151
|
Axonal degeneration in the peripheral nervous system: Implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Neurol 2013; 246:6-13. [DOI: 10.1016/j.expneurol.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 04/22/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
|
152
|
Vinsant S, Mansfield C, Jimenez-Moreno R, Del Gaizo Moore V, Yoshikawa M, Hampton TG, Prevette D, Caress J, Oppenheim RW, Milligan C. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part II, results and discussion. Brain Behav 2013; 3:431-57. [PMID: 24381813 PMCID: PMC3869683 DOI: 10.1002/brb3.142] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
Pathological events are well characterized in amyotrophic lateral sclerosis (ALS) mouse models, but review of the literature fails to identify a specific initiating event that precipitates disease pathology. There is now growing consensus in the field that axon and synapses are first cellular sites of degeneration, but controversy exists over whether axon and synapse loss is initiated autonomously at those sites or by pathology in the cell body, in nonneuronal cells or even in nonmotoneurons (MNs). Previous studies have identified pathological events in the mutant superoxide dismutase 1 (SOD1) models involving spinal cord, peripheral axons, neuromuscular junctions (NMJs), or muscle; however, few studies have systematically examined pathogenesis at multiple sites in the same study. We have performed ultrastructural examination of both central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse model of ALS. Twenty percent of MNs undergo degeneration by P60, but NMJ innervation in fast fatigable muscles is reduced by 40% by P30. Gait alterations and muscle weakness were also found at P30. There was no change in axonal transport prior to initial NMJ denervation. Mitochondrial morphological changes are observed at P7 and become more prominent with disease progression. At P30 there was a significant decrease in excitatory axo-dendritic and axo-somatic synapses with an increase in C-type axo-somatic synapses. Our study examined early pathology in both peripheral and central neuromuscular system. The muscle denervation is associated with functional motor deficits and begins during the first postnatal month in SOD1(G93A) mice. Physiological dysfunction and pathology in the mitochondria of synapses and MN soma and dendrites occur, and disease onset in these animals begins more than 2 months earlier than originally thought. This information may be valuable for designing preclinical trials that are more likely to impact disease onset and progression.
Collapse
Affiliation(s)
- Sharon Vinsant
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Carol Mansfield
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Ramon Jimenez-Moreno
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | | | - Masaaki Yoshikawa
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | | | - David Prevette
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - James Caress
- Department of Neurology and the ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Ronald W Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Carol Milligan
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| |
Collapse
|
153
|
Vinsant S, Mansfield C, Jimenez-Moreno R, Del Gaizo Moore V, Yoshikawa M, Hampton TG, Prevette D, Caress J, Oppenheim RW, Milligan C. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part I, background and methods. Brain Behav 2013; 3:335-50. [PMID: 24381807 PMCID: PMC3869677 DOI: 10.1002/brb3.143] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
Charcot first described amyotrophic lateral sclerosis (ALS) in 1869; however, its causes remain largely unknown and effective, long-term treatment strategies are not available. The first mouse model of ALS was developed after the identification of mutations in the superoxide dismutase 1 (SOD1) gene in 1993, and accordingly most of our knowledge of the etiology and pathogenesis of the disease comes from studies carried out using this animal model. Although numerous preclinical trials have been conducted in the mutant SOD1 mouse models, the results have been disappointing because they did not positively translate to clinical trials. One explanation may be that current understanding of when and where pathogenesis begins is insufficient to accurately guide preclinical trials. Further characterization of these early events may provide insight into disease onset, help in the discovery of presymptomatic diagnostic disease markers, and identify novel therapeutic targets. Here, we describe the rationale, approach, and methods for our extensive analysis of early changes that included an ultrastructural examination of central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse and correlated these alterations with early muscle denervation, motor dysfunction, and motoneuron death. We also provide a discussion of published work to review what is known regarding early pathology in the SOD1 mouse model of ALS. The significance of this work is that we have examined early pathology simultaneously in both the spinal cord and peripheral neuromuscular system, and the results are presented in the companion paper (Part II, Results and Discussion). Our results provide evidence as to why a thorough characterization of animal models throughout the life span is critical for a strong foundation to design preclinical trials that may produce meaningful results.
Collapse
Affiliation(s)
- Sharon Vinsant
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | - Carol Mansfield
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | - Ramon Jimenez-Moreno
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | | | - Masaaki Yoshikawa
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | | | - David Prevette
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | - James Caress
- Department of Neurology and the ALS Center, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Ronald W Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| | - Carol Milligan
- Department of Neurobiology and Anatomy, The Neuroscience Program and The ALS Center Winston-Salem, North Carolina
| |
Collapse
|
154
|
A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils. J Mol Model 2013; 19:3695-704. [PMID: 23780345 DOI: 10.1007/s00894-013-1896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Familial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation.
Collapse
|
155
|
Kim JH, Song SK. Diffusion tensor imaging of the mouse brainstem and cervical spinal cord. Nat Protoc 2013; 8:409-17. [PMID: 23424749 DOI: 10.1038/nprot.2013.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Concurrent and/or progressive degeneration of upper and lower motor neurons (LMNs) causes neurological symptoms and dysfunctions in motor neuron diseases (MNDs) such as amyotrophic lateral sclerosis (ALS). Although brain lesions are readily detected, magnetic resonance imaging of the brainstem and cervical spinal cord lesions resulting from damage to LMNs has proven to be difficult. With the development of mouse models of MNDs, a noninvasive neuroimaging modality capable of detecting lesions resulting from axonal and neuronal injury in mouse brainstem and cervical spinal cord could improve our understanding of the underlying mechanism of MNDs and aid in the development of effective treatments. Here we present a protocol that allows the concomitant acquisition of high-quality in vivo full-diffusion tensor magnetic resonance images from the mouse brainstem and cervical spinal cord using the actively decoupled, anatomically shaped pair of coils--the surface-receive coil and the minimized volume-transmit coil. To improve the data quality, we used a custom-made nose cone to monitor respiratory motion for synchronizing data acquisition and assuring physiological stability of mice under examination. The protocol allows the acquisition of in vivo diffusion tensor imaging of the mouse brainstem and cervical spinal cord at 117 μm × 117 μm in-plane resolution with a 500-μm slice thickness in 1 h on a 4.7-T horizontal small animal imaging scanner equipped with an actively shielded gradient coil capable of pulsed gradient strengths up to 18 G cm(−1) with a gradient rise time of ≤295 μs.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
156
|
Abstract
Early axon loss is a common feature of many neurodegenerative disorders. It renders neurons functionally inactive, or less active if axon branches are lost, in a manner that is often irreversible. In the CNS, there is no long-range axon regeneration and even peripheral nerve axons are unlikely to reinnervate their targets while the cause of the problem persists. In most disorders, axon degeneration precedes cell death so it is not simply a consequence of it, and it is now clear that axons have at least one degeneration mechanism that differs from that of the soma. It is important to understand these degeneration mechanisms and their contribution to axon loss in neurodegenerative disorders. In this way, it should become possible to prevent axon loss as well as cell death. This special edition considers the roles and mechanisms of axon degeneration in amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, hereditary spastic paraplegia, ischemic injury, traumatic brain injury, Alzheimer's disease, glaucoma, Huntington's disease and Parkinson's disease. Using examples from these and other disorders, this introduction considers some of the reasons for axon vulnerability. It also illustrates how molecular genetics and studies of Wallerian degeneration have contributed to our understanding of axon degeneration mechanisms.
Collapse
|
157
|
Morfini GA, Bosco DA, Brown H, Gatto R, Kaminska A, Song Y, Molla L, Baker L, Marangoni MN, Berth S, Tavassoli E, Bagnato C, Tiwari A, Hayward LJ, Pigino GF, Watterson DM, Huang CF, Banker G, Brown RH, Brady ST. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 2013; 8:e65235. [PMID: 23776455 PMCID: PMC3680447 DOI: 10.1371/journal.pone.0065235] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.
Collapse
Affiliation(s)
- Gerardo A. Morfini
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rodolfo Gatto
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Agnieszka Kaminska
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Yuyu Song
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Linda Molla
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - M. Natalia Marangoni
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Berth
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Ehsan Tavassoli
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Carolina Bagnato
- Department of Natural Sciences and Engineering. National University of Rio Negro, Rio Negro, Argentina
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, United States of America
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Gustavo F. Pigino
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - D. Martin Watterson
- Center for Molecular Innovation and Drug Discovery and Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IIllinois, United States of America
| | - Chun-Fang Huang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Scott T. Brady
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
158
|
Gunawardena S. Nanoparticles in the Brain: A Potential Therapeutic System Targeted to an Early Defect Observed in Many Neurodegenerative Diseases. Pharm Res 2013; 30:2459-74. [DOI: 10.1007/s11095-013-1037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022]
|
159
|
Melo TQ, D'unhao AM, Martins SA, Farizatto KLG, Chaves RS, Ferrari MFR. Rotenone-dependent changes of anterograde motor protein expression and mitochondrial mobility in brain areas related to neurodegenerative diseases. Cell Mol Neurobiol 2013; 33:327-35. [PMID: 23263842 DOI: 10.1007/s10571-012-9898-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/05/2012] [Indexed: 12/24/2022]
Abstract
The presence of protein aggregates is common in neurodegenerative disorders; however, the real cause and effect of these aggregates during neurodegeneration is still a matter of investigation. We hypothesize that impairment of intracellular traffic may appear in the absence of protein inclusions and might trigger protein aggregation. In the present study, we aimed to evaluate mitochondria mobility as well as protein and messenger RNA expression of KIF1B and KIF5 that are molecular motors for neuronal anterograde traffic, in hippocampus, substantia nigra, and locus coeruleus of 10-month-old Lewis rats and cultured cells, from these same areas, following exposure to low doses of rotenone that do not lead to protein inclusions. The present study showed alteration in KIF1B and KIF5 expression, as well as in mitochondria mobility prior to protein aggregation involved in neurodegenerative disorders. These findings suggest that change in intracellular trafficking might be critical and one of the primary events for impairment of cell physiology during neurodegeneration associated with protein inclusions.
Collapse
Affiliation(s)
- Thaiany Q Melo
- Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo, Cidade Universitaria, Rua do Matao, 277, Sao Paulo, 05508-090, Brazil
| | | | | | | | | | | |
Collapse
|
160
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
161
|
Molecular chaperone Hsp110 rescues a vesicle transport defect produced by an ALS-associated mutant SOD1 protein in squid axoplasm. Proc Natl Acad Sci U S A 2013; 110:5428-33. [PMID: 23509252 DOI: 10.1073/pnas.1303279110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutant human Cu/Zn superoxide dismutase 1 (SOD1) is associated with motor neuron toxicity and death in an inherited form of amyotrophic lateral sclerosis (ALS; Lou Gehrig disease). One aspect of toxicity in motor neurons involves diminished fast axonal transport, observed both in transgenic mice and, more recently, in axoplasm isolated from squid giant axons. The latter effect appears to be directly mediated by misfolded SOD1, whose addition activates phosphorylation of p38 MAPK and phosphorylation of kinesin. Here, we observe that several different oligomeric states of a fusion protein, comprising ALS-associated human G85R SOD1 joined with yellow fluorescent protein (G85R SOD1YFP), which produces ALS in transgenic mice, inhibited anterograde transport when added to squid axoplasm. Inhibition was blocked both by an apoptosis signal-regulating kinase 1 (ASK1; MAPKKK) inhibitor and by a p38 inhibitor, indicating the transport defect is mediated through the MAPK cascade. In further incubations, we observed that addition of the mammalian molecular chaperone Hsc70, abundantly associated with G85R SOD1YFP in spinal cord of transgenic mice, exerted partial correction of the transport defect, associated with diminished phosphorylation of p38. Most striking, the addition of the molecular chaperone Hsp110, in a concentration substoichiometric to the mutant SOD1 protein, completely rescued both the transport defect and the phosphorylation of p38. Hsp110 has been demonstrated to act as a nucleotide exchange factor for Hsc70 and, more recently, to be able to cooperate with it to mediate protein disaggregation. We speculate that it can cooperate with endogenous squid Hsp(c)70 to mediate binding and/or disaggregation of mutant SOD1 protein, abrogating toxicity.
Collapse
|
162
|
Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248-64. [PMID: 23463272 DOI: 10.1038/nrn3430] [Citation(s) in RCA: 745] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several recent breakthroughs have provided notable insights into the pathogenesis of amyotrophic lateral sclerosis (ALS), with some even shifting our thinking about this neurodegenerative disease and raising the question as to whether this disorder is a proteinopathy, a ribonucleopathy or both. In addition, these breakthroughs have revealed mechanistic links between ALS and frontotemporal dementia, as well as between ALS and other neurodegenerative diseases, such as the cerebellar atrophies, myotonic dystrophy and inclusion body myositis. Here, we summarize the new findings in ALS research, discuss what they have taught us about this disease and examine issues that are still outstanding.
Collapse
Affiliation(s)
- Wim Robberecht
- Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium.
| | | |
Collapse
|
163
|
Taes I, Timmers M, Hersmus N, Bento-Abreu A, Van Den Bosch L, Van Damme P, Auwerx J, Robberecht W. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 2013; 22:1783-90. [PMID: 23364049 DOI: 10.1093/hmg/ddt028] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Defects in axonal transport are thought to contribute to the pathogenesis of neurodegenerative disease. Because α-tubulin acetylation facilitates axonal transport, inhibition of the α-tubulin deacetylating enzymes, histone deacetylase 6 (Hdac6) and silent information regulator 2 (Sirt2), is thought to be an interesting therapeutic strategy for these conditions. Amyotrophic lateral sclerosis (ALS) is a one such rapidly progressive and fatal neurodegenerative disorder, in which axonal transport defects have been found in vitro and in vivo. To establish whether the inhibition of Hdac6 or Sirt2 may be of interest for ALS treatment, we investigated whether deleting Hdac6 or Sirt2 from the superoxide dismutase 1, SOD1(G93A) mouse affects the motor neuron degeneration in this ALS model. Deletion of Hdac6 significantly extended the survival of SOD1(G93A) mice without affecting disease onset, and maintained motor axon integrity. This protective effect was associated with increased α-tubulin acetylation. Deletion of Sirt2 failed to affect the disease course, but also did not modify α-tubulin acetylation. These findings show that Hdac6, rather than Sirt2, is a therapeutic target for the treatment of ALS. Moreover, Sirt2 appears not to be a major α-tubulin deacetylase in the nervous system.
Collapse
Affiliation(s)
- Ines Taes
- Experimental Neurology, Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
164
|
|
165
|
Abstract
One of the major challenges facing the long term survival of neurons is their requirement to maintain efficient axonal transport over long distances. In humans as large, long-lived vertebrates, the machinery maintaining neuronal transport must remain efficient despite the slow accumulation of cell damage during aging. Mutations in genes encoding proteins which function in the transport system feature prominently in neurologic disorders. Genes known to cause such disorders and showing traditional Mendelian inheritance have been more readily identified. It has been more difficult, however, to isolate factors underlying the complex genetics contributing to the more common idiopathic forms of neurodegenerative disease. At the heart of neuronal transport is the rail network or scaffolding provided by neuron specific microtubules (MTs). The importance of MT dynamics and stability is underscored by the critical role tau protein plays in MT-associated stabilization versus the dysfunction seen in Alzheimer's disease, frontotemporal dementia and other tauopathies. Another example of the requirement for tight regulation of MT dynamics is the need to maintain balanced levels of post-translational modification of key MT building-blocks such as α-tubulin. Tubulins require extensive polyglutamylation at their carboxyl-terminus as part of a novel post-translational modification mechanism to signal MT growth versus destabilization. Dramatically, knock-out of a gene encoding a deglutamylation family member causes an extremely rapid cell death of Purkinje cells in the ataxic mouse model, pcd. This review will examine a range of neurodegenerative conditions where current molecular understanding points to defects in the stability of MTs and axonal transport to emphasize the central role of MTs in neuron survival.
Collapse
Affiliation(s)
- Fiona J Baird
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia ; Centre of Biodiscovery and Molecular Therapeutics, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Craig L Bennett
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia ; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
166
|
|
167
|
Holmgren A, Bouhy D, Timmerman V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 2012; 17:365-76. [DOI: 10.1111/j.1529-8027.2012.00434.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
168
|
|
169
|
Developing nanotherapies for neurodegenerative diseases: ORMOSIL and its potential in axonal transport. Ther Deliv 2012; 3:1189-98. [PMID: 23116011 DOI: 10.4155/tde.12.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, essential components packaged into vesicles are transported down microtubules to the ends of axons (synapses) where they are utilized. Components are also transported from the synapse to the cell body. This transport pathway is crucial for normal development, cell survival and plasticity. Recent work has established that defects in transport can contribute to the initiation of neurodegenerative disease, culminating in cell death and degeneration. Thus, delivering therapeutic treatments to an early defect is critical since many current strategies target pathology that occurs at later stages in the disease. Current treatments also affect the entire organism, causing side-effects that are often more deleterious than the disease. This article discusses how engineered synthetic structures can be used to directly target axonal transport--a pathway that is affected during the early stages of disease. Studies in this area will require the exchange of fundamental knowledge between biologists, chemists and engineers to effectively manufacture novel biomaterials for medical use.
Collapse
|
170
|
Zetterström P, Graffmo KS, Andersen PM, Brännström T, Marklund SL. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med 2012; 15:147-58. [PMID: 23076707 DOI: 10.1007/s12017-012-8204-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
A common cause of amyotrophic lateral sclerosis is mutations in superoxide dismutase-1, which provoke the disease by an unknown mechanism. We have previously found that soluble hydrophobic misfolded mutant human superoxide dismutase-1 species are enriched in the vulnerable spinal cords of transgenic model mice. The levels were broadly inversely correlated with life spans, suggesting involvement in the pathogenesis. Here, we used methods based on antihuman superoxide dismutase-1 peptide antibodies specific for misfolded species to explore the composition and amounts of soluble misfolded human superoxide dismutase-1 in tissue extracts. Mice expressing 5 different human superoxide dismutase-1 variants with widely variable structural characteristics were examined. The levels were generally higher in spinal cords than in other tissues. The major portion of misfolded superoxide dismutase-1 was shown to be monomers lacking the C57-C146 disulfide bond with large hydrodynamic volume, indicating a severely disordered structure. The remainder of the misfolded protein appeared to be non-covalently associated in 130- and 250-kDa complexes. The malleable monomers should be prone to aggregate and associate with other cellular components, and should be easily translocated between compartments. They may be the primary cause of toxicity in superoxide dismutase-1-induced amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | | | | | | | | |
Collapse
|
171
|
Fanara P, Wong PYA, Husted KH, Liu S, Liu VM, Kohlstaedt LA, Riiff T, Protasio JC, Boban D, Killion S, Killian M, Epling L, Sinclair E, Peterson J, Price RW, Cabin DE, Nussbaum RL, Brühmann J, Brandt R, Christine CW, Aminoff MJ, Hellerstein MK. Cerebrospinal fluid-based kinetic biomarkers of axonal transport in monitoring neurodegeneration. J Clin Invest 2012; 122:3159-69. [PMID: 22922254 DOI: 10.1172/jci64575] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022] Open
Abstract
Progress in neurodegenerative disease research is hampered by the lack of biomarkers of neuronal dysfunction. We here identified a class of cerebrospinal fluid-based (CSF-based) kinetic biomarkers that reflect altered neuronal transport of protein cargo, a common feature of neurodegeneration. After a pulse administration of heavy water (2H2O), distinct, newly synthesized 2H-labeled neuronal proteins were transported to nerve terminals and secreted, and then appeared in CSF. In 3 mouse models of neurodegeneration, distinct 2H-cargo proteins displayed delayed appearance and disappearance kinetics in the CSF, suggestive of aberrant transport kinetics. Microtubule-modulating pharmacotherapy normalized CSF-based kinetics of affected 2H-cargo proteins and ameliorated neurodegenerative symptoms in mice. After 2H2O labeling, similar neuronal transport deficits were observed in CSF of patients with Parkinson's disease (PD) compared with non-PD control subjects, which indicates that these biomarkers are translatable and relevant to human disease. Measurement of transport kinetics may provide a sensitive method to monitor progression of neurodegeneration and treatment effects.
Collapse
|
172
|
Ip CW, Kroner A, Groh J, Huber M, Klein D, Spahn I, Diem R, Williams SK, Nave KA, Edgar JM, Martini R. Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse. PLoS One 2012; 7:e42554. [PMID: 22905147 PMCID: PMC3414455 DOI: 10.1371/journal.pone.0042554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/10/2012] [Indexed: 02/03/2023] Open
Abstract
Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Antje Kroner
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Marianne Huber
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Ricarda Diem
- Department of Neuro-oncology, University Hospital, Heidelberg, Germany
| | - Sarah K. Williams
- Department of Neuro-oncology, University Hospital, Heidelberg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Julia M. Edgar
- Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
173
|
Neuromuscular junction protection for the potential treatment of amyotrophic lateral sclerosis. Neurol Res Int 2012; 2012:379657. [PMID: 22919482 PMCID: PMC3423938 DOI: 10.1155/2012/379657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the progressive degeneration of upper and lower motor neurons (MNs), leading to muscular atrophy and eventual respiratory failure. ALS research has primarily focused on mechanisms regarding MN cell death; however, degenerative processes in the skeletal muscle, particularly involving neuromuscular junctions (NMJs), are observed in the early stages of and throughout disease progression. According to the "dying-back" hypothesis, NMJ degeneration may not only precede, but actively cause upper and lower MN loss. The importance of NMJ pathology has relatively received little attention in ALS, possibly because compensatory mechanisms mask NMJ loss for prolonged periods. Many mechanisms explaining NMJ degeneration have been proposed such as the disruption of anterograde/retrograde axonal transport, irregular cellular metabolism, and changes in muscle gene and protein expression. Neurotrophic factors, which are known to have neuroprotective and regenerative properties, have been intensely investigated for their therapeutic potential in both the preclinical and clinical setting. Additional research should focus on the potential of preserving NMJs in order to delay or prevent disease progression.
Collapse
|
174
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
175
|
Riley J, Hurtig CV, Boulis N. Translating cellular therapies from bench to bedside for amyotrophic lateral sclerosis. Per Med 2012; 9:645-655. [DOI: 10.2217/pme.12.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed an increasing number of biologic (e.g., cell- or viral vector-based) therapeutics supported by preclinical efficacy data for the treatment of afflictions to the CNS. While some international investigators have undertaken preliminary clinical safety studies, published literature indicate varying degrees of rigor with respect to study design and technical approach. To our knowledge, ours is the first group to have systematically generated preclinical validation data for a delivery approach and translated this into a Phase I trial attempting to covalidate the safety of a direct, targeted delivery approach, as well as a cell-based therapeutic. This article discusses the rationale for cell-based therapy in amyotrophic lateral sclerosis and several of the unique considerations encountered during this process.
Collapse
Affiliation(s)
- Jonathan Riley
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| | - Carl V Hurtig
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 1365-B Clifton Road Northeast, Suite B6200, Atlanta, GA 30322, USA
| |
Collapse
|
176
|
Sadananda A, Ray K. Neurogenetics of slow axonal transport: from cells to animals. J Neurogenet 2012; 26:291-7. [PMID: 22834647 DOI: 10.3109/01677063.2012.699564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.
Collapse
|
177
|
Shelton GD, Johnson GC, O'Brien DP, Katz ML, Pesayco JP, Chang BJ, Mizisin AP, Coates JR. Degenerative myelopathy associated with a missense mutation in the superoxide dismutase 1 (SOD1) gene progresses to peripheral neuropathy in Pembroke Welsh Corgis and Boxers. J Neurol Sci 2012; 318:55-64. [DOI: 10.1016/j.jns.2012.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
|
178
|
Knippenberg S, Thau N, Dengler R, Brinker T, Petri S. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 2012; 7:e36857. [PMID: 22745655 PMCID: PMC3380029 DOI: 10.1371/journal.pone.0036857] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/15/2012] [Indexed: 12/11/2022] Open
Abstract
Background As pharmacological therapies have largely failed so far, stem cell therapy has recently come into the focus of ALS research. Neuroprotective potential was shown for several types of stem and progenitor cells, mainly due to release of trophic factors. In the present study, we assessed the effects of intracerebroventricular injection of glucagon-like peptide 1 (GLP-1) releasing mesenchymal stromal cells (MSC) in mutant SOD1 (G93A) transgenic mice. Methodology/Principal Findings To improve the neuroprotective effects of native MSC, they had been transfected with a plasmid vector encoding a GLP-1 fusion gene prior to the injection, as GLP-1 was shown to exhibit neuroprotective properties before. Cells were encapsulated and therefore protected against rejection. After intracerebroventricular injection of these GLP-1 MSC capsules in presymptomatic SOD1 (G93A) mice, we assessed possible protective effects by survival analysis, measurement of body weight, daily monitoring and evaluation of motor performance by rotarod and footprint analyses. Motor neuron numbers in the spinal cord as well as the amount of astrocytosis, microglial activation, heat shock response and neuronal nitric oxide synthase (nNOS) expression were analyzed by immunohistological methods. Treatment with GLP-1 producing MSC capsules significantly prolonged survival by 13 days, delayed symptom onset by 15 days and weight loss by 14 days and led to significant improvements in motor performance tests compared to vehicle treated controls. Histological data are mainly in favour of anti-inflammatory effects of GLP-1 producing MSC capsules with reduced detection of inflammatory markers and a significant heat shock protein increase. Conclusion/Significance Intracerebroventricular injection of GLP-1 MSC capsules shows neuroprotective potential in the SOD1 (G93A) mouse model.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | |
Collapse
|
179
|
Paratore S, Pezzino S, Cavallaro S. Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 2012; 13:321-33. [PMID: 23204922 PMCID: PMC3394120 DOI: 10.2174/138920212800793366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and disabling neurodegenerative disorder characterized by upper and lower motor neuron loss, leading to respiratory insufficiency and death after 3-5 years. Riluzole is currently the only FDA approved drug for ALS, but it has only modest effects on survival. The majority of ALS cases are sporadic and probably associated to a multifactorial etiology. With the completion of genome sequencing in humans and model organisms, together with the advent of DNA microarray technology, the transcriptional cascades and networks underlying neurodegeneration in ALS are being elucidated providing new potential pharmacological targets. The main challenge now is the effective screening of the myriad of targets to identify those with the most therapeutic utility. The present review will illustrate how the identification, prioritization and validation of preclinical therapeutics can be achieved through genomic analysis of critical pathways and networks deregulated in ALS pathology.
Collapse
Affiliation(s)
- Sabrina Paratore
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| | - Salvatore Pezzino
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| |
Collapse
|
180
|
Wada T, Goparaju SK, Tooi N, Inoue H, Takahashi R, Nakatsuji N, Aiba K. Amyotrophic lateral sclerosis model derived from human embryonic stem cells overexpressing mutant superoxide dismutase 1. Stem Cells Transl Med 2012. [PMID: 23197818 DOI: 10.5966/sctm.2011-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The generation of amyotrophic lateral sclerosis (ALS) disease models is an important subject for investigating disease mechanisms and pharmaceutical applications. In transgenic mice, expression of a mutant form of superoxide dismutase 1 (SOD1) can lead to the development of ALS that closely mimics the familial type of ALS (FALS). Although SOD1 mutant mice show phenotypes similar to FALS, dissimilar drug responses and size differences limit their usefulness to study the disease mechanism(s) and identify potential therapeutic compounds. Development of an in vitro model system for ALS is expected to help in obtaining novel insights into disease mechanisms and discovery of therapeutics. We report the establishment of an in vitro FALS model from human embryonic stem cells overexpressing either a wild-type (WT) or a mutant SOD1 (G93A) gene and the evaluation of the phenotypes and survival of the spinal motor neurons (sMNs), which are the neurons affected in ALS patients. The in vitro FALS model that we developed mimics the in vivo human ALS disease in terms of the following: (a) selective degeneration of sMNs expressing the G93A SOD1 but not those expressing the WT gene; (b) susceptibility of G93A SOD1-derived sMNs to form ubiquitinated inclusions; (c) astrocyte-derived factor(s) in the selective degeneration of G93A SOD1 sMNs; and (d) cell-autonomous, as well as non-cell-autonomous, dependent sMN degeneration. Thus, this model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration.
Collapse
Affiliation(s)
- Tamaki Wada
- Stem Cell and Drug Discovery Institute, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
181
|
Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM, Wong PC. Rodent models of TDP-43: recent advances. Brain Res 2012; 1462:26-39. [PMID: 22608070 DOI: 10.1016/j.brainres.2012.04.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/04/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
Recently, missense mutations in the gene TARDBP encoding TDP-43 have been linked to familial ALS. The discovery of genes encoding these RNA binding proteins, such as TDP-43 and FUS/TLS, raised the notion that altered RNA metabolism is a major factor underlying the pathogenesis of ALS. To begin to unravel how mutations in TDP-43 cause dysfunction and death of motor neurons, investigators have employed both gain- and loss-of-function studies in rodent model systems. Here, we will summarize major findings from the initial sets of TDP-43 transgenic and knockout rodent models, identify their limitations, and point to future directions toward clarification of disease mechanism(s) and testing of therapeutic strategies that ultimately may lead to novel therapy for this devastating disease. This article is part of a Special Issue entitled RNA-Binding Proteins.
Collapse
Affiliation(s)
- William Tsao
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The purpose of this paper is to develop a model capable of simulating traffic jams in slow axonal transport. Slowing of slow axonal transport is an early sign of some neurodegenerative diseases. Axonal swellings observed near the end stage of such diseases may be an indication of traffic jams developing in axons that cause the slowing down of slow axonal transport. Traffic jams may result from misregulation of microtubule-associated proteins caused by an imbalance in intracellular signaling or by mutations of these proteins. This misregulation leads to a decay of microtubule tracks in axons, effectively reducing the number of "railway tracks" available for molecular-motor-assisted transport of intracellular organelles. In this paper, the decay of microtubule tracks is modeled by a reduction of the number density of microtubules in the central part of the axon. Simulation results indicate that the model predicts the build-up of the bell-shaped concentration wave, as the wave approaches the bottleneck (blockage) region. This increase in concentration will likely plug the bottleneck region resulting in a traffic jam that would hinder the slow axonal transport.
Collapse
Affiliation(s)
- A. V. KUZNETSOV
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA
| | - A. A. AVRAMENKO
- Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
| | - D. G. BLINOV
- Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
183
|
Shan X, Vocadlo DJ, Krieger C. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett 2012; 516:296-301. [PMID: 22521585 DOI: 10.1016/j.neulet.2012.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/16/2012] [Accepted: 04/06/2012] [Indexed: 11/17/2022]
Abstract
In the neurodegenerative disease amyotrophic lateral sclerosis (ALS), a number of proteins have been found to be hyperphosphorylated, including neurofilament proteins (NFs). In addition to protein phosphorylation, another important post-translational modification is O-glycosylation with β-N-acetylglucosamine residues (O-GlcNAc) and it has been found that O-GlcNAc can modify proteins competitively with protein phosphorylation, so that increased O-GlcNAc can reduce phosphorylation at specific sites. We evaluated a transgenic mouse model of ALS that overexpresses mutant superoxide dismutase (mSOD) and found that O-GlcNAc immunoreactivity levels are decreased in spinal cord tissue from mSOD mice, compared to controls. This reduction in O-GlcNAc levels is prominent in the motor neurons of spinal cord. We find that inhibition of O-GlcNAcase (OGA), the enzyme catalyzing removal of O-GlcNAc, using the inhibitor NButGT for 3 days, resulted in increased O-GlcNAc levels in spinal cord, both in mSOD and control mice. Furthermore, NButGT increased levels of O-GlcNAc modified NF-medium in spinal cords of control mice, but not in mSOD mice. These observations suggest that the neurodegeneration found in mSOD mice is associated with a reduction of O-GlcNAc levels in neurons, including motor neurons.
Collapse
Affiliation(s)
- Xiaoyang Shan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
184
|
Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2012; 109:4296-301. [PMID: 22371592 DOI: 10.1073/pnas.1200658109] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Axonal transport deficits have been reported in many neurodegenerative conditions and are widely assumed to be an immediate causative step of axon and synapse loss. By imaging changes in axonal morphology and organelle transport over time in several animal models of amyotrophic lateral sclerosis (ALS), we now find that deficits in axonal transport of organelles (mitochondria, endosomes) and axon degeneration can evolve independently. This conclusion rests on the following results: (i) Axons can survive despite long-lasting transport deficits: In the SOD(G93A) model of ALS, transport deficits are detected soon after birth, months before the onset of axon degeneration. (ii) Transport deficits are not necessary for axon degeneration: In the SOD(G85R) model of ALS, motor axons degenerate, but transport is unaffected. (iii) Axon transport deficits are not sufficient to cause immediate degeneration: In mice that overexpress wild-type superoxide dismutase-1 (SOD(WT)), axons show chronic transport deficits, but survive. These data suggest that disturbances of organelle transport are not a necessary step in the emergence of motor neuron degeneration.
Collapse
|
185
|
Otten M, Nandi A, Arcizet D, Gorelashvili M, Lindner B, Heinrich D. Local motion analysis reveals impact of the dynamic cytoskeleton on intracellular subdiffusion. Biophys J 2012; 102:758-67. [PMID: 22385846 DOI: 10.1016/j.bpj.2011.12.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 10/28/2022] Open
Abstract
Intracellular transport is a complex interplay of ballistic transport along filaments and of diffusive motion, reliably delivering material and allowing for cell differentiation, migration, and proliferation. The diffusive regime, including subdiffusive, Brownian, and superdiffusive motion, is of particular interest for inferring information about the dynamics of the cytoskeleton morphology during intracellular transport. The influence of dynamic cytoskeletal states on intracellular transport are investigated in Dictyostelium discoideum cells by single particle tracking of fluorescent nanoparticles, to relate quantitative motion parameters and intracellular processes before and after cytoskeletal disruption. A local mean-square displacement (MSD) analysis separates ballistic motion phases, which we exclude here, from diffusive nanoparticle motion. In this study, we focus on intracellular subdiffusion and elucidate lag-time dependence, with particular focus on the impact of cytoskeleton compartments like microtubules and actin filaments. This method proves useful for binary motion state distributions. Experimental results are compared to simulations of a data-driven Langevin model with finite velocity correlations that captures essential statistical features of the local MSD algorithm. Specifically, the values of the mean MSD exponent and effective diffusion coefficients can be traced back to negative correlations of the motion's increments. We clearly identify both microtubules and actin filaments as the cause for intracellular subdiffusion and show that actin-microtubule cross talk exerts viscosifying effects at timescales larger than 0.2 s. Our findings might give insights into material transport and information exchange in living cells, which might facilitate gaining control over cell functions.
Collapse
Affiliation(s)
- Marcus Otten
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | |
Collapse
|
186
|
Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2012; 7:616-30. [PMID: 22051914 DOI: 10.1038/nrneurol.2011.152] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically diverse disease. At least 15 ALS-associated gene loci have so far been identified, and the causative gene is known in approximately 30% of familial ALS cases. Less is known about the factors underlying the sporadic form of the disease. The molecular mechanisms of motor neuron degeneration are best understood in the subtype of disease caused by mutations in superoxide dismutase 1, with a current consensus that motor neuron injury is caused by a complex interplay between multiple pathogenic processes. A key recent finding is that mutated TAR DNA-binding protein 43 is a major constituent of the ubiquitinated protein inclusions in ALS, providing a possible link between the genetic mutation and the cellular pathology. New insights have also indicated the importance of dysregulated glial cell-motor neuron crosstalk, and have highlighted the vulnerability of the distal axonal compartment early in the disease course. In addition, recent studies have suggested that disordered RNA processing is likely to represent a major contributing factor to motor neuron disease. Ongoing research on the cellular pathways highlighted in this Review is predicted to open the door to new therapeutic interventions to slow disease progression in ALS.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | |
Collapse
|
187
|
Bricceno KV, Fischbeck KH, Burnett BG. Neurogenic and myogenic contributions to hereditary motor neuron disease. NEURODEGENER DIS 2012; 9:199-209. [PMID: 22327341 DOI: 10.1159/000335311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy and spinal and bulbar muscular atrophy are characterized by lower motor neuron loss and muscle atrophy. Although it is accepted that motor neuron loss is a primary event in disease pathogenesis, inherent defects in muscle may also contribute to the disease progression and severity. In this review, we discuss the relative contributions of primary pathological processes in the motor axons, neuromuscular junctions and muscle to disease manifestations. Characterizing these contributions helps us to better understand the disease mechanisms and to better target therapeutic intervention.
Collapse
Affiliation(s)
- Katherine V Bricceno
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
188
|
Mitchell CS, Lee RH. Cargo distributions differentiate pathological axonal transport impairments. J Theor Biol 2012; 300:277-91. [PMID: 22285784 DOI: 10.1016/j.jtbi.2012.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/22/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS.
Collapse
Affiliation(s)
- Cassie S Mitchell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| | | |
Collapse
|
189
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
190
|
McLinden KA, Trunova S, Giniger E. At the Fulcrum in Health and Disease: Cdk5 and the Balancing Acts of Neuronal Structure and Physiology. ACTA ACUST UNITED AC 2012; 2012:001. [PMID: 25364642 PMCID: PMC4212508 DOI: 10.4172/2168-975x.s1-001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cdk5 has been implicated in a multitude of processes in neuronal development, cell biology and physiology. These influence many neurological disorders, but the very breadth of Cdk5 effects has made it difficult to synthesize a coherent picture of the part played by this protein in health and disease. In this review, we focus on the roles of Cdk5 in neuronal function, particularly synaptic homeostasis, plasticity, neurotransmission, subcellular organization, and trafficking. We then discuss how disruption of these Cdk5 activities may initiate or exacerbate neural disorders. A recurring theme will be the sensitivity of Cdk5 sequelae to the precise biological context under consideration.
Collapse
Affiliation(s)
- Kristina A McLinden
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Svetlana Trunova
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| |
Collapse
|
191
|
Huang C, Tong J, Bi F, Zhou H, Xia XG. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 2011; 122:107-18. [PMID: 22156203 DOI: 10.1172/jci59130] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron degeneration, which ultimately leads to paralysis and death. Mutation of TAR DNA binding protein 43 (TDP-43) has been linked to the development of an inherited form of ALS. Existing TDP-43 transgenic animals develop a limited loss of motor neurons and therefore do not faithfully reproduce the core phenotype of ALS. Here, we report the creation of multiple lines of transgenic rats in which expression of ALS-associated mutant human TDP-43 is restricted to either motor neurons or other types of neurons and skeletal muscle and can be switched on and off. All of these rats developed progressive paralysis reminiscent of ALS when the transgene was switched on. Rats expressing mutant TDP-43 in motor neurons alone lost more spinal motor neurons than rats expressing the disease gene in varying neurons and muscle cells, although these rats all developed remarkable denervation atrophy of skeletal muscles. Intriguingly, progression of the disease was halted after transgene expression was switched off; in rats with limited loss of motor neurons, we observed a dramatic recovery of motor function, but in rats with profound loss of motor neurons, we only observed a moderate recovery of motor function. Our finding suggests that mutant TDP-43 in motor neurons is sufficient to promote the onset and progression of ALS and that motor neuron degeneration is partially reversible, at least in mutant TDP-43 transgenic rats.
Collapse
Affiliation(s)
- Cao Huang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
192
|
Molecular motor proteins and amyotrophic lateral sclerosis. Int J Mol Sci 2011; 12:9057-82. [PMID: 22272119 PMCID: PMC3257116 DOI: 10.3390/ijms12129057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS.
Collapse
|
193
|
Tang X, Seyb KI, Huang M, Schuman ER, Shi P, Zhu H, Glicksman MA. A high-throughput screening method for small-molecule inhibitors of the aberrant mutant SOD1 and dynein complex interaction. ACTA ACUST UNITED AC 2011; 17:314-26. [PMID: 22140121 DOI: 10.1177/1087057111429595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aberrant protein-protein interactions are attractive drug targets in a variety of neurodegenerative diseases due to the common pathology of accumulation of protein aggregates. In amyotrophic lateral sclerosis, mutations in SOD1 cause the formation of aggregates and inclusions that may sequester other proteins and disrupt cellular processes. It has been demonstrated that mutant SOD1, but not wild-type SOD1, interacts with the axonal transport motor dynein and that this interaction contributes to motor neuron cell death, suggesting that disrupting this interaction may be a potential therapeutic target. However, it can be challenging to configure a high-throughput screening (HTS)-compatible assay to detect inhibitors of a protein-protein interaction. Here we describe the development and challenges of an HTS for small-molecule inhibitors of the mutant SOD1-dynein interaction. We demonstrate that the interaction can be formed by coexpressing the A4V mutant SOD1 and dynein intermediate complex in cells and that this interaction can be disrupted by compounds added to the cell lysates. Finally, we show that some of the compounds identified from a pilot screen to inhibit the protein-protein interaction with this method specifically disrupt the interaction between the dynein complex and mtSOD1 but not the dynein complex itself when applied to live cells.
Collapse
Affiliation(s)
- Xiaohu Tang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
195
|
Bosco DA, LaVoie MJ, Petsko GA, Ringe D. Proteostasis and movement disorders: Parkinson's disease and amyotrophic lateral sclerosis. Cold Spring Harb Perspect Biol 2011; 3:a007500. [PMID: 21844169 DOI: 10.1101/cshperspect.a007500] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a movement disorder that afflicts over one million in the U.S.; amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is less prevalent but also has a high incidence. The two disorders sometimes present together, making a comparative study of interest. Both ALS and PD are neurodegenerative diseases, and are characterized by the presence of intraneuronal inclusions; however, different classes of neurons are affected and the primary protein in the inclusions differs between the diseases, and in some cases is different in distinct forms of the same disease. These observations might suggest that the more general approach of proteostasis pathway alteration would be a powerful one in treating these disorders. Examining results from human genetics and studies in model organisms, as well as from biochemical and biophysical characterization of the proteins involved in both diseases, we find that most instances of PD can be considered as arising from the misfolding, and self-association to a toxic species, of the small neuronal protein α-synuclein, and that proteostasis strategies are likely to be of value for this disorder. For ALS, the situation is much more complex and less clear-cut; the available data are most consistent with a view that ALS may actually be a family of disorders, presenting similarly but arising from distinct and nonoverlapping causes, including mislocalization of some properly folded proteins and derangement of RNA quality control pathways. Applying proteostasis approaches to this disease may require rethinking or broadening the concept of what proteostasis means.
Collapse
Affiliation(s)
- Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
196
|
Mead RJ, Bennett EJ, Kennerley AJ, Sharp P, Sunyach C, Kasher P, Berwick J, Pettmann B, Battaglia G, Azzouz M, Grierson A, Shaw PJ. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One 2011; 6:e23244. [PMID: 21876739 PMCID: PMC3158065 DOI: 10.1371/journal.pone.0023244] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022] Open
Abstract
The human SOD1G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3–4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.
Collapse
Affiliation(s)
- Richard J. Mead
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ellen J. Bennett
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Aneurin J. Kennerley
- Department of Psychology, Faculty of Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul Sharp
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Claire Sunyach
- Inserm-Avenir Team, Mediterranean Institute of Neurobiology, Inmed, Marseille, France
- Faculté des Sciences, Aix Marseille Université, Marseille, France
| | - Paul Kasher
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Jason Berwick
- Department of Psychology, Faculty of Science, University of Sheffield, Sheffield, United Kingdom
| | - Brigitte Pettmann
- Inserm-Avenir Team, Mediterranean Institute of Neurobiology, Inmed, Marseille, France
- Faculté des Sciences, Aix Marseille Université, Marseille, France
| | - Guiseppe Battaglia
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Grierson
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
197
|
Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31:7817-30. [PMID: 21613495 DOI: 10.1523/jneurosci.6412-10.2011] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the hallmark neuritic dystrophy of Alzheimer's disease (AD), autophagic vacuoles containing incompletely digested proteins selectively accumulate in focal axonal swellings, reflecting defects in both axonal transport and autophagy. Here, we investigated the possibility that impaired lysosomal proteolysis could be a basis for both of these defects leading to neuritic dystrophy. In living primary mouse cortical neurons expressing fluorescence-tagged markers, LC3-positive autophagosomes forming in axons rapidly acquired the endo-lysosomal markers Rab7 and LAMP1 and underwent exclusive retrograde movement. Proteolytic clearance of these transported autophagic vacuoles was initiated after fusion with bidirectionally moving lysosomes that increase in number at more proximal axon levels and in the perikaryon. Disrupting lysosomal proteolysis by either inhibiting cathepsins directly or by suppressing lysosomal acidification slowed the axonal transport of autolysosomes, late endosomes, and lysosomes and caused their selective accumulation within dystrophic axonal swellings. Mitochondria and other organelles lacking cathepsins moved normally under these conditions, indicating that the general functioning of the axonal transport system was preserved. Dystrophic swellings induced by lysosomal proteolysis inhibition resembled in composition those in several mouse models of AD and also acquired other AD-like features, including immunopositivity for ubiquitin, amyloid precursor protein, and hyperphosphorylated neurofilament proteins. Restoration of lysosomal proteolysis reversed the affected movements of proteolytic Rab7 vesicles, which in turn essentially cleared autophagic substrates and reversed the axonal dystrophy. These studies identify the AD-associated defects in neuronal lysosomal proteolysis as a possible basis for the selective transport abnormalities and highly characteristic pattern of neuritic dystrophy associated with AD.
Collapse
|
198
|
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that results in increasing disability and that is uniformly fatal. Since its approval in the 1990s, riluzole remains the sole treatment for ALS offering modest survival benefit. While significant advances have been made in the symptomatic management of the disease, more effective drug therapy targeting disease progression is sorely needed. AREAS COVERED Advances in the understanding of pathogenic mechanisms involved in disease development and progression have provided multiple avenues for developing effective treatment strategies. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of drug therapy. Previous human clinical trials that have targeted these pathways are mentioned and ongoing drug trials are discussed. EXPERT OPINION The search for effective drug therapy faces important challenges in the areas of basic science and animal research, translation of these results into human clinical trials, inherent bias in human studies and issues related to delays in clinical diagnosis. How these issues may be addressed and why ALS research constitutes fertile grounds for drug development not only for this devastating disease, but also for other more prevalent neurodegenerative diseases, is discussed in this review.
Collapse
Affiliation(s)
- Ali Aamer Habib
- The Neurological Institute of Columbia University, Eleanor and Lou Gehrig MDA/ALS Center, NY 10032, USA.
| | | |
Collapse
|
199
|
Abstract
Multiple sclerosis is a debilitating disease of the central nervous system that has been characteristically classified as an immune-mediated destruction of myelin, the protective coating on nerve fibers. Although the mechanisms responsible for the immune attack to central nervous system myelin have been the subject of intense investigation, more recent studies have focused on the neurodegenerative component, which is cause of clinical disability in young adults and appears to be only partially controlled by immunomodulatory therapies. Here, we review distinct, but not mutually exclusive, mechanisms of pathogenesis of axonal damage in multiple sclerosis patients that are either consequent to long-term demyelination or independent from it. We propose that the complexity of axonal degeneration and the heterogeneity of the underlying pathogenetic mechanisms should be taken into consideration for the design of targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jeffery D Haines
- Departments of Neuroscience Neurology and Genetics and Genomics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
200
|
Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, Hassan S, Vempati P, Chen F, Qian X, Pasinetti GM. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2011; 6:51. [PMID: 21771318 PMCID: PMC3156746 DOI: 10.1186/1750-1326-6-51] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/19/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism. RESULTS In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. CONCLUSION Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|