Abstract
Reduced somatotrophic signaling through the growth hormone (GH) and insulin-like growth factor pathways (IGF1) can delay aging, although the degree of life-extension varies markedly across studies. By collating data from previous studies and using meta-analysis, we tested whether factors including sex, hormonal manipulation, body weight change and control baseline mortality quantitatively predict relative life-extension. Manipulations of GH signaling (including pituitary and direct GH deficiencies) generate significantly greater extension in median life span than IGF1 manipulations (including IGF1 production, reception, and bioactivity), producing a consistent shift in mortality risk of mutant mice. Reduced Insulin receptor substrate (IRS) expression produces more similar life-extension to reduced GH, although effects are more heterogeneous and appear to influence the demography of mortality differently. Life-extension with reduced IGF1 signaling, but neither GH nor IRS signaling, increases life span significantly more in females than males, and in cohorts where control survival is short. Our results thus suggest that reduced GH signaling has physiological benefits to survival outside of its actions on circulating IGF1. In addition to these biological moderators, we found an overrepresentation of small sample sized studies that report large improvements in survival, indicating potential publication bias. We discuss how this could potentially confound current conclusions from published work, and how this warrants further study replication.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology, University of Michigan Medical School, Ann Arbor
| | - Shinichi Nakagawa
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Mirre J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, UK
| |
Collapse
|
169
|
Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology 2017; 136:182-191. [PMID: 29217283 PMCID: PMC5988909 DOI: 10.1016/j.neuropharm.2017.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
Abstract
For decades the brain was erroneously considered an insulin insensitive organ. Although gaps in our knowledge base remain, conceptual frameworks are starting to emerge to provide insight into the mechanisms through which insulin facilitates critical brain functions like metabolism, cognition, and motivated behaviors. These diverse physiological and behavioral activities highlight the region-specific activities of insulin in the CNS; that is, there is an anatomical context to the activities of insulin in the CNS. Similarly, there is also a temporal context to the activities of insulin in the CNS. Indeed, brain insulin receptor activity can be conceptualized as a continuum in which insulin promotes neuroplasticity from development into adulthood where it is an integral part of healthy brain function. Unfortunately, brain insulin resistance likely contributes to neuroplasticity deficits in obesity and type 2 diabetes mellitus (T2DM). This neuroplasticity continuum can be conceptualized by the mechanisms through which insulin promotes cognitive function through its actions in brain regions like the hippocampus, as well as the ability of insulin to modulate motivated behaviors through actions in brain regions like the nucleus accumbens and the ventral tegmental area. Thus, the goals of this review are to highlight these anatomical, temporal, and functional contexts of insulin activity in these brain regions, and to identify potentially critical time points along this continuum where the transition from enhancement of neuroplasticity to impairment may take place.
Collapse
|
170
|
Overexpression of insulin receptor substrate-4 is correlated with clinical staging in colorectal cancer patients. J Mol Histol 2017; 49:39-49. [DOI: 10.1007/s10735-017-9745-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023]
|
171
|
Lei X, Huang S. Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population. PLoS One 2017; 12:e0187644. [PMID: 29099854 PMCID: PMC5669465 DOI: 10.1371/journal.pone.0187644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in T2D using previously published SNP datasets and found higher MAC in cases relative to matched controls. A set of 357 SNPs was found to have the best predictive accuracy in a British population. A weighted risk score calculated by using this set produced an area under the curve (AUC) score of 0.86, which is comparable to risk models built by phenotypic markers. These results identify a novel genetic risk element in T2D susceptibility and provide a potentially useful genetic method to identify individuals with high risk of T2D.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Shi Huang
- Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
172
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
173
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
174
|
Sharma DL, Lakhani HV, Klug RL, Snoad B, El-Hamdani R, Shapiro JI, Sodhi K. Investigating Molecular Connections of Non-alcoholic Fatty Liver Disease with Associated Pathological Conditions in West Virginia for Biomarker Analysis. ACTA ACUST UNITED AC 2017; 8. [PMID: 29177105 PMCID: PMC5701750 DOI: 10.4172/2155-9899.1000523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by a steatosis of the liver that may progress to more serious pathological conditions including: nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. As the prevalence of NAFLD has increased worldwide in recent years, pathophysiology and risk factors associated with disease progression of NAFLD are at the focus of many studies. NAFLD is related to and shares common serum biomarkers with cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome (MetS). West Virginia (WV) is a state with some of the highest rates of CVD, obesity and diabetes mellitus. As NAFLD is closely related to these diseases, it is of particular interest in WV. Currently there is no cost-effective, standardized method used clinically to detect NAFLD prior to the onset of reversible complications. At this time, the diagnosis of NAFLD is made with costly radiologic studies and invasive biopsy. These studies are only diagnostic once changes to hepatic tissue have occurred. The diagnosis of NAFLD by traditional methods may not allow for successful intervention and may not be readily available in areas with already sparse medical resources. In this literature review, we identify a list of biomarkers common among CVD, T2DM, obesity, MetS and NAFLD. From this research we propose the following biomarkers are good candidates for inclusion in a panel of biomarkers for the early detection of NAFLD: adiponectin, AST, ALT, apo-B, CK18, CPS1, CRP, FABP-1, ferritin, GGT, GRP78, HDL-C, IGF-1, IL-1β, 6, 8, 10, IRS-2PAI-1, leptin, lumican, MDA SREBP-1c and TNF-α. Creating and implementing a biomarker panel for the early detection and attenuation of NAFLD, prior to the onset of irreversible complication would provide maximum benefit and decrease the disease burden on the patients and healthcare system of WV.
Collapse
Affiliation(s)
- Dana L Sharma
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Hari Vishal Lakhani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rebecca L Klug
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brian Snoad
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rawan El-Hamdani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
175
|
Wang F, Wang S, Zhang Z, Lin Q, Liu Y, Xiao Y, Xiao K, Wang Z. Defective insulin signaling and the protective effects of dimethyldiguanide during follicular development in the ovaries of polycystic ovary syndrome. Mol Med Rep 2017; 16:8164-8170. [PMID: 28990055 PMCID: PMC5779901 DOI: 10.3892/mmr.2017.7678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 08/10/2017] [Indexed: 01/04/2023] Open
Abstract
It is established that the physiological effects of insulin are primarily mediated by the insulin signaling pathway. However, a defective insulin signaling is closely associated with the clinical manifestations of polycystic ovary syndrome (PCOS), which include excess androgen levels, insulin resistance and anovulation, and is involved in the pathophysiology of PCOS at the molecular level. Dimethyldiguanide (DMBG) has been widely employed to alleviate reproduction dysfunction in women with PCOS, however, the exact mechanism of this effect remains unclear. The objective of the present study was to investigate the effects of DMBG on the expression of the insulin signaling pathway in the ovaries of rats with PCOS, and to identify the potential underlying molecular mechanisms of these effects in PCOS. In the present study, a PCOS rat model was induced by letrozole, and successful establishment of the model was confirmed by examining ovarian histology and determining serum testosterone levels, by hematoxylin and eosin staining and ELISA, respectively. Subsequently, the expression of two key elements of insulin signaling, insulin receptor substrate (IRS)‑2 and phosphatidylinositol 3‑kinase (PI3K), was determined by immunohistochemistry and western blot analysis. The results demonstrated that IRS‑2 and PI3K expression was markedly decreased in PCOS ovaries, which was rescued by DMBG treatment. These results indicate that IRS‑2/PI3K signaling may be involved in the development of PCOS and the therapeutic effects of DMBG on PCOS. To further confirm the effects of DMBG on insulin signaling expression during this process, the expression of an additional two downstream proteins, phosphoinositide‑dependent kinase‑1 (PDK‑1) and the mammalian target of rapamycin (mTOR), was also investigated in the present study, and the results demonstrated that the expression of PDK‑1 and mTOR was significantly reduced in PCOS ovaries and increased following DMBG treatment, further indicating that altered insulin signaling may have an important role in the development and treatment of PCOS. In conclusion, the results of the present study indicate that the reduced expression of proteins involved in insulin signaling may contribute to the development of the clinical features of PCOS, and DMBG reverses reduced expression of insulin signaling components, by a mechanism that is yet to be determined, to attenuate certain symptoms of PCOS, such as obesity. To the best of our knowledge, the present study is the first to provide data regarding the detailed changes of insulin signaling during the development and treatment of PCOS, and may provide an important reference for clinical PCOS treatment.
Collapse
Affiliation(s)
- Fan Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Shaobing Wang
- State Key Laboratory for Evaluation of Exercise Physiological Functions from General Administration of Sport of China, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qingqiang Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Yiping Liu
- State Key Laboratory for Evaluation of Exercise Physiological Functions from General Administration of Sport of China, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Yijun Xiao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Kaizhuan Xiao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
176
|
Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0582-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
177
|
Chirivella L, Kirstein M, Ferrón SR, Domingo-Muelas A, Durupt FC, Acosta-Umanzor C, Cano-Jaimez M, Pérez-Sánchez F, Barbacid M, Ortega S, Burks DJ, Fariñas I. Cyclin-Dependent Kinase 4 Regulates Adult Neural Stem Cell Proliferation and Differentiation in Response to Insulin. Stem Cells 2017; 35:2403-2416. [DOI: 10.1002/stem.2694] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/25/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Chirivella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Martina Kirstein
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Sacri R. Ferrón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Ana Domingo-Muelas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Fabrice C. Durupt
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Carlos Acosta-Umanzor
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Marifé Cano-Jaimez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Francisco Pérez-Sánchez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Mariano Barbacid
- Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - Sagrario Ortega
- Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - Deborah J. Burks
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| |
Collapse
|
178
|
Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 2017; 1411:21-35. [PMID: 28868790 DOI: 10.1111/nyas.13435] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The coordinated regulation between cellular glucose uptake and endogenous glucose production is indispensable for the maintenance of constant blood glucose concentrations. The liver contributes significantly to this process by altering the levels of hepatic glucose release, through controlling the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis). Various nutritional and hormonal stimuli signal to alter hepatic gluconeogenic flux, and suppression of this metabolic pathway during the postprandial state can, to a significant extent, be attributed to insulin. Here, we review some of the molecular mechanisms through which insulin modulates hepatic gluconeogenesis, thus controlling glucose production by the liver to ultimately maintain normoglycemia. Various signaling pathways governed by insulin converge at the level of transcriptional regulation of the key hepatic gluconeogenic genes PCK1 and G6PC, highlighting this as one of the focal mechanisms through which gluconeogenesis is modulated. In individuals with compromised insulin signaling, such as insulin resistance in type 2 diabetes, insulin fails to suppress hepatic gluconeogenesis, even in the fed state; hence, an insight into these insulin-moderated pathways is critical for therapeutic purposes.
Collapse
Affiliation(s)
- Maximilian Hatting
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
179
|
Jadhav K, Zhang Y. Activating transcription factor 3 in immune response and metabolic regulation. LIVER RESEARCH 2017; 1:96-102. [PMID: 29242753 PMCID: PMC5724780 DOI: 10.1016/j.livres.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/cAMP-response element binding protein (CREB) family of transcription factors. In response to stress stimuli, ATF3 forms dimers to activate or repress gene expression. Further, ATF3 modulates the immune response, atherogenesis, cell cycle, apoptosis, and glucose homeostasis. Recent studies have shown that ATF3 may also be involved in pathogenesis of other diseases. However, more studies are needed to determine the role of ATF3 in metabolic regulation.
Collapse
|
180
|
Yu Z, Taniguchi J, Wei Y, Pandian GN, Hashiya K, Bando T, Sugiyama H. Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitors. Eur J Med Chem 2017; 138:320-327. [DOI: 10.1016/j.ejmech.2017.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/30/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
181
|
Welters A, Klüppel C, Mrugala J, Wörmeyer L, Meissner T, Mayatepek E, Heiss C, Eberhard D, Lammert E. NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions. Diabetes Obes Metab 2017; 19 Suppl 1:95-106. [PMID: 28880473 DOI: 10.1111/dom.13017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is characterized by chronically elevated blood glucose levels accelerated by a progressive decline of insulin-producing β-cells in the pancreatic islets. Although medications are available to transiently adjust blood glucose to normal levels, the effects of current drugs are limited when it comes to preservation of a critical mass of functional β-cells to sustainably maintain normoglycemia. In this review, we recapitulate recent evidence on the role of pancreatic N-methyl-D-aspartate receptors (NMDARs) in β-cell physiology, and summarize effects of morphinan-based NMDAR antagonists that are beneficial for insulin secretion, glucose tolerance and islet cell survival. We further discuss NMDAR-mediated molecular pathways relevant for neuronal cell survival, which may also be important for the preservation of β-cell function and mass. Finally, we summarize the literature for evidence on the role of NMDARs in the development of diabetic long-term complications, and highlight beneficial pharmacologic aspects of NMDAR antagonists in diabetic nephropathy, retinopathy as well as neuropathy.
Collapse
Affiliation(s)
- Alena Welters
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carina Klüppel
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jessica Mrugala
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Düsseldorf, Germany
| | - Laura Wörmeyer
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Düsseldorf, Germany
| |
Collapse
|
182
|
Sanni SJ, Kulahin N, Jorgensen R, Lyngsø C, Gammeltoft S, Hansen JL. A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk. J Recept Signal Transduct Res 2017; 37:590-599. [PMID: 28854843 DOI: 10.1080/10799893.2017.1369123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samra Joke Sanni
- Department of Obesity and Liver Disease, Novo Nordisk A/S, Maalov, Denmark
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Nikolaj Kulahin
- Department of Obesity and Liver Disease, Novo Nordisk A/S, Maalov, Denmark
| | - Rasmus Jorgensen
- Department of Diabetes and Cardiovascular Disease, Novo Nordisk A/S, Maalov, Denmark
| | - Christina Lyngsø
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Steen Gammeltoft
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Jakob Lerche Hansen
- Department of Diabetes and Cardiovascular Disease, Novo Nordisk A/S, Maalov, Denmark
| |
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW Inadequate insulin-producing pancreatic β-cell mass is a key feature of both type 1 and type 2 diabetes. Efforts to regenerate β-cell mass from pancreatic precursors may thus ameliorate absolute or relative insulin deficiency, thereby improving glucose homeostasis. A clear understanding of the processes that govern the generation of new β-cells in the mature pancreas will be fundamental to success in this effort. This review discusses the current state of knowledge regarding β-cell regeneration and emphasizes recent studies of significance. RECENT FINDINGS Recent reports demonstrate regenerative potential in the adult human pancreas. Further, they build on the strong existing evidence that proliferation of preexisting β-cells is the predominant source of new β-cells in adulthood by dissecting the cell cycle machinery components and critical signaling pathways required for β-cell proliferation. Finally, β-cell trophic peptides have demonstrated preclinical potential as pharmacologic regenerative agents and may form the basis for clinical interventions in the future. SUMMARY Efforts to augment β-cell regeneration by enhancing β-cell viability and proliferation may lead to novel therapeutic approaches for type 1 and type 2 diabetes. An intimate understanding of the molecular mechanisms underlying the regulation of β-cell proliferation and survival will be fundamental to the optimization of endogenous β-cell regeneration.
Collapse
|
184
|
Jiao Y, Zhang M, Wang S, Yan C. Consumption of guava may have beneficial effects in type 2 diabetes: A bioactive perspective. Int J Biol Macromol 2017; 101:543-552. [DOI: 10.1016/j.ijbiomac.2017.03.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/23/2022]
|
185
|
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5813793. [PMID: 28791306 PMCID: PMC5534279 DOI: 10.1155/2017/5813793] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/04/2023]
Abstract
Nowadays, the society is facing a large health problem with the rising of new diseases, including cancer, heart diseases, diabetes, neurodegenerative diseases, and obesity. Thus, it is important to invest in substances that enhance the health of the population. In this context, epigallocatechin gallate (EGCG) is a flavonoid found in many plants, especially in tea. Several studies support the notion that EGCG has several benefits in fighting cancer, heart diseases, diabetes, and obesity, among others. Nevertheless, the poor intestinal absorbance and instability of EGCG constitute the main drawback to use this molecule in prevention and therapy. The encapsulation of EGCG in nanocarriers leads to its enhanced stability and higher therapeutic effects. A comprehensive review of studies currently available on the encapsulation of EGCG by means of nanocarriers will be addressed.
Collapse
Affiliation(s)
- Andreia Granja
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Iúri Frias
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marina Pinheiro
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
186
|
Differential control of ageing and lifespan by isoforms and splice variants across the mTOR network. Essays Biochem 2017; 61:349-368. [PMID: 28698309 DOI: 10.1042/ebc20160086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
Ageing can be defined as the gradual deterioration of physiological functions, increasing the incidence of age-related disorders and the probability of death. Therefore, the term ageing not only reflects the lifespan of an organism but also refers to progressive functional impairment and disease. The nutrient-sensing kinase mTOR (mammalian target of rapamycin) is a major determinant of ageing. mTOR promotes cell growth and controls central metabolic pathways including protein biosynthesis, autophagy and glucose and lipid homoeostasis. The concept that mTOR has a crucial role in ageing is supported by numerous reports on the lifespan-prolonging effects of the mTOR inhibitor rapamycin in invertebrate and vertebrate model organisms. Dietary restriction increases lifespan and delays ageing phenotypes as well and mTOR has been assigned a major role in this process. This may suggest a causal relationship between the lifespan of an organism and its metabolic phenotype. More than 25 years after mTOR's discovery, a wealth of metabolic and ageing-related effects have been reported. In this review, we cover the current view on the contribution of the different elements of the mTOR signalling network to lifespan and age-related metabolic impairment. We specifically focus on distinct roles of isoforms and splice variants across the mTOR network. The comprehensive analysis of mouse knockout studies targeting these variants does not support a tight correlation between lifespan prolongation and improved metabolic phenotypes and questions the strict causal relationship between them.
Collapse
|
187
|
GH/IGF-I/insulin system in centenarians. Mech Ageing Dev 2017; 165:107-114. [DOI: 10.1016/j.mad.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 01/21/2023]
|
188
|
François JC, Aïd S, Chaker Z, Lacube P, Xu J, Fayad R, Côté F, Even P, Holzenberger M. Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses. Endocrinology 2017; 158:2269-2283. [PMID: 28881863 DOI: 10.1210/en.2017-00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Growth hormone (GH) and insulinlike growth factor (IGF) promote aging and age-related pathologies. Inhibiting this pathway by targeting IGF receptor (IGF-1R) is a promising strategy to extend life span, alleviate age-related diseases, and reduce tumor growth. Although anti-IGF-1R agents are being developed, long-term effects of IGF-1R blockade remain unknown. In this study, we used ubiquitous inducible IGF-1R knockout (UBIKOR) to suppress signaling in all adult tissues and screened health extensively. Surprisingly, UBIKOR mice showed no overt defects and presented with rather inconspicuous health, including normal cognition. Endocrine GH and IGF-1 were strongly upregulated without causing acromegaly. UBIKOR mice were strikingly lean with coordinate changes in body composition and organ size. They were insulin resistant but preserved physiological energy expenditure and displayed enhanced fasting metabolic flexibility. Thus, long-term IGF-1R blockade generated beneficial effects on aging-relevant metabolism, but exposed to high GH. This needs to be considered when targeting IGF-1R to protect from neurodegeneration, retard aging, or fight cancer.
Collapse
Affiliation(s)
| | - Saba Aïd
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Zayna Chaker
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | | | - Jie Xu
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Racha Fayad
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | - Francine Côté
- Institut Imagine INSERM Unité 1163/CNRS Equipe 8254, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Patrick Even
- AgroParisTech, INRA, Université Paris Saclay, Nutrition Physiology and Ingestive Behavior Unité 914, 75005 Paris, France
| | - Martin Holzenberger
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| |
Collapse
|
189
|
Isaac R, Vinik Y, Boura-Halfon S, Farack L, Streim S, Elhanany E, Kam Z, Zick Y. Prolonged Elimination of Negative Feedback Control Mechanisms Along the Insulin Signaling Pathway Impairs β-Cell Function In Vivo. Diabetes 2017; 66:1879-1889. [PMID: 28424159 DOI: 10.2337/db16-0827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022]
Abstract
Cellular stress and proinflammatory cytokines induce phosphorylation of insulin receptor substrate (IRS) proteins at Ser sites that inhibit insulin and IGF-I signaling. We therefore examined the effects of mutation of five "inhibitory" Ser phosphorylation sites on IRS2 function in transgenic mice that overexpress, selectively in pancreatic β-cells, either wild-type (WT) or a mutated IRS2 protein (IRS25A). Islets size, number, and mRNA levels of catalase and superoxide dismutase were increased, whereas those of nitric oxide synthase were decreased, in 7- to 10-week-old IRS25A-β mice compared with IRS2WT-β mice. However, glucose homeostasis and insulin secretion in IRS25A-β mice were impaired when compared with IRS2WT-β mice or to nontransgenic mice. This was associated with reduced mRNA levels of Glut2 and islet β-cell transcription factors such as Nkx6.1 and MafA Similarly, components mediating the unfolded protein response were decreased in islets of IRS25A-β mice in accordance with their decreased insulin secretion. The beneficial effects of IRS25A on β-cell proliferation and β-cell transcription factors were evident only in 5- to 8-day-old mice. These findings suggest that elimination of inhibitory Ser phosphorylation sites of IRS2 exerts short-term beneficial effects in vivo; however, their sustained elimination leads to impaired β-cell function.
Collapse
Affiliation(s)
- Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Farack
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarina Streim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Elhanany
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
190
|
Zhang L, Zhou L, Song X, Liang G, Xu Z, Wang F, Huang F, Jiang G. Involvement of exogenous 3‑deoxyglucosone in β‑cell dysfunction induces impaired glucose regulation. Mol Med Rep 2017; 16:2976-2984. [PMID: 28656301 DOI: 10.3892/mmr.2017.6856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/04/2017] [Indexed: 11/05/2022] Open
Abstract
β‑cell dysfunction is the primary cause of type 2 diabetes mellitus (T2DM). 1,2‑dicarbonyl compounds, such as 3‑deoxyglucosone (3DG) have been reported to increase the risk of T2DM. Abnormal elevation of plasma 3DG may impair β‑cell function and thereby, it is linked to T2DM. Previous findings suggest that exogenous 3DG may serve an important role in the development of pre‑diabetes. In the present study, the authors examine whether exogenous 3DG induces impaired glucose regulation in mice by decreasing β‑cell function involving of accumulation of plasma 3DG. At two weeks following administration of 3DG, fasting blood glucose (FBG) levels, oral glucose tolerance (by a glucose meter) and plasma levels of 3DG (by HPLC) and insulin (by radioimmunoassay) were measured. Glucose‑stimulated insulin secretion in cultured pancreas islets and INS‑1 cells was measured by radioimmunoassay. Western blotting was used to examine the expression of the key molecules of the insulin‑PI3K signaling pathway. 3DG treatment increased FBG and fasting blood insulin levels, reduced oral glucose tolerance in conjunction with decreased ∆Ins30‑0/∆G30‑0. In 3DG‑treated mice, an increase in the plasma 3DG level was observed, which was most likely the mechanism for decreased β‑cell function. This idea was further supported by these results that non‑cytotoxic 3DG concentration obviously decreased glucose‑stimulated insulin secretion in cultured pancreas islets and INS‑1 cells exposure to high glucose (25.5 mM). 3DG decreased the expression of GLUT2 and phosphorylation of IRS‑1, PI3K‑p85 and Akt in high glucose‑induced INS‑1 cells. To the best of the authors' knowledge, the present study is the first to demonstrate that exogenous 3DG induced normal mice to develop IGR, resulting from β‑cell dysfunction. Exogenous 3DG administration increased plasma 3DG levels, which participates in inducing β‑cell dysfunction, at least in part, through impairing IRS‑1/PI3K/GLUT2 signaling.
Collapse
Affiliation(s)
- Lurong Zhang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Liang Zhou
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Xiudao Song
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guoqiang Liang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Zhongrui Xu
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Fei Wang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Fei Huang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guorong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
191
|
Al-Salam A, Irwin DM. Evolution of the vertebrate insulin receptor substrate (Irs) gene family. BMC Evol Biol 2017; 17:148. [PMID: 28645244 PMCID: PMC5482937 DOI: 10.1186/s12862-017-0994-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. RESULTS Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. CONCLUSIONS The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
Collapse
Affiliation(s)
- Ahmad Al-Salam
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
192
|
Paglialunga S, Simnett G, Robson H, Hoang M, Pillai R, Arkell AM, Simpson JA, Bonen A, Huising M, Joseph JW, Holloway GP. The Rab-GTPase activating protein, TBC1D1, is critical for maintaining normal glucose homeostasis and β-cell mass. Appl Physiol Nutr Metab 2017; 42:647-655. [DOI: 10.1139/apnm-2016-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tre-2/USP6, BUB2, cdc16 domain family, member 1 (TBC1D1), a Rab-GTPase activating protein, is a paralogue of AS160, and has been implicated in the canonical insulin-signaling cascade in peripheral tissues. More recently, TBC1D1 was identified in rat and human pancreatic islets; however, the islet function of TBC1D1 remains not fully understood. We examined the role of TBC1D1 in glucose homeostasis and insulin secretion utilizing a rat knockout (KO) model. Chow-fed TBC1D1 KO rats had improved insulin action but impaired glucose-tolerance tests (GTT) and a lower insulin response during an intraperitoneal GTT compared with wild-type (WT) rats. The in vivo data suggest there may be an islet defect. Glucose-stimulated insulin secretion was higher in isolated KO rat islets compared with WT animals, suggesting TBC1D1 is a negative regulator of insulin secretion. Moreover, KO rats displayed reduced β-cell mass, which likely accounts for the impaired whole-body glucose homeostasis. This β-cell mass reduction was associated with increased active caspase 3, and unaltered Ki67 or urocortin 3, suggesting the induction of apoptosis rather than decreased proliferation or dedifferentiation may account for the decline in islet mass. A similar phenotype was observed in TBC1D1 heterozygous animals, highlighting the sensitivity of the pancreas to subtle reductions in TBC1D1 protein. An 8-week pair-fed high-fat diet did not further alter β-cell mass or apoptosis in KO rats, suggesting that dietary lipids per se, do not lead to a further impairment in glucose homeostasis. The present study establishes a fundamental role for TBC1D1 in maintaining in vivo β-cell mass.
Collapse
Affiliation(s)
- Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
- School of Pharmacy, University of Waterloo, 10A Victoria Street South, Kitchener, ON N2G 1C5, Canada
| | - Genevieve Simnett
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Holly Robson
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, 10A Victoria Street South, Kitchener, ON N2G 1C5, Canada
| | - Renjitha Pillai
- School of Pharmacy, University of Waterloo, 10A Victoria Street South, Kitchener, ON N2G 1C5, Canada
| | - Alicia M. Arkell
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Jeremy A. Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Mark Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences & Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, California, USA
| | - Jamie W. Joseph
- School of Pharmacy, University of Waterloo, 10A Victoria Street South, Kitchener, ON N2G 1C5, Canada
| | - Graham P. Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
193
|
Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab 2017; 25:797-810. [PMID: 28380373 DOI: 10.1016/j.cmet.2017.03.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the tyrosine kinase activity of the insulin receptor (IR), researchers have been engaged in intensive efforts to resolve physiological functions of IR and its major downstream targets, insulin receptor substrate 1 (Irs1) and Irs2. Studies conducted using systemic and tissue-specific gene-knockout mice of IR, Irs1, and Irs2 have revealed the physiological roles of these molecules in each tissue and interactions among multiple tissues. In obesity and type 2 diabetes, selective downregulation of Irs2 and its downstream actions to cause reduced insulin actions was associated with increased insulin actions through Irs1 in variety tissues. Thus, we propose the novel concept of "organ- and pathway-specific imbalanced insulin action" in obesity and type 2 diabetes, which includes and extends "selective insulin resistance." This Review focuses on recent progress in understanding insulin signaling and insulin resistance using key mouse models for elucidating pathophysiology of human obesity and type 2 diabetes.
Collapse
|
194
|
Zhuo MQ, Pan YX, Wu K, Xu YH, Zhang LH, Luo Z. IRS1 and IRS2: molecular characterization, tissue expression and transcriptional regulation by insulin in yellow catfish Pelteobagrus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:619-630. [PMID: 27864748 DOI: 10.1007/s10695-016-0316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The insulin receptor substrate (IRS) proteins, in particular, IRS1 and IRS2, are the key downstream players of insulin signaling pathway and the regulation of lipid metabolism. In the present study, two genes of IRS (IRS1 and IRS2) were isolated and characterized from yellow catfish Pelteobagrus fulvidraco. Their molecular characterizations, tissue expressions, and transcriptional levels by insulin both in vivo and in vitro were determined. The validated complementary DNAs encoding for IRS1 and IRS2 were 3693 and 3177 bp in length, encoding proteins of 1230 and 1058 amino acid residues, respectively. Similarly to mammals, amino acid sequence alignment revealed that IRSs contained an N-terminal pleckstrin homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and several C-terminal multiple sites of tyrosine phosphorylation. Both IRS1 and IRS2 were widely expressed across the ten tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, and ovary), but at the variable levels. Insulin injection at 1 μg/g in vivo significantly stimulated the messenger RNA (mRNA) expression of IRS2, but not IRS1 mRNA expression levels in the liver of yellow catfish after 48 h. In hepatocytes of yellow catfish, insulin incubation significantly stimulated the IRS1 (at a 1000 nM insulin group) and IRS2 (at both 100 and 1000 nM insulin groups) mRNA expressions, which indicated that IRS2 was more sensitive than IRS1 to insulin stimulation in the liver of yellow catfish, and IRS2 played a more important role in mediating insulin's effects on the liver metabolism. The present study serves to increase our understanding into the function of IRS in fish.
Collapse
Affiliation(s)
- Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Li-Han Zhang
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P. R. C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
195
|
Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Homma Y, Nangaku M. The role of renal proximal tubule transport in the regulation of blood pressure. Kidney Res Clin Pract 2017; 36:12-21. [PMID: 28428931 PMCID: PMC5331971 DOI: 10.23876/j.krcp.2017.36.1.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulation of plasma volume and blood pressure. NBCe1 and other sodium transporters in the proximal tubule are regulated by hormones, such as angiotensin II and insulin. Angiotensin II is probably the most important stimulator of sodium reabsorption. Proximal tubule AT1A receptor is crucial for the systemic pressor effect of angiotensin II. In rodents and rabbits, the effect on proximal tubule NBCe1 is biphasic; at low concentration, angiotensin II stimulates NBCe1 via PKC/cAMP/ERK, whereas at high concentration, it inhibits NBCe1 via NO/cGMP/cGKII. In contrast, in human proximal tubule, angiotensin II has a dose-dependent monophasic stimulatory effect via NO/cGMP/ERK. Insulin stimulates the proximal tubule sodium transport, which is IRS2-dependent. We found that in insulin resistance and overt diabetic nephropathy, stimulatory effect of insulin on proximal tubule transport was preserved. Our results suggest that the preserved stimulation of the proximal tubule enhances sodium reabsorption, contributing to the pathogenesis of hypertension with metabolic syndrome. We describe recent findings regarding the role of proximal tubule transport in the regulation of blood pressure, focusing on the effects of angiotensin II and insulin.
Collapse
Affiliation(s)
- Shoko Horita
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Motonobu Nakamura
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhiko Satoh
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
196
|
Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One 2017; 12:e0173264. [PMID: 28282409 PMCID: PMC5345824 DOI: 10.1371/journal.pone.0173264] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis.
Collapse
|
197
|
Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:119-127. [PMID: 28163112 DOI: 10.1016/j.jep.2017.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) is becoming a serious threat to human health. The fruit of Morus alba L. is widely used as a traditional Chinese medicine for the treatment of DM, dizziness, tinnitus, insomnia, and premature graying, as well as to protect the liver and kidneys. Several studies have demonstrated that the aqueous extracts of the roots bark, leaves, and ramuli of mulberry, which are known to contain polyphenols and polysaccharides, have antihyperglycemic and antihyperlipidemic activities. The aim of the present study was to further investigate the active polysaccharides from M. alba fruit by evaluating the antidiabetic activities of different fractions on T2DM rats and elucidate the mechanism underlying these activities. MATERIALS AND METHODS Diabetic rats were treated with two fractions of M. alba fruit polysaccharides (MFP50 and MFP90). The disease models were induced by a high-fat diet and low dose injection of streptozotocin and were compared to normal rats and metformin-treated diabetic rats. After seven weeks, the fasting blood glucose (FBG), oral glucose tolerance test (OGTT), fasting serum insulin (FINS) levels, homeostasis model of assessment-insulin resistance (HOMA-IR), glycated serum protein (GSP), and serum alanine transaminase (ALT) levels, as well as serum lipid profiles and histopathological changes in the pancreas were measured. Next, the expressions of the insulin signaling pathway were measured by western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. RESULTS After seven weeks of treatment, a significant reduction in the FBG levels, OGTT-area under the curve (OGTT-AUC), FINS, HOMA-IR, ALT, and triglyceride (TG) values of the MFP50 group was observed. On the other hand, in the MFP90 group, the FBG, OGTT-AUC, FINS, HOMA-IR, GSP, and TG levels were significantly reduced. The level of high-density lipoprotein cholesterol (HDL-c) and the proportion of HDL-c to total cholesterol (TC) significantly increased in the MFP50 group. Moreover, MFP50 and MFP90 induced repair of damaged pancreatic tissues of the diabetic rats. The hypoglycemic effect of MFP50 was more stable than MFP90, whereas the hypolipidemic effect of MFP90 was slightly better than MFP50. Moreover, the expression levels of InsR, IRS-2, Akt and GLUT4 in the MFP90 group significantly increased relative to that of the T2DM group. CONCLUSIONS MFP50 and MFP90 have markedly antihyperglycemic and antihyperlipidemic effects and can clearly relieve diabetes symptoms in the T2DM rat model. The M. alba fruit polysaccharides may potentially be utilized as an effective treatment for T2DM. Further research into the structures of active M. alba fruit polysaccharides and their mechanisms in promoting antidiabetic effects are underway.
Collapse
Affiliation(s)
- Yukun Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China
| | - Xueqian Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiang Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, China.
| |
Collapse
|
198
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
199
|
Luo Y, Lin Y, Han X. Original article. Transcription factors regulate Forkhead box O1 gene promoter activity in pancreatic β-cells. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0504.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Transcription factors of the Forkhead box O (Fox O) family have important roles in cellular proliferation, apoptosis, differentiation, and stress resistance. In pancreatic β-cells, FoxO1 protein plays an important role in β-cells development. The molecular mechanism of transcriptional regulation of basal FoxO1 gene expression in pancreatic β-cells is not fully understood.
Objectives: Explore the potential transcription factors regulating FoxO1 promoter activity using pancreatic β-cell line (RINm5F cells)
Methods: Promoter screening method, luciferase reporter gene analysis, transient expression assay system, and deletion analysis of a -974/-18 bp 5’ upstream region of the mouse FoxO1 gene were used in this study.
Results: An inhibition domain (-974/-321) and an activation domain (-321/-18) was identified through deletion analysis of a -974/-18 bp 5’ upstream region of the mouse FoxO1 gene. Using the promoter screening method, several transcription factors were selected. Luciferase reporter studies showed that these factors could regulate FoxO1 promoter activity in RINm5F cells. Among these factors, cAMP response-element binding protein (CREB) could positively regulate FoxO1 promoter activity. Signal transducer and activator of transcription 1 (STAT1) played a negative role on FoxO1 promoter. In addition, ETS oncogene family member Elk-1 did not affect the FoxO1 promoter activity.
Conclusion: Two transcription factors (CREB and STAT1) could effectively regulate the mouse FoxO1 gene promoter activity.
Collapse
Affiliation(s)
- Ying Luo
- Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | - Yan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
200
|
Tang CY, Man XF, Guo Y, Tang HN, Tang J, Zhou CL, Tan SW, Wang M, Zhou HD. IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1 -/- Mice Mediated by miR-33. Mol Cells 2017; 40:123-132. [PMID: 28190325 PMCID: PMC5339503 DOI: 10.14348/molcells.2017.2228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/06/2023] Open
Abstract
Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse (Irs-1-/-) with growth retardation and subcutaneous adipocyte atrophy. Irs-1-/- mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of Irs-1-/- mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of Irs-1-/- mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.
Collapse
Affiliation(s)
- Chen-Yi Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Xiao-Fei Man
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Yue Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Hao-Neng Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Jun Tang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Ci-La Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Shu-Wen Tan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,
China
| | - Hou-De Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011,
China
| |
Collapse
|