151
|
Mahdavi M, Moreau V. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: A molecular docking study. Comput Biol Chem 2016; 65:110-116. [DOI: 10.1016/j.compbiolchem.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
|
152
|
Duan H, Zhu L, Hou J, Peng J, Xie H, Lin Y, Liu C, Li W, Xu H, Wang C, Yang Y. Dual-affinity peptide mediated inter-protein recognition. Org Biomol Chem 2016; 14:11342-11346. [PMID: 27883148 DOI: 10.1039/c6ob02292h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present for the first time an enhanced interaction affinity between an abundant soluble protein (human serum albumin) and a membrane protein (chemokine receptor 4) mediated by a dual-affinity peptide E5.
Collapse
Affiliation(s)
- Hongyang Duan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHC-peptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway.
Collapse
Affiliation(s)
- Dominic A Boardman
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Jacinta Jacob
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Lesley A Smyth
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; School of Health, Sport and Bioscience, Stratford Campus, University of East London, London, E15 4LZ UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT UK ; NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust & King's College London, Guy's Hospital, London, SE1 9RT UK
| |
Collapse
|
154
|
Abstract
Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
155
|
Yuan H, Chen R, Tariq M, Liu Y, Sun Y, Xia C. Crystal structure of zebrafish complement 1qA globular domain. Protein Sci 2016; 25:1883-9. [PMID: 27391278 DOI: 10.1002/pro.2980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 11/07/2022]
Abstract
C1q contains three globular domains (C1qgD) that are the key functional component of the classical complement system. C1qgD can interact with important immune molecules, including IgG and C-reactive protein (CRP) to form defense systems to protect animals. Here, the first non-mammalian structure, zebrafish C1qA globular domain (Dare-C1qAgD) was solved. Although the overall architecture of Dare-C1qAgD is similar to human C1qA, residues involved in C1qBgD, C1qCgD, and CRP binding are somewhat different while residues involved in IgG binding are not present in zebrafish. The structure gives insight into how human and fish C1qA evolved from an ancestral protein.
Collapse
Affiliation(s)
- Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mansoor Tariq
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yaping Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
156
|
Márquez A, Cordero-Coma M, Martín-Villa JM, Gorroño-Echebarría MB, Blanco R, Díaz Valle D, Del Rio MJ, Blanco A, Olea JL, Cordero Y, Capella MJ, Díaz-Llopis M, Ortego-Centeno N, Ruiz-Arruza I, Llorenç V, Adán A, Fonollosa A, Ten Berge J, Atan D, Dick AD, De Boer JH, Kuiper J, Rothova A, Martín J. New insights into the genetic component of non-infectious uveitis through an Immunochip strategy. J Med Genet 2016; 54:38-46. [PMID: 27609017 DOI: 10.1136/jmedgenet-2016-104144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Large-scale genetic studies have reported several loci associated with specific disorders involving uveitis. Our aim was to identify genetic risk factors that might predispose to uveitis per se, independent of the clinical diagnosis, by performing a dense genotyping of immune-related loci. METHODS 613 cases and 3693 unaffected controls from three European case/control sets were genotyped using the Immunochip array. Only patients with non-infectious non-anterior uveitis and without systemic features were selected. To perform a more comprehensive analysis of the human leucocyte antigen (HLA) region, SNPs, classical alleles and polymorphic amino acid variants were obtained via imputation. A meta-analysis combining the three case/control sets was conducted by the inverse variance method. RESULTS The highest peak belonged to the HLA region. A more detailed analysis of this signal evidenced a strong association between the classical allele HLA-A*2902 and birdshot chorioretinopathy (p=3.21E-35, OR=50.95). An omnibus test yielded HLA-A 62 and 63 as relevant amino acid positions for this disease. In patients with intermediate and posterior uveitis, the strongest associations belonged to the rs7197 polymorphism, within HLA-DRA (p=2.07E-11, OR=1.99), and the HLA-DR15 haplotype (DRB1*1501: p=1.16E-10, OR=2.08; DQA1*0102: p=4.37E-09, OR=1.77; DQB1*0602: p=7.26E-10, OR=2.02). Outside the HLA region, the MAP4K4/IL1R2 locus reached statistical significance (rs7608679: p=8.38E-07, OR=1.42). Suggestive associations were found at five other loci. CONCLUSIONS We have further interrogated the association between the HLA region and non-infectious non-anterior uveitis. In addition, we have identified a new non-HLA susceptibility factor and proposed additional risk loci with putative roles in this complex condition.
Collapse
Affiliation(s)
- Ana Márquez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, PTS Granada, Granada, Spain
| | - Miguel Cordero-Coma
- Ophthalmology Department, Hospital de León, IBIOMED, Universidad de León, León, Spain
| | | | | | - Ricardo Blanco
- Rheumatology Department, Hospital Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - David Díaz Valle
- Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Ana Blanco
- Ophthalmology Department, Hospital Donostia, San Sebastián (Guipúzcoa), Spain
| | - Jose Luis Olea
- Ophthalmology Department, Hospital Son Espases, Palma de Mallorca, Spain
| | - Yolanda Cordero
- Ophthalmology Department, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - María José Capella
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Díaz-Llopis
- Ophthalmology Department, Hospital La Fe, Universidad de Valencia, Valencia, Spain
| | | | - Ioana Ruiz-Arruza
- Autoimmune Diseases Research Unit, Internal Medicine Department, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
| | - Víctor Llorenç
- Ophthalmology Department, Hospital Clinic, Barcelona, Spain
| | - Alfredo Adán
- Ophthalmology Department, Hospital Clinic, Barcelona, Spain
| | - Alejandro Fonollosa
- Ophthalmology Department, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
| | - Josianne Ten Berge
- Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Denize Atan
- School of Clinical Sciences, Bristol Eye Hospital, Bristol, UK
| | - Andrew D Dick
- School of Clinical Sciences, Bristol Eye Hospital, Bristol, UK
| | - Joke H De Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jonas Kuiper
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, PTS Granada, Granada, Spain
| |
Collapse
|
157
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
158
|
MR1 discovery. Immunogenetics 2016; 68:491-8. [PMID: 27464703 DOI: 10.1007/s00251-016-0943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
The moment of MR1 discovery is described. The MR1 gene is the first and the last reported human MHC-related gene intentionally isolated from the human genome composed of three billion base pairs. Evolutionary considerations formed the basis of its isolation. Some details surrounding the moment and some retrospective descriptions with various kinds of encounters are also included.
Collapse
|
159
|
Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant 2016; 21:29-39. [PMID: 26575852 DOI: 10.1097/mot.0000000000000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Despite a growing awareness regarding the potential of cross-reactive virus-specific memory T cells to mediate alloimmunity, there has been limited clinical evaluation on allograft immunopathology. This review will explore published models of human T-cell cross-reactivity and discuss criteria required to drive this mechanism as a contributing cause of allograft dysfunction in transplantation. RECENT FINDINGS Published models of human allogeneic (allo)-human leukocyte antigen (HLA) cross-reactivity have enabled dissection of the cross-reactive T cell receptor/peptide/major histocompatibility complex (TCR/peptide/MHC) interaction. In many of the models, the cross-reactive T cells express a unique TCR, although the relevance of a public cross-reactive TCR repertoire has yet to be determined. Equally, allopeptide identity, a vital component driving cross-recognition, remains unknown in the majority of models thereby prompting further characterization utilizing novel technologies. Although clinical studies examining the presence and impact of specific cross-reactive virus-specific T cells have been minimally explored, the existing data suggest that there may be a marginal set of requirements that need to be satisfied before the potentially damaging effects of allo-HLA cross-reactivity can be realized. SUMMARY Our understanding of allo-HLA cross-reactivity continues to evolve as improved technology and novel strategies allow us to better question the contribution of allo-HLA cross-reactivity in clinically relevant allograft dysfunction.
Collapse
|
160
|
Li R, Li N, Zhang J, Wang Y, Liu J, Cai Y, Chai T, Wei L. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC). Front Microbiol 2016; 7:637. [PMID: 27199963 PMCID: PMC4853417 DOI: 10.3389/fmicb.2016.00637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 12/04/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.
Collapse
Affiliation(s)
- Rong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yao Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Jiyuan Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yumei Cai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| |
Collapse
|
161
|
Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nat Immunol 2016; 17:574-582. [PMID: 26998761 PMCID: PMC4839504 DOI: 10.1038/ni.3392] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.
Collapse
Affiliation(s)
- Veronica T Chang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Ricardo A Fernandes
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Matthieu Palayret
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Charlotte H Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Yuan Lui
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Elizabeth Huang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
162
|
García-Guerrero E, Pérez-Simón JA, Sánchez-Abarca LI, Díaz-Moreno I, De la Rosa MA, Díaz-Quintana A. The Dynamics of the Human Leukocyte Antigen Head Domain Modulates Its Recognition by the T-Cell Receptor. PLoS One 2016; 11:e0154219. [PMID: 27124285 PMCID: PMC4849770 DOI: 10.1371/journal.pone.0154219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/11/2016] [Indexed: 01/13/2023] Open
Abstract
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (ADQ); (JAPS)
| | | | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla—CSIC, Seville, Spain
| | - Miguel A. De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla—CSIC, Seville, Spain
| | - Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla—CSIC, Seville, Spain
- * E-mail: (ADQ); (JAPS)
| |
Collapse
|
163
|
How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc Natl Acad Sci U S A 2016; 113:E1276-85. [PMID: 26884163 DOI: 10.1073/pnas.1522069113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How T-cell receptors (TCRs) can be intrinsically biased toward MHC proteins while simultaneously display the structural adaptability required to engage diverse ligands remains a controversial puzzle. We addressed this by examining αβ TCR sequences and structures for evidence of physicochemical compatibility with MHC proteins. We found that human TCRs are enriched in the capacity to engage a polymorphic, positively charged "hot-spot" region that is almost exclusive to the α1-helix of the common human class I MHC protein, HLA-A*0201 (HLA-A2). TCR binding necessitates hot-spot burial, yielding high energetic penalties that must be offset via complementary electrostatic interactions. Enrichment of negative charges in TCR binding loops, particularly the germ-line loops encoded by the TCR Vα and Vβ genes, provides this capacity and is correlated with restricted positioning of TCRs over HLA-A2. Notably, this enrichment is absent from antibody genes. The data suggest a built-in TCR compatibility with HLA-A2 that biases receptors toward, but does not compel, particular binding modes. Our findings provide an instructional example for how structurally pliant MHC biases can be encoded within TCRs.
Collapse
|
164
|
Lu H, Li DJ, Jin LP. γδT Cells and Related Diseases. Am J Reprod Immunol 2016; 75:609-18. [PMID: 26833725 DOI: 10.1111/aji.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Discovered 30 years ago, γδT cells remain an enigmatic T-cell subset. Although they account for a small portion of the total human circulating T-cell pool, their associations with other immune cells and their potential regulatory roles in related diseases have been explored but still require further investigation. γδT cells which are MHC-unrestricted innate-like lymphocytes with more unique antigen receptors than αβT cells and B cells are considered to bridge innate and adaptive immunity. They have APC functions and initiate adaptive immunity. Due to their distribution in specific tissues, secretion of Th1-, Th2-, and Th17-type cytokines, and other characteristics, they are involved in a variety of physiology and pathology processes. They are barometers in HIV infection. However, different γδT cell subsets play opposing roles in HBV infections, autoimmune diseases, and several types of tumors. Moreover, decidual γδT cells have protective roles during pregnancies by synthesizing several cytokines. This emerging evidence provides an improved understanding of the immune mechanism of infection, autoimmunity, cancer, and other related disorders and better insights regarding the potential roles of γδT cells in immunological therapeutic strategies.
Collapse
Affiliation(s)
- Han Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
165
|
Katakowski JA, Mukherjee G, Wilner SE, Maier KE, Harrison MT, DiLorenzo TP, Levy M, Palliser D. Delivery of siRNAs to Dendritic Cells Using DEC205-Targeted Lipid Nanoparticles to Inhibit Immune Responses. Mol Ther 2016; 24:146-55. [PMID: 26412590 PMCID: PMC4754549 DOI: 10.1038/mt.2015.175] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022] Open
Abstract
Due to their ability to knock down the expression of any gene, siRNAs have been heralded as ideal candidates for treating a wide variety of diseases, including those involving "undruggable" targets. However, the therapeutic potential of siRNAs remains severely limited by a lack of effective delivery vehicles. Recently, lipid nanoparticles (LNPs) containing ionizable cationic lipids have been developed for hepatic siRNA delivery. However, their suitability for delivery to other cell types has not been determined. We have modified LNPs for preferential targeting to dendritic cells (DCs), central regulators of immune responses. To achieve directed delivery, we coated LNPs with a single-chain antibody (scFv; DEC-LNPs), specific to murine DEC205, which is highly expressed on distinct DC subsets. Here we show that injection of siRNAs encapsulated in DEC-LNPs are preferentially delivered to DEC205(+) DCs. Gene knockdown following uptake of DEC-LNPs containing siRNAs specific for the costimulatory molecules CD40, CD80, and CD86 dramatically decreases gene expression levels. We demonstrate the functionality of this knockdown with a mixed lymphocyte response (MLR). Overall, we report that injection of LNPs modified to restrict their uptake to a distinct cell population can confer profound gene knockdown, sufficient to inhibit powerful immune responses like the MLR.
Collapse
Affiliation(s)
- Joseph A Katakowski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Samantha E Wilner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Keith E Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deborah Palliser
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
166
|
Reinherz EL. αβ TCR-mediated recognition: relevance to tumor-antigen discovery and cancer immunotherapy. Cancer Immunol Res 2016; 3:305-12. [PMID: 25847967 DOI: 10.1158/2326-6066.cir-15-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
αβ T lymphocytes sense perturbations in host cellular body components induced by infectious pathogens, oncogenic transformation, or chemical or physical damage. Millions to billions of these lymphocytes are generated through T-lineage development in the thymus, each endowed with a clonally restricted surface T-cell receptor (TCR). An individual TCR has the capacity to recognize a distinct "foreign" peptide among the myriad of antigens that the mammalian host must be capable of detecting. TCRs explicitly distinguish foreign from self-peptides bound to major histocompatibility complex (MHC) molecules. This is a daunting challenge, given that the MHC-linked peptidome consists of thousands of distinct peptides with a relevant nonself target antigen often embedded at low number, among orders of magnitude higher frequency self-peptides. In this Masters of Immunology article, I review how TCR structure and attendant mechanobiology involving nonlinear responses affect sensitivity as well as specificity to meet this requirement. Assessment of human tumor-cell display using state-of-the-art mass spectrometry physical detection methods that quantify epitope copy number can help to provide information about requisite T-cell functional avidity affording protection and/or therapeutic immunity. Future rational CD8 cytotoxic T-cell-based vaccines may follow, targeting virally induced cancers, other nonviral immunogenic tumors, and potentially even nonimmunogenic tumors whose peptide display can be purposely altered by MHC-binding drugs to stimulate immune attack.
Collapse
Affiliation(s)
- Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
167
|
Ataie N, Xiang J, Cheng N, Brea EJ, Lu W, Scheinberg DA, Liu C, Ng HL. Structure of a TCR-Mimic Antibody with Target Predicts Pharmacogenetics. J Mol Biol 2016; 428:194-205. [PMID: 26688548 PMCID: PMC4738012 DOI: 10.1016/j.jmb.2015.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022]
Abstract
Antibody therapies currently target only extracellular antigens. A strategy to recognize intracellular antigens is to target peptides presented by immune HLA receptors. ESK1 is a human, T-cell receptor (TCR)-mimic antibody that binds with subnanomolar affinity to the RMF peptide from the intracellular Wilms tumor oncoprotein WT1 in complex with HLA-A*02:01. ESK1 is therapeutically effective in mouse models of WT1(+) human cancers. TCR-based therapies have been presumed to be restricted to one HLA subtype. The mechanism for the specificity and high affinity of ESK1 is unknown. We show in a crystal structure that ESK1 Fab binds to RMF/HLA-A*02:01 in a mode different from that of TCRs. From the structure, we predict and then experimentally confirm high-affinity binding with multiple other HLA-A*02 subtypes, broadening the potential patient pool for ESK1 therapy. Using the crystal structure, we also predict potential off-target binding that we experimentally confirm. Our results demonstrate how protein structure information can contribute to personalized immunotherapy.
Collapse
Affiliation(s)
- Niloufar Ataie
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
| | - Jingyi Xiang
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Neal Cheng
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Elliott J Brea
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Wenjie Lu
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
| | - David A Scheinberg
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1305 York Avenue, New York, NY 10021, USA
| | - Cheng Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Emeryville, CA 94608, USA
| | - Ho Leung Ng
- University of Hawaii at Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA; University of Hawaii Cancer Center, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA.
| |
Collapse
|
168
|
Raman MCC, Rizkallah PJ, Simmons R, Donnellan Z, Dukes J, Bossi G, Le Provost GS, Todorov P, Baston E, Hickman E, Mahon T, Hassan N, Vuidepot A, Sami M, Cole DK, Jakobsen BK. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy. Sci Rep 2016; 6:18851. [PMID: 26758806 PMCID: PMC4725365 DOI: 10.1038/srep18851] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022] Open
Abstract
Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.
Collapse
MESH Headings
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cardiotoxicity
- Cell Line
- Connectin/chemistry
- Connectin/immunology
- Connectin/metabolism
- Cross Reactions/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Genetic Engineering
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Models, Molecular
- Molecular Mimicry
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Protein Binding/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Marine C C Raman
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome building, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Ruth Simmons
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Zoe Donnellan
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Joseph Dukes
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Giovanna Bossi
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Gabrielle S Le Provost
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Penio Todorov
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Emma Baston
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Emma Hickman
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Tara Mahon
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Namir Hassan
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Annelise Vuidepot
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - Malkit Sami
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome building, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Bent K. Jakobsen
- Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RX, United Kingdom
| |
Collapse
|
169
|
Morita D, Yamamoto Y, Mizutani T, Ishikawa T, Suzuki J, Igarashi T, Mori N, Shiina T, Inoko H, Fujita H, Iwai K, Tanaka Y, Mikami B, Sugita M. Crystal structure of the N-myristoylated lipopeptide-bound MHC class I complex. Nat Commun 2016; 7:10356. [PMID: 26758274 PMCID: PMC4735555 DOI: 10.1038/ncomms10356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the amino-terminal glycine residue is critical for some viral proteins to function. This protein lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes (CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we show that a primate major histocompatibility complex (MHC) class I-encoded protein is capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated presentation of long peptides to CTLs may need some modifications to incorporate a novel MHC class I function of lipopeptide Ag presentation. Lipid antigens have been added to the antigenic repertoire in recent years. Here, the authors have identified Mamu-B*098 as a lipopeptide antigen presenting molecule and using structural and biochemical analysis have shown that it has a different antigen binding pocket to previously analysed proteins.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tatsuhiko Igarashi
- Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
170
|
Abstract
T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
171
|
Geometry Dynamics of α -Helices in Different Class I Major Histocompatibility Complexes. J Immunol Res 2015; 2015:173593. [PMID: 26649324 PMCID: PMC4651647 DOI: 10.1155/2015/173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.
Collapse
|
172
|
Dellabona P, Consonni M, de Lalla C, Casorati G. Group 1 CD1-restricted T cells and the pathophysiological implications of self-lipid antigen recognition. ACTA ACUST UNITED AC 2015; 86:393-405. [PMID: 26514448 DOI: 10.1111/tan.12689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T cell responses are generally regarded as specific for protein-derived peptide antigens. This is based on the molecular paradigm dictated by the T cell receptor (TCR) recognition of peptide-major histocompatibility complexs, which provides the molecular bases of the specificity and restriction of the T cell responses. An increasing number of findings in the last 20 years have challenged this paradigm, by showing the existence of T cells specific for lipid antigens presented by CD1 molecules. CD1-restricted T cells have been proven to be frequent components of the immune system and to recognize exogenous lipids, derived from pathogenic bacteria, as well as cell-endogenous self-lipids. This represents a young and exciting area of research in immunology with intriguing biological bases and a potential direct impact on human health.
Collapse
Affiliation(s)
- P Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - M Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - C de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - G Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
173
|
Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB. Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol 2015; 15:643-54. [PMID: 26388332 PMCID: PMC6944187 DOI: 10.1038/nri3889] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antigen-presenting molecules CD1 and MHC class I-related protein (MR1) display lipids and small molecules to T cells. The antigen display platforms in the four CD1 proteins are laterally asymmetrical, so that the T cell receptor (TCR)-binding surfaces are comprised of roofs and portals, rather than the long grooves seen in the MHC antigen-presenting molecules. TCRs can bind CD1 proteins with left-sided or right-sided footprints, creating unexpected modes of antigen recognition. The use of tetramers of human CD1a, CD1b, CD1c or MR1 proteins now allows detailed analysis of the human T cell repertoire, which has revealed new invariant TCRs that bind CD1b molecules and are different from those that define natural killer T cells and mucosal-associated invariant T cells.
Collapse
MESH Headings
- Antigen Presentation/immunology
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Lipids/chemistry
- Lipids/immunology
- Minor Histocompatibility Antigens
- Models, Molecular
- Protein Binding/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
174
|
Czaja AJ. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 2015; 60:2881-900. [PMID: 25999246 DOI: 10.1007/s10620-015-3708-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
175
|
Feige MJ, Behnke J, Mittag T, Hendershot LM. Dimerization-dependent folding underlies assembly control of the clonotypic αβT cell receptor chains. J Biol Chem 2015; 290:26821-31. [PMID: 26400083 DOI: 10.1074/jbc.m115.689471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, secretory pathway proteins must pass stringent quality control checkpoints before exiting the endoplasmic reticulum (ER). Acquisition of native structure is generally considered to be the most important prerequisite for ER exit. However, structurally detailed protein folding studies in the ER are few. Furthermore, aberrant ER quality control decisions are associated with a large and increasing number of human diseases, highlighting the need for more detailed studies on the molecular determinants that result in proteins being either secreted or retained. Here we used the clonotypic αβ chains of the T cell receptor (TCR) as a model to analyze lumenal determinants of ER quality control with a particular emphasis on how proper assembly of oligomeric proteins can be monitored in the ER. A combination of in vitro and in vivo approaches allowed us to provide a detailed model for αβTCR assembly control in the cell. We found that folding of the TCR α chain constant domain Cα is dependent on αβ heterodimerization. Furthermore, our data show that some variable regions associated with either chain can remain incompletely folded until chain pairing occurs. Together, these data argue for template-assisted folding at more than one point in the TCR α/β assembly process, which allows specific recognition of unassembled clonotypic chains by the ER chaperone machinery and, therefore, reliable quality control of this important immune receptor. Additionally, it highlights an unreported possible limitation in the α and β chain combinations that comprise the T cell repertoire.
Collapse
Affiliation(s)
| | | | - Tanja Mittag
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
176
|
Abstract
Over two decades ago, it was discovered that the human T-cell repertoire contains T cells that do not recognize peptide antigens in the context of MHC molecules but instead respond to lipid antigens presented by CD1 antigen-presenting molecules. The ability of T cells to 'see' lipid antigens bound to CD1 enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies. Although foreign lipid antigens have been shown to function as antigens for CD1-restricted T cells, many CD1-restricted T cells do not require foreign antigens for activation but instead can be activated by self-lipids presented by CD1. This review highlights recent developments in the field, including the identification of common mammalian lipids that function as autoantigens for αβ and γδ T cells, a novel mode of T-cell activation whereby CD1a itself rather than lipids serves as the autoantigen, and various mechanisms by which the activation of CD1-autoreactive T cells is regulated. As CD1 can induce T-cell effector functions in the absence of foreign antigens, multiple mechanisms are in place to regulate this self-reactivity, and stimulatory CD1-lipid complexes appear to be tightly controlled in space and time.
Collapse
|
177
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
178
|
Adegoke AO, Grant MD. Enhancing Human Immunodeficiency Virus-Specific CD8(+) T Cell Responses with Heteroclitic Peptides. Front Immunol 2015; 6:377. [PMID: 26257743 PMCID: PMC4512150 DOI: 10.3389/fimmu.2015.00377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific CD8(+) T cells play a critical role in containing HIV replication and delaying disease progression. However, HIV-specific CD8(+) T cells become progressively more "exhausted" as chronic HIV infection proceeds. Symptoms of T cell exhaustion range from expression of inhibitory receptors and selective loss of cytokine production capacity through reduced proliferative potential, impaired differentiation into effector cells and increased susceptibility to apoptosis. While effective combination antiretroviral therapy (cART) durably reduces HIV viremia to undetectable levels, this alone does not restore the full pluripotency of HIV-specific CD8(+) T cells. In a number of studies, a subset of peptide epitope variants categorized as heteroclitic, restimulated more potent cellular immune responses in vitro than did the native, immunizing peptides themselves. This property of heteroclitic peptides has been exploited in experimental cancer and chronic viral infection models to promote clearance of transformed cells and persistent viruses. In this review, we consider the possibility that heteroclitic peptides could improve the efficacy of therapeutic vaccines as part of HIV immunotherapy or eradication strategies. We review literature on heteroclitic peptides and illustrate their potential to beneficially modulate the nature of HIV-specific T cell responses toward those found in the small minority of HIV-infected, aviremic cART-naïve persons termed elite controllers or long-term non-progressors. Our review suggests that the efficacy of HIV vaccines could be improved by identification, testing, and incorporation of heteroclitic variants of native HIV peptide epitopes.
Collapse
Affiliation(s)
- Adeolu Oyemade Adegoke
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael David Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
179
|
Hoffmann T, Krackhardt AM, Antes I. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. PLoS Comput Biol 2015; 11:e1004244. [PMID: 26185983 PMCID: PMC4505886 DOI: 10.1371/journal.pcbi.1004244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 02/01/2023] Open
Abstract
T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. The recognition of antigenic peptides by cytotoxic T-cells is one of the crucial steps during the adaptive immune response. Thus a detailed understanding of this process is not only important for elucidating the mechanism behind T-cell signaling, but also for various emerging new medical applications like T-cell based immunotherapies and designed bio-therapeutics. However, despite the fast growing interest in this field, the mechanistic basis of the immune response is still largely unknown. Previous qualitative studies suggested that the T-cell receptor (TCR) Vα/Vβ-interdomain angle plays a crucial role in epitope recognition as it predetermines the relative position of its antigen-recognizing CDR1-3 loops and thus TCR specificity. In the manuscript we present a systematic bioinformatic analysis of the structural characteristics of bound and unbound TCR molecules focusing on the Vα/Vβ-angle. Our results demonstrate the importance of this angle for signaling, as several distinct Vα/Vβ-angle based structural clusters could be observed and larger angle flexibilities exist for unbound TCRs than for bound TCRs, providing quantitative proof for a two-step locking mechanism upon epitope recognition. In this context, we could identify a unique rotational point, which allows a quantitative, yet intuitive description of all observed angle variations and the structural changes upon epitope binding.
Collapse
MESH Headings
- Binding Sites
- Computer Simulation
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/ultrastructure
- Models, Chemical
- Models, Immunological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
| | - Angela M. Krackhardt
- Medizinische Klinik III, Innere Medizin mit Schwerpunkt Hämatologie und Onkologie, Technische Universität München, Munich, Germany
- Clinical Cooperation Group, Antigen specific T cell therapy, Helmholtz Zentrum München (GmbH), German Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
180
|
Chen Z, Zhang N, Lu S, Tariq M, Wang J, Xia C. Crystallization and preliminary X-ray diffraction analysis of the two distinct types of zebrafish β2-microglobulin. Acta Crystallogr F Struct Biol Commun 2015; 71:794-8. [PMID: 26057815 PMCID: PMC4461350 DOI: 10.1107/s2053230x15005737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/21/2015] [Indexed: 11/11/2022] Open
Abstract
β(2)-Microglobulin (β(2)m) noncovalently associates with the heavy chain of major histocompatibility complex class I (MHC I) molecules, which bind foreign antigen peptides to control the cytotoxic T lymphocyte (CTL) immune response. In contrast to mammals, there are distinct types of β(2)ms derived from two loci in a number of teleost species. In order to clarify the structures of the β(2)ms, the zebrafish (Danio rerio) β(2)ms Dare-β(2)m-I and Dare-β(2)m-II were expressed in Escherichia coli, purified and crystallized, and diffraction data were collected to 1.6 and 1.9 Å resolution, respectively. Both crystals belonged to space group P2(1)2(1)2(1). The unit-cell parameters were determined to be a = 38.2, b = 50.4, c = 50.9 Å for Dare-β(2)m-I and a = 38.9, b = 52.7, c = 65.8 Å for Dare-β(2)m-II. Each asymmetric unit was constituted of one molecule, with Matthews coefficients of 2.22 and 3.01 Å(3) Da(-1) and solvent contents of 45 and 59% for Dare-β(2)m-I and Dare-β(2)m-II, respectively. These two β(2)m structures will provide relevant information for further studies of the structures of the MHC I complex.
Collapse
Affiliation(s)
- Zhaosan Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Mansoor Tariq
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|
181
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
182
|
Murray JS. An old Twist in HLA-A: CDR3α Hook up at an R65-joint. Front Immunol 2015; 6:268. [PMID: 26074926 PMCID: PMC4445401 DOI: 10.3389/fimmu.2015.00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/14/2015] [Indexed: 11/30/2022] Open
Abstract
T-cell ontogeny optimizes the α/β T-cell receptor (TCR) repertoire for recognition of major histocompatibility complex (MHC) class-I/II genetic polymorphism, and co-evolution of TCR germline V-gene segments and the MHC must entail somatic diversity generated in the third complimentary determining regions (CDR3α/β); however, it is still not clear how. Herein, a conspicuous structural link between the V-Jα used by several different TCR [all in complex with the same MHC molecule (HLA-A2)], and a conserved MHC motif (a.a., R65-X-X-K-A-X-S-Q72) is described. We model this R65-joint in detail, and show that the same TCR’s CDR3α loop maintains its CDR2α loop at a distance of ~4 Å from polymorphic amino acid (a.a.) positions of the α-2 helix in all but one of the analyzed crystal structures. Indeed, the pitch of docked TCRs varies as their twist/tilt/sway maintains the R65-joint and peptide contacts. Thus, the R65-joint appears to have poised the HLA-A lineage toward alloreactivity.
Collapse
|
183
|
Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX, Thompson A, Bakker SF, Mulder CJJ, Ladell K, McLaren JE, Price DA, Rossjohn J, Reid HH, Koning F. Determinants of gliadin-specific T cell selection in celiac disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:6112-22. [PMID: 25948817 DOI: 10.4049/jimmunol.1500161] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/04/2015] [Indexed: 12/20/2022]
Abstract
In HLA-DQ8-associated celiac disease (CD), the pathogenic T cell response is directed toward an immunodominant α-gliadin-derived peptide (DQ8-glia-α1). However, our knowledge of TCR gene usage within the primary intestinal tissue of HLA-DQ8 (+) CD patients is limited. We identified two populations of HLA-DQ8-glia-α1 tetramer(+) CD4(+) T cells that were essentially undetectable in biopsy samples from patients on a gluten-free diet but expanded rapidly and specifically after antigenic stimulation. Distinguished by expression of TRBV9, both T cell populations displayed biased clonotypic repertoires and reacted similarly against HLA-DQ8-glia-α1. In particular, TRBV9 paired most often with TRAV26-2, whereas the majority of TRBV9(-) TCRs used TRBV6-1 with no clear TRAV gene preference. Strikingly, both tetramer(+)/TRBV9(+) and tetramer(+)/TRBV9(-) T cells possessed a non-germline-encoded arginine residue in their CDR3α and CDR3β loops, respectively. Comparison of the crystal structures of three TRBV9(+) TCRs and a TRBV9(-) TCR revealed that, as a result of distinct TCR docking modes, the HLA-DQ8-glia-α1 contacts mediated by the CDR3-encoded arginine were almost identical between TRBV9(+) and TRBV9(-) TCRs. In all cases, this interaction centered on two hydrogen bonds with a specific serine residue in the bound peptide. Replacement of serine with alanine at this position abrogated TRBV9(+) and TRBV9(-) clonal T cell proliferation in response to HLA-DQ8-glia-α1. Gluten-specific memory CD4(+) T cells with structurally and functionally conserved TCRs therefore predominate in the disease-affected tissue of patients with HLA-DQ8-mediated CD.
Collapse
Affiliation(s)
- Jan Petersen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Khai Lee Loh
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Dennis X Beringer
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Allan Thompson
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Sjoerd F Bakker
- Department of Gastroenterology, Free University Medical Center, Amsterdam 1081 HZ, the Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology, Free University Medical Center, Amsterdam 1081 HZ, the Netherlands
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; and
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia;
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands;
| |
Collapse
|
184
|
Yu HC, Huang KY, Lu MC, Huang HL, Liu WT, Lee WC, Liu SQ, Huang HB, Lai NS. Characterization of the recognition specificity of BH2, a monoclonal antibody prepared against the HLA-B27 heavy chain. Int J Mol Sci 2015; 16:8142-50. [PMID: 25872138 PMCID: PMC4425072 DOI: 10.3390/ijms16048142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022] Open
Abstract
BH2, a monoclonal antibody prepared against the denatured human leukocytic antigen-B27 heavy chain (HLA-B27 HC), can immunoprecipitate the misfolded HLA-B27 HC complexed with Bip in the endoplasmic reticulum and recognize the homodimerized HLA-B27 HC that is often observed on the cell membrane of patients suffered from ankylosing spondylitis (AS). However, the recognition specificity of BH2 toward the other molecules of HLA-B type and toward the different types of HLA molecules remained uncharacterized. In this study, we carried out the HLA-typing by using the Luminex Technology to characterize the recognition specificity of BH2 and analyzed the binding domain of HLA-B27 HC by BH2. Our results indicated that BH2 preferably binds to molecules of HLA-B and -C rather than HLA-A and the binding site is located within the α2 domain of HLA-B27 HC.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
| | - Kuang-Yung Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| | - Ming-Chi Lu
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| | - Hsien-Lu Huang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Wei-Ting Liu
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Wen-Chien Lee
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Su-Qin Liu
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Ning-Sheng Lai
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| |
Collapse
|
185
|
Cukalac T, Kan WT, Dash P, Guan J, Quinn KM, Gras S, Thomas PG, La Gruta NL. Paired TCRαβ analysis of virus-specific CD8(+) T cells exposes diversity in a previously defined 'narrow' repertoire. Immunol Cell Biol 2015; 93:804-14. [PMID: 25804828 DOI: 10.1038/icb.2015.44] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
T-cell receptor (TCR) usage has an important role in determining the outcome of CD8(+) cytotoxic T-lymphocyte responses to viruses and other pathogens. However, the characterization of TCR usage from which such conclusions are drawn is based on exclusive analysis of either the TCRα chain or, more commonly, the TCRβ chain. Here, we have used a multiplexed reverse transcription-PCR protocol to analyse the CDR3 regions of both TCRα and β chains from single naive or immune epitope-specific cells to provide a comprehensive picture of epitope-specific TCR usage and selection into the immune response. Analysis of TCR repertoires specific for three influenza-derived epitopes (D(b)NP(366), D(b)PA(224) and D(b)PB1-F2(62)) showed preferential usage of particular TCRαβ proteins in the immune repertoire relative to the naive repertoire, in some cases, resulting in a complete shift in TRBV preference or CDR3 length, and restricted repertoire diversity. The NP(366)-specific TCRαβ repertoire, previously defined as clonally restricted based on TCRβ analysis, was similarly diverse as the PA(224)- and PB1-F2(62)-specific repertoires. Intriguingly, preferred TCR characteristics (variable gene usage, CDR3 length and junctional gene usage) appeared to be able to confer specificity either independently or in concert with one another, depending on the epitope specificity. These data have implications for established correlations between the nature of the TCR repertoire and response outcomes after infection, and suggest that analysis of a subset of cells or a single TCR chain does not accurately depict the nature of the antigen-specific TCRαβ repertoire.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Wan-Ting Kan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Pradyot Dash
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Guan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
186
|
Abstract
Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.
Collapse
Affiliation(s)
- Yigong Shi
- Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
187
|
Shirai K, Hayasaka D, Kitaura K, Takasaki T, Morita K, Suzuki R, Kurane I. Qualitative differences in brain-infiltrating T cells are associated with a fatal outcome in mice infected with Japanese encephalitis virus. Arch Virol 2015; 160:765-75. [PMID: 25604524 PMCID: PMC4336650 DOI: 10.1007/s00705-014-2154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Japanese encephalitis (JE) is the most important form of viral encephalitis in Asia. The critical factors determining mortality and severity of JE virus (JEV) infection remain unclear. We identified brain-infiltrating T cells associated with a fatal outcome of JEV infection in mice. Dying mice were defined as those that lost more than 25 % of their body weight by day 13 and died by day 21, while surviving mice were defined as those that lost less than 10 % by day 13, based on the result of the survival time course study. Two groups of five mice that demonstrated brain virus titers of >1 × 10(6) pfu/g were randomly selected from the dying and surviving groups and used in the analyses. Cytokine patterns in brains were first examined, revealing a higher ratio of Th1-related cytokine genes in dying mice. The expression levels of CD3, CD8, CD25, and CD69 increased in JEV-infected mice relative to mock-infected mice. However, expression levels of these cell-surface markers did not differ between the two groups. T-cell receptor (TCR) usage and complementary determining region 3 (CDR3) sequences were analyzed in the brain-infiltrating T cells. T cells expressing VA8-1, VA10-1, and VB2-1 increased in both groups. However, the dominant T-cell clones as defined by CDR3 amino acid sequence differed between the two groups. The results indicate that the outcome of JEV infection, death or survival, was determined by qualitative differences in infiltrating T-cell clones with unique CDR3 amino acid sequences.
Collapse
Affiliation(s)
- Kenji Shirai
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, 305-8575 Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, GCOE program, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazutaka Kitaura
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, GCOE program, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, 305-8575 Japan
| |
Collapse
|
188
|
Nakatsugawa M, Yamashita Y, Ochi T, Tanaka S, Chamoto K, Guo T, Butler MO, Hirano N. Specific roles of each TCR hemichain in generating functional chain-centric TCR. THE JOURNAL OF IMMUNOLOGY 2015; 194:3487-500. [PMID: 25710913 DOI: 10.4049/jimmunol.1401717] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TCRα- and β-chains cooperatively recognize peptide-MHC complexes. It has been shown that a "chain-centric" TCR hemichain can, by itself, dictate MHC-restricted Ag specificity without requiring major contributions from the paired TCR counterchain. Little is known, however, regarding the relative contributions and roles of chain-centric and its counter, non-chain-centric, hemichains in determining T cell avidity. We comprehensively analyzed a thymically unselected T cell repertoire generated by transducing the α-chain-centric HLA-A*02:01(A2)/MART127-35 TCRα, clone SIG35α, into A2-matched and unmatched postthymic T cells. Regardless of their HLA-A2 positivity, a substantial subset of peripheral T cells transduced with SIG35α gained reactivity for A2/MART127-35. Although the generated A2/MART127-35-specific T cells used various TRBV genes, TRBV27 predominated with >10(2) highly diverse and unique clonotypic CDR3β sequences. T cells individually reconstituted with various A2/MART127-35 TRBV27 TCRβ genes along with SIG35α possessed a wide range (>2 log orders) of avidity. Approximately half possessed avidity higher than T cells expressing clone DMF5, a naturally occurring A2/MART127-35 TCR with one of the highest affinities. Importantly, similar findings were recapitulated with other self-Ags. Our results indicate that, although a chain-centric TCR hemichain determines Ag specificity, the paired counterchain can regulate avidity over a broad range (>2 log orders) without compromising Ag specificity. TCR chain centricity can be exploited to generate a thymically unselected Ag-specific T cell repertoire, which can be used to isolate high-avidity antitumor T cells and their uniquely encoded TCRs rarely found in the periphery because of tolerance.
Collapse
Affiliation(s)
- Munehide Nakatsugawa
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Yuki Yamashita
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Toshiki Ochi
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Shinya Tanaka
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Takara Bio, Inc., Otsu, Shiga 520-2193, Japan
| | - Kenji Chamoto
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tingxi Guo
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Marcus O Butler
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Immune Therapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
189
|
Kløverpris HN, Cole DK, Fuller A, Carlson J, Beck K, Schauenburg AJ, Rizkallah PJ, Buus S, Sewell AK, Goulder P. A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology 2015; 12:20. [PMID: 25808313 PMCID: PMC4347545 DOI: 10.1186/s12977-015-0149-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Presentation of identical HIV-1 peptides by closely related Human Leukocyte Antigen class I (HLAI) molecules can select distinct patterns of escape mutation that have a significant impact on viral fitness and disease progression. The molecular mechanisms by which HLAI micropolymorphisms can induce differential HIV-1 escape patterns within identical peptide epitopes remain unknown. RESULTS Here, we undertook genetic and structural analyses of two immunodominant HIV-1 peptides, Gag180-188 (TPQDLNTML, TL9-p24) and Nef71-79 (RPQVPLRPM, RM9-Nef) that are among the most highly targeted epitopes in the global HIV-1 epidemic. We show that single polymorphisms between different alleles of the HLA-B7 superfamily can induce a conformational switch in peptide conformation that is associated with differential HLAI-specific escape mutation and immune control. A dominant R71K mutation in the Nef71-79 occurred in those with HLA-B*07:02 but not B*42:01/02 or B*81:01. No structural difference in the HLA-epitope complexes was detected to explain this observation. CONCLUSIONS These data suggest that identical peptides presented through very similar HLAI landscapes are recognized as distinct epitopes and provide a novel structural mechanism for previously observed differential HIV-1 escape and disease progression.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- />KwaZulu- Natal Research Institute for Tuberculosis and HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- />Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, 2200 Denmark
- />Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford, OX1 3SY UK
| | - David K Cole
- />Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Anna Fuller
- />Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Konrad Beck
- />Cardiff University School of Dentistry, Heath Park, Cardiff, UK
| | | | | | - Søren Buus
- />Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, 2200 Denmark
| | - Andrew K Sewell
- />Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Philip Goulder
- />Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford, OX1 3SY UK
| |
Collapse
|
190
|
Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ, Schauenburg AJ, Cole DK, Sewell AK. Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides. Eur J Immunol 2015; 45:584-91. [PMID: 25471691 PMCID: PMC4357396 DOI: 10.1002/eji.201445114] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.
Collapse
MESH Headings
- Alanine/chemistry
- Alanine/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Leucine/chemistry
- Leucine/genetics
- MART-1 Antigen/chemistry
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Florian Madura
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| |
Collapse
|
191
|
Physiochemical disparity of mismatched HLA class I alloantigens and risk of acute GVHD following HSCT. Bone Marrow Transplant 2015; 50:540-4. [PMID: 25621806 DOI: 10.1038/bmt.2014.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/09/2014] [Accepted: 11/26/2014] [Indexed: 11/08/2022]
Abstract
We determined whether assessment of the immunogenicity of individual donor-recipient HLA mismatches based on differences in their amino-acid sequence and physiochemical properties predicts clinical outcome following haematopoietic SCT (HSCT). We examined patients transplanted with 9/10 single HLA class I-mismatched grafts (n=171) and 10/10 HLA-A-, -B-, -C-, -DRB1- and -DQB1-matched grafts (n=168). A computer algorithm was used to determine the physiochemical disparity (electrostatic mismatch score (EMS) and hydrophobic mismatch score (HMS)) of mismatched HLA class I specificities in the graft-versus-host direction. Patients transplanted with HLA-mismatched grafts with high EMS/HMS had increased incidence of ⩾grade II acute GVHD (aGVHD) compared with patients transplanted with low EMS/HMS grafts; patients transplanted with low and medium EMS/HMS grafts had similar incidence of aGVHD to patients transplanted with 10/10 HLA-matched grafts. Mortality was higher following single HLA-mismatched HSCT but was not correlated with HLA physiochemical disparity. Assessment of donor-recipient HLA incompatibility based on physiochemical HLA disparity may enable better selection of HLA-mismatched donors in HSCT.
Collapse
|
192
|
Stone JD, Harris DT, Kranz DM. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 2015; 33:16-22. [PMID: 25618219 DOI: 10.1016/j.coi.2015.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/25/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022]
Abstract
Recent studies have shown that the range of affinities of T cell receptors (TCRs) against non-mutated cancer peptide/class I complexes are lower than TCR affinities for foreign antigens. Raising the affinity of TCRs for optimal activity of CD8 T cells, and for recruitment of CD4 T cell activity against a class I antigen, provides opportunities for more robust adoptive T cell therapies. However, TCRs with enhanced affinities also risk increased reactivity with structurally related self-peptides, and off-target toxicities. Careful selection of tumor peptide antigens, in silico proteome screens, and in vitro peptide specificity assays will be important in the development of the most effective, safe TCR-based adoptive therapies.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States
| | - Daniel T Harris
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
193
|
Miles JJ, McCluskey J, Rossjohn J, Gras S. Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 2015; 93:433-41. [PMID: 25582337 DOI: 10.1038/icb.2014.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
T cells are the master regulators of immune system function, continually walking the biological tightrope between adequate host defence and accidental host pathology. Tolerance is maintained or broken through an intricate structural interplay between the T-cell receptor (TCR) and major histocompatibility complex (MHC) molecule cradling peptide antigens (p). Recent advances in structural biology have shown that the TCR/pMHC interface is surprising precise and extraordinarily malleable. We have seen that seemingly minor changes in the TCR/pMHC interface can abrogate function, as well as substantial conformational changes before and after TCR docking. Our understanding of T-cell biology has also been altered with the knowledge that MHC molecules can bind not only peptides, but also an array of natural and synthetic compounds. Here, we review some examples of the precision and flexibility intrinsic to the TCR/p/MHCI axis.
Collapse
Affiliation(s)
- John J Miles
- 1] QIMR Berghofer Medical Research Institute and QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Brisbane, Queensland, Australia [2] School of Medicine, The University of Queensland, Brisbane, Queensland, Australia [3] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- 1] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK [2] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [3] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stephanie Gras
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [2] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
194
|
Chen R, Qi J, Yuan H, Wu Y, Hu W, Xia C. Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. J Struct Biol 2015; 189:259-68. [PMID: 25592778 DOI: 10.1016/j.jsb.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Abstract
Short-chain pentraxins (PTXs), including CRP and SAP, are innate pattern recognition receptors that play vital roles in the recognition and elimination of various pathogenic bacteria by triggering the classical complement pathway through C1q. Similar to antibodies, pentraxins can also activate opsonisation and phagocytosis by interacting with Fc receptors (FcRs). Various structural studies on human PTXs have been performed, but there are no reports about the crystal structure of bony fish pentraxins. Here, the crystal structures of zebrafish PTX (Dare-PTX-Ca and Dare-PTX) are presented. Both Dare-PTX-Ca and Dare-PTX are cyclic trimers, which are new forms of crystallised pentraxins. The structures reveal that the ligand-binding pocket (LBP) in the recognition face of Dare-PTX is deep and narrow. Homology modelling shows that LBPs from different Dare-PTX loci differ in shape, reflecting their specific recognition abilities. Furthermore, in comparison with the structure of hCPR, a new C1q binding mode was identified in Dare-PTX. In addition, the FcR-binding sites of hSAP are partially conserved in Dare-PTX. These results will shed light on the understanding of a primitive PTX in bony fish, which evolved approximately 450 million years ago.
Collapse
Affiliation(s)
- Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, People's Republic of China
| | - Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, People's Republic of China.
| |
Collapse
|
195
|
Honda T, Maeda Y, Yasuda T, Tanaka T, Matsunaga T, Yoshino T. Novel designs of single-chain MHC I/peptide complex for the magnetosome display system. Protein Eng Des Sel 2015; 28:53-8. [DOI: 10.1093/protein/gzu056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
196
|
Smith SN, Harris DT, Kranz DM. T Cell Receptor Engineering and Analysis Using the Yeast Display Platform. Methods Mol Biol 2015; 1319:95-141. [PMID: 26060072 PMCID: PMC5562502 DOI: 10.1007/978-1-4939-2748-7_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g., a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g., T cell activation by as few as 1-3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with K D values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display.
Collapse
Affiliation(s)
| | | | - David M. Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
197
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 554] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
198
|
Understanding the structural dynamics of TCR-pMHC interactions. Trends Immunol 2014; 35:604-612. [DOI: 10.1016/j.it.2014.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
|
199
|
Layre E, de Jong A, Moody DB. Human T cells use CD1 and MR1 to recognize lipids and small molecules. Curr Opin Chem Biol 2014; 23:31-8. [DOI: 10.1016/j.cbpa.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
|
200
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|